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Abstract

In high-speed digital VLSI design, bounding the load capacitance at
gate outputs is a well-known methodology to improve coupling noise
immunity, reduce degradation of signal transition edges, and reduce de-
lay uncertainty due to coupling noise. Bounding load capacitance also
improves reliability with respect to hot-carrier oxide breakdown and
AC self-heating in interconnects, and guarantees bounded input rise/fall
times at buffers and sinks.

This paper introduces a newminimum-buffer routing problem
(MBRP) formulation which requires that the capacitive load of each
buffer, and of the source driver, be upper-bounded by a given constant.
Our contributions include the following.

� We give linear-time algorithms for optimal buffering of a given
routing tree with a single (inverting or non-inverting) buffer type.

� For simultaneous routing and buffering with a single non-inverting
buffer type, we give a factor 2(1+ ε) approximation algorithm and
prove that no algorithm can guarantee a factor smaller than 2 unless
P=NP. For the case of a single inverting buffer type, we give a factor
4(1+ ε) approximation algorithm.

� We give local-improvement and clustering based MBRP heuristics
with improved practical performance, and present a comprehen-
sive experimental study comparing the runtime/quality tradeoffs of
the proposed MBRP heuristics on test cases extracted from recent
industrial designs.

1 Introduction

In high-speed digital VLSI design, bounding the load capacitance at gate
outputs is a well-known part of today’selectrical correctnessmethod-
ologies. Bounds on load caps improve coupling noise immunity, reduce
degradation of signal transition edges, and reduce delay uncertainty due
to coupling noise [13]. According to [21], commercial EDA method-
ologies and tools for signal integrity rely heavily on upper-bounding the
load caps of drivers and buffers to prevent very long slew times on sig-
nal transitions. Such buffer insertions for long or high-fanout netsare
for electrical – not timing optimization – reasons.1 Essentially, load cap
bounds serve as proxies for bounds on input rise/fall times at buffers
and sinks (Tellez and Sarrafzadeh [24] formally prove one such equiva-
lence). Such bounds also improve reliability with respect to hot-carrier
oxide breakdown (hot electrons) [9, 11] and AC self-heating in intercon-
nects [20], and facilitate technology migration since designs are more
balanced.

�This work was partially supported by Cadence Design Systems, Inc., the MARCO Gi-
gascale Silicon Research Center and NSF Grant CCR-9988331.

1For signal integrity purposes buffer insertion should alsolower-boundthe capacitive load
of drivers and buffers, since a driver that is too strong relative to its load will result in too
sharp a transition, creating a stronger aggressor to neighboring potential victim nets. Our
algorithms can be extended to simultaneously ensure that the capacitive load of each buffer
is at least halfthe given load upper-bound (see Lemma 3).

In this work, we do not address the well-studied problem of buffer
insertion for timing optimization. Instead, we focus on the very prac-
tical and immediate requirement ofelectrical correctness in large in-
terconnects– a requirement that arisesbeforetiming optimization even
starts. The motivating observation is that any design flow requires early
elimination of all electrical violations (i.e., load cap or slew) –even for
non-critical nets– as a prerequisite to initiating meaningful placement
and timing optimizations. In other words, until electrical correctness
is established, timing analyses are meaningless and layout/timing opti-
mizations cannot begin. Several reasons for this are as followings: (1)
Gates are well-characterized only for particular cap load ranges, and ap-
plying table lookups plus extrapolations in the timing tools will result
in garbage transition times for loads outside these ranges. (2) Any inac-
curate slew time caused by a cap load violation will propagate through
the timing graph and cause misleading values downstream. (3) Until all
slew time and cap load violations are fixed, static timing analysis results
cannot be trusted and the quