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Abstract. The inference of mitochondrial haplogroups is an important
step in forensic analysis of DNA samples collected at a crime scene. In
this paper we introduced efficient inference algorithms based on Jaccard
similarity between variants called from high-throughput sequencing data
of such DNA samples and mutations collected in public databases such
as PhyloTree. Experimental results on real and simulated datasets show
that our mutation analysis methods have accuracy comparable to that
of state-of-the-art methods based on haplogroup frequency estimation
for both single-individual samples and two-individual mixtures, with a
much lower running time.
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1 Introduction

Each human cell contains hundreds to thousands of mitochondria, each carrying
a copy of the 16,569bp circular mitochondrial genome. Three main reasons have
made mitochondrial DNA analysis an important tool for fields ranging from
evolutionary anthropology [3] to medical genetics [6, 12] and forensic science [1,
4]. First, the high copy number makes it easier to recover mitochondrial DNA
(mtDNA) compared to the nuclear DNA, which is present in only two copies per
cell [9, 14]. This is particularly important in applications such as crime scene or
mass disaster investigations where only a limited amount of biological material
may be available, and where sample degradation may render standard forensic
tests based on nuclear DNA analysis unusable [20]. Second, mitochondrial DNA
has a mutation rate about 10 times higher than the nuclear DNA, making it
an information rich genetic marker. The higher mutation rate is due to the
fact that mtDNA is subject to damage from reactive oxygen molecules released
in mitochondria as by-product of energy metabolism. Finally, mitochondria are
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Fig. 1. Top level mtDNA haplogroups (top) and sample haplogroups with their muta-
tions (bottom) from Build 17 of PhyloTree [25].

inherited maternally without undergoing recombination like the nuclear genome,
which can simplify analysis, particularly for mixed samples [14].

Public databases have already amassed tens of thousands of such sequences
collected from populations across the globe. Comprehensive phylogenetic anal-
ysis of these sequences has been used to infer the progressive accumulation of
mutations in the mitochondrial genome during human evolution and track hu-
man migrations [31]. Combinations of these mutations, inherited as haplotypes,
have also been used to trace back our most recent common matrilinear ancestor
referred to as the “mitochondrial Eve” [15, 29]. Last but not least, clustering
of mitochondrial haplotypes has been used to define standardized haplogroups
characterized by shared common mutations [29]. Due to lack of recombination,
the evolutionary history of these haplogroups can be represented as a tree. The
best curated haplogroup tree is PhyloTree [26], which currently catalogues over
5,400 haplogroups defined over some 4,500 different mutations (see Figure 1).

Although many of the available mtDNA sequences have been generated using
the classic Sanger sequencing technology, current mtDNA analyses are mainly
performed using short reads generated by high-throughput sequencing technolo-
gies. Numerous bioinformatics tools have been developed to conduct mtDNA
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analysis of such short read data. The majority of these tools – including Mi-
toSuite [11], HaploGrep [15], Haplogrep2 [33], mtDNA-Server [32], MToolBox
[5], mtDNAmanager [16], MitoTool [8], Haplofind [29], Mit-o-matic [28], and Hi-
MC [24] – take a reference-based approach, seeking to infer the haplotype (and
assign a mitochondrial haplogroup) assuming that the DNA sample originates
from a single individual. While these tools can be helpful for conducting popula-
tion studies [14] or identifying mislabeled samples [18], they are not suitable for
mtDNA analysis of mixed forensics samples that contain DNA from more than
one individual, e.g., the victim and the crime perpetrator [30]. Even though the
mtDNA haplotypes are not unique to the individual, mitochondrial analysis of
mixed forensic samples is useful for including/excluding suspects in crime scene
investigations since there is a large haplogroup diversity in human populations
[10].

To the best of our knowledge, mixemt [30] is the only available bioinformatics
tool that can assign haplogroups based on short reads generated from mixed
DNA samples. By using expectation maximization (EM), mixemt estimates the
relative contribution of each haplogroup in the mixture. To increase assignment
accuracy, the EM algorithm of mixemt is combined with two heuristic filters.
The first filter removes any haplogroup that has no support from short reads,
while the second filter removes haplogroup mutations that are likely to be private
or back mutations. Experiments with synthetic mixtures reported in [30] show
that mixemt has high haplogroup assignment accuracy. More recently, mixemt
has been used to infer mitochondrial haplogroup frequencies from short reads
generated from urban sewer samples collected at tens of sites across the globe,
and shown to generate estimates consistent with population studies based on
sequencing randomly sampled individuals [22].

In this paper we propose new algorithms for haplogroup assignment from
short sequencing reads generated from both single individual and mixed DNA
samples. There are two types of prior information associated with haplogroups
and available from resources such as PhyloTree [26]. First, each haplogroup has
one or more complete mtDNA sequences collected from previous studies. These
“exemplary” haplotypes can be leveraged to infer the frequency of each hap-
logroup from the short reads. Since many short reads are compatible with more
than one of the existing haplotypes, an expectation maximization framework
can be used to probabilistically allocate these reads and obtain maximum likeli-
hood estimates for the frequency haplotypes (and hence the haplogroups) in the
database. This is the primary approach taken by mixemt – the haplogroups with
high estimated frequency are then deemed to be present in the sample, while
the haplogroups with low frequency are deemed to be absent.

The second type of information captured by PhyloTree [26] are the mu-
tations associated each branch of the haplogroup tree. Since each haplogroup
corresponds to a node in the phylogenetic tree, haplogroups are naturally asso-
ciated with the set of mutations accumulated on the path from the root to the
respective tree node. As an alternative to the frequency estimation approach of
mixemt, the short reads can be aligned to the reference mtDNA sequence and
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used to call the variants present in the sample. The set of detected variants can
then be matched against the sets of mutations associated with each haplogroup,
with the best match suggesting the haplogroup composition of the sample.

A priori it is unclear which of the two classes of approaches would yield better
haplogroup assignment accuracy. The frequency estimation approach critically
relies on having a good representation of the haplotype diversity in each hap-
logroup, and accuracy can be negatively impacted by lack of EM convergence
to a global likelihood maximum due to the high similarity between haplogroups.
In contrast, the accuracy of the mutation analysis approach depends on the
haplogroup tree being annotated with all or nearly all of the shared mutations
defining each haplogroup. High frequency of private and back mutations can
negatively impact accuracy of this approach.

In this paper we show that an efficient implementation of the mutation anal-
ysis approach can match the accuracy of the state-of-the-art frequency based
mixemt algorithm while running orders of magnitude faster. Specifically, our
implementation of mutation-based analysis uses the SNVQ algorithm from [7]
to identify from the short sequencing reads the mtDNA variants present in the
sample. The SNVQ algorithm, originally developed for variant calling from RNA-
Seq data, has been previosly shown to be robust to large variations in sequencing
depth (commonly observed in high-throughput mitogenome sequencing [7]) and
allelic fraction (as may be expected for a mixed sample with skewed DNA con-
tributions from different individuals). The set of variants called by SNVQ is
then matched to the best set of mutations corresponding to single haplogroups
or small collections of haplogroups using the classic Jaccard similarity measure.
Exhaustively searching the space of small collections of haplogroups was deemed
“computationally infeasible” in [30]. We show that for single individual samples
finding the haplogroup with highest Jaccard similarity can be found substan-
tially faster than running mixemt. For two individual mixtures, the pair of hap-
logroups with highest Jaccard similarity can be identified by exhaustive search
within time comparable to that required by mixemt, and orders of magnitude
faster when using advanced search algorithms [2].

The rest of the paper is organized as follows. In Section 2 we describe our
mutation-based haplogroup assignment algorithms. In Section 3 we present ex-
perimental results comparing Jaccard similarity algorithms with mixemt on sim-
ulated and real sequencing data from single individuals and two-individual mix-
tures. Finally, in Section 4 we discuss ongoing and future work.

2 Methods

2.1 Algorithms for single individual samples

In a preprocessing step, we generate the list of mutations for each haplogroup
in PhyloTree (MToolBox [5] already includes a file with these lists). For a given
sample, we start by mapping the input paired-end reads to the RSRS human
mitogenome reference using hisat2 [13]. We next use SNVQ [7] to identify vari-
ants from the mapped data. In our brute-force implementation of the algorithm,
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referred to as JaccardBF, we compute the Jaccard coefficient between the set of
SNVQ variants and each list of mutations associated with leaf haplogroups in
PhyloTree. The Jaccard coefficient of two sets of variants is defined as the size
of the intersection divided by the size of the union. The haplogroup with the
highest Jaccard coefficient is then assigned as the haplogroup of the input data.

The brute-force algorithm can be substantially speeded up by using advanced
indexing techniques. In Section 3 we report results using the “All-Pair-Binary”
algorithm of [2], referred to as JaccardAPB, as implemented in the SetSimilari-
tySearch python library.

2.2 Algorithms for two-individual mixtures

High-throughput reads are aligned to RSRS using hisat2 and then SNVQ is used
to call variants as above. We experimented with several haplogroup assignment
algorithms for two-individual mixtures. In the first, referred to as JaccardBF2,
the Jaccard coefficient is computed using brute-force search for each leaf hap-
logroup, and the top 2 haplogroups are assigned to the mixture. Unfortunately
this algorithm has relatively low accuracy, mainly since the haplogroup with the
second highest Jaccard similarity is most of the time a haplogroup closely related
to the haplogroup with the highest similarity rather than the second haplogroup
contributing to the mixture. To resolve this issue we experimented with comput-
ing the Jaccard coefficient between the set of SNVQ variants and all pairs of leaf
haplogroups, with the output consisting of the pair with maximum Jaccard sim-
ilarity. We implemented both brute-force and “All-Pair-Binary” indexing based
implementations of this pair search algorithm, referred to as JaccardBF pair and
JaccardAPB pair, respectively.

2.3 Algorithms for mixtures of unknown size

When only an upper-bound k is known on the mixture size, the Jaccard co-
efficient can be computed against sets of mutations generated from unions of
up to k leaf haplogroups. For mixtures of up to 2 individuals we report results
using the “All-Pair-Binary” indexing based implementation, referred to as Jac-
cardAPB 1or2.

3 Experimental Results

3.1 Datasets

Real datasets. We downloaded all WGS datasets used in [26]. Specifically,
whole-genome sequencing data for 20 different individuals with distinct hap-
logroups was downloaded from the 1000 Genomes project (1KGP). The 20 indi-
viduals come from two populations: British and Yoruba, with the Yoruba indi-
viduals sampled from two different locations (the United Kingdom, and Nigeria,
respectively). The haplogroups of 14 of the 20 individuals correspond to leaves
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Table 1. Human WGS datasets for which ground truth haplogroups are Phylotree
leaves. Percentage of mtDNA reads was estimated by mapping reads to the published
1KGP sequence, except for the datasets marked with “*” for which there is no 1KGP
sequence and mapping was done against the RSRS reference.

Sample Run #Read pairs #mtDNA pairs %mtDNA Haplogroup
ID ID

HG00096 SRR062634 24,476,109 43,370 0.177 H16a1
HG00097 SRR741384 68,617,747 112,039 0.163 T2f1a1
HG00098* ERR050087 20,892,714 37,602 0.180 J1b1a1a
HG00100 ERR156632 19,119,986 39,169 0.204 X2b8
HG00101 ERR229776 111,486,484 169,840 0.152 J1c3g
HG00102 ERR229775 109,055,650 217,187 0.199 H58a
HG00103 SRR062640 24,054,672 48,912 0.203 J1c3b2
HG00104* SRR707166 58,982,989 94,242 0.159 U5a1b1g
NA19093 ERR229810 98,728,262 234,170 0.237 L2a1c5
NA19096 SRR741406 55,861,712 131,587 0.235 L2a1c3b2
NA19099 ERR001345 7,427,776 16,038 0.215 L2a1m1a
NA19102 SRR788622 15,134,619 28,239 0.186 L2a1a1
NA19107 ERR239591 9,217,863 13,297 0.144 L3b2a
NA19108 ERR034534 65,721,104 3,959 0.006 L2e1a

Table 2. Human WGS datasets for which ground truth haplogroups are Phylotree
internal nodes.

Sample Run #Read pairs #mtDNA pairs %mtDNA Haplogroup
ID ID

HG00099 SRR741412 57,222,221 102,968 0.179 H1ae
HG00106 ERR162876 24,328,397 50,635 0.208 J2b1a
NA19092 SRR189830 125,888,789 337,350 0.268 L3e2a1b
NA19095 SRR741381 65,174,483 101,118 0.155 L2a1a2
NA19098 SRR493234 40,446,917 85,658 0.211 L3b1a
NA19113 SRR768183 48,428,152 62,412 0.128 L3e2b

nodes in PhyloTree, while the haplogroups of the other 6 correspond to internal
nodes. Accession numbers, basic sequencing statistics, and ground truth hap-
logroups for the 20 datasets are given in Tables 1 and 2.

Synthetic datasets. For the synthetic datasets, we simulated reads using
wgsim [17] based on exemplary sequences associated with leaf haplogroups in
PhyloTree [27]. Of the 2,897 leaf haplogroups, 423 haplogroups have only one
associated sequence, 2,454 haplogroups have two sequences, and 20 haplogroups
have three or more sequences. For single individual experiments, we generated
two sets of 10,000 simulated read pairs for each haplogroup, using different ex-
emplary sequences as wgsim reference whenever possible, i.e., for all but the
423 haplogroups with a single associated sequence, for which the sole sequence
was used to generate both sets of wgsim reads. For mixture experiments we
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Table 3. Experimental results on human WGS datasets for which the ground truth
haplogroups are Phylotree leaves.

Sample Ground mixemt JaccardBF
ID truth Haplogroup Time Haplogroup Time

HG00096 H16a1 H16a1 8,343 H16a1 264
HG00097 T2f1a1 T2f1a1 897 T2f1a1 546
HG00098 J1b1a1a J1b1a1a 16,423 J1b1a1a 275
HG00100 X2b8 X2b8 12,477 X2b8 258
HG00101 J1c3g J1c3g 61,091 J1c3g 2,523
HG00102 H58a H58a 66,350 H58a 5,343
HG00103 J1c3b2 J1c3b2 29,733 J1c3b2 1,192
HG00104 U5a1b1g U5a1b1g 27,067 U5a1b1g 5,628
NA19093 L2a1c5 L2a1c5 59,107 L2a1c5 4,345
NA19096 L2a1c3b2 L2a1c3b2 44,338 L2a1c3b2 1,054
NA19099 L2a1m1a L2a1m1a 14,515 L2a1m1a 67
NA19102 L2a1a1 L2a1a1 13,642 L2a1a1 231
NA19107 L3b2a L3b2a 8,607 L3b2a 166
NA19108 L2e1a L2e1a 1,423 L2e1a 1,049

similarly generated two groups of 2,897 two-individual mixtures by pairing each
haplogroup with a second haplogroup selected uniformly at random from the
remaining ones. Within each group, the reads were generated using wgsim and
the first and the second PhyloTree sequence, respectively, except for haplogroups
with a single PhyloTree sequence in which the sole sequence was used to generate
both sets of wgsim reads. For each pair of haplogroups we generated 10,000 read
pairs, with an equal number of read pairs from each haplogroup. We used default
wgsim parameters for simulating reads, in particular the sequencing error rate
was 1% and the mutation rate 0.001.

3.2 Results on real datasets

Tables 3 and 4 give the results obtained by mixemt and JaccardBF on the
real datasets consisting of PhyloTree leaf and internal haplogroups, respectively.
Both algorithms infer the expected haplogroup when the ground truth is a leaf
PhyloTree node. For the six datasets in which the ground truth is an internal
node of PhyloTree mixemt always infers the haplogroup correctly, while Jac-
cardBF always infers a leaf haplogroup in the subtree rooted at the ground
truth haplogroup. Despite using brute-force search to identify the best matching
haplogroup, JacardBF is substantially faster (one order of magnitude or more)
than mixemt.

3.3 Accuracy results for single individual synthetic datasets

The above results on real datasets already suggest that the mitochondrial hap-
logroup can be accurately inferred from WGS data. For a more comprehen-
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Table 4. Experimental results on human WGS datasets for which the ground truth
haplogroups are Phylotree internal nodes.

Sample Ground mixemt JaccardBF
ID truth Haplogroup Time Haplogroup Time

HG00099 H1ae H1ae 40,733 H1ae1 1,820
HG00106 J2b1a J2b1a 24,614 J2b1a5 1,040
NA19092 L3e2a1b L3e2a1b 137,218 L3e2a1b1 6,610
NA19095 L2a1a2 L2a1a2 94,921 L2a1a2b 1,529
NA19098 L3b1a L3b1a 46,110 L3b1a11 650
NA19113 L3e2b L3e2b 62,643 L3e2b3 822

Table 5. Experimental results on synthetic single individual datasets generated from
the 2,897 leaf haplogroups in Phylotree.

mixemt JaccardBF JaccardAPB
Acc. Avg. time Acc. Avg. time Acc. Avg. time

Group1 99.275 7,251.490 99.379 83.780 99.413 0.041
Group2 99.448 7,185.373 99.517 81.428 99.620 0.043

Mean 99.361 7,218.432 99.448 82.604 99.517 0.042
Std. Dev. 0.122 46.752 0.098 1.663 0.146 0.001

sive evaluation we simulated reads using exemplary sequences from all leaf hap-
logroups in PhyloTree. Table 5 gives the results of this comparison. Both mixem
and Jaccard algorithms achieve over 99% accuracy on simulated datasets. As
for real datasets, JaccardBF is more than one order of magnitude faster than
mixemt. The indexing approach implemented in JaccardABP further reduces
the running time needed to find the best matching haplogroup with no loss in
accuracy.

3.4 Accuracy results for two-individual synthetic mixtures

Table 6 gives experimental results on two-individual synthetic mixtures gener-
ated as described in Section 3.1. In these experiments we assume that it is a priori
known that the mixture consists of two different haplogroups. Consistent with
this assumption, the mixemt prediction is taken to be the two haplogroups with
highest estimated frequencies (regardless of the magnitude of the estimated fre-
quencies). Under this model, the accuracy of mixemt remains high but is slightly
lower for mixtures than for single haplogroup samples, with an overall mean ac-
curacy of 98.792% compared to 99.361%. JaccardBF2, which returns the two
haplogroups with highest Jaccard similarity to the set of mutations called by
SNVQ, performs quite poorly, with a mean accuracy of only 22.765%. The Jac-
cardBF pair algorithm, which returns the pair of haplogroups whose union has
the highest Jaccard similarity to the set of mutations called by SNVQ, nearly
matches the accuracy of mixemt (with a mean accuracy of 98.398%) with a
lower running time. The running time is drastically reduced by indexing the
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Table 6. Experimental results on synthetic two-individual mixtures generated from
the 2,897 leaf haplogroups in Phylotree.

mixemt JaccardBF2 JaccardBF pair JaccardAPB pair
Acc. Avg. time Acc. Avg. time Acc. Avg. time Acc. Avg. time

Group1 98.619 4,890.769 22.540 83.116 98.343 1,224.589 97.480 2.101
Group2 98.964 5,273.326 22.989 80.440 98.452 1,484.743 98.171 2.315

Mean 98.792 5,082.048 22.765 81.778 98.398 1,354.666 97.825 2.208
Std. Dev. 0.244 270.509 0.317 1.893 0.077 183.957 0.488 0.151

haplogroups for Jaccard similarity searches, although the predefined threshold
required for indexing (0.8 in our experiments) does lead to a small additional
loss of accuracy (mean overall accuracy of 97.825% for JaccardAPB pair).

3.5 Accuracy results for unknown mixture size

In practical forensics applications there are scenarios in which the number of
individuals contributing to a DNA mixture is not a priori known. In this case,
joint inference of the number of individuals and their haplogroups is required.
Although mitochondrial haplogroup inference with unknown number of contribu-
tors remains a direction of future research, in this section we report experimental
results for the most restricted (but still practically relevant) such scenario, in
which a mixture is a priori known to contain at most two haplogroups. Specifi-
cally, the 2,897 single individual synthetic datasets analyzed in Section 3.3 and
the 2,897 two-individual synthetic datasets analyzed in Section 3.4 were reana-
lyzed using several joint inference algorithms. For mixemt, the joint inference was
performed by using a 5% cutoff on the estimated haplogroup frequencies, while
for JaccardAPB 1or2 the joint inference was performed by matching the set of
SNVQ variants to the set of one or two haplogroups that has the highest Jaccard
similarity. Table 7 reports the accuracy and runtime of the two methods. Overall,
mixemt achieves a mean accuracy of 93.398%, with most of the errors due to the
incorrect estimate of the number of individuals in the two-individual mixtures.
In contrast, most of the JaccardAPB 1or2 errors are due to mis-classification
of single individual samples as mixtures. Overall, JaccardAPB 1or2 achieves a
mean accuracy of 96.538%.

4 Conclusions

In this paper we introduced efficient algorithms for mitochondrial haplogroup in-
ference based on Jaccard similarity between variants called from high-throughput
sequencing data and mutations annotated in public databases such as PhyloTree.
Experimental results on real and simulated datasets show an accuracy compara-
ble to that of previous state-of-the-art methods based on haplogroup frequency
estimation for both single-individual samples and two-individual mixtures, with
a much lower running time.
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Table 7. Experimental results for joint inference of mixture size and haplogroup com-
position.

mixemt JaccardAPB 1or2
Acc. Avg. time Acc. Avg. time

Group1 Singles 99.275 7,251.490 94.028 1.4794
Group2 Singles 99.448 7,185.373 96.548 2.098
Group1 Pairs 83.914 4,890.769 97.376 1.468
Group2 Pairs 90.956 5,273.326 98.205 2.244

Mean 93.398 6,150.240 96.539 1.822
Std. Dev. 7.462 1,243.583 1.806 0.407

Fig. 2. Comparison of accuracy and running time needed to compute all sets with a
Jaccard coefficient greater than 0.9 using MinHash sketches with varying number of
hash functions from 2,897 randomly generated sets of average size 44.

In ongoing work we are exploring methods for haplogroup inference of more
complex DNA mixtures. Specifically, we are seeking to scale the mutation analy-
sis approach to larger haplogroup mixtures by employing probabilistic techniques
such as MinHash sketches and indexing for locality sensitive hashing (LSH) [23].
Implementations such as MinHashLSH [34] can be used to generate all hap-
logroups with a Jaccard similarity exceeding a given user threshold in sublinear
time, resulting in dramatic speed-ups. However, MinHashLSH is an approximate
algorithm, which may miss some of the haplogroups with high Jaccard similarity
and may also generate false positives. The accuracy and runtime of MinHashLSH
depend among other parameters on the number of hash functions, and the user
can generally achieve higher precision and recall at the cost of increased run-
ning time (Figure 2). Finally, we are exploring hybrid methods that combine
mutation analysis with highly scalable frequency estimation algorithms such as
IsoEM [21, 19].
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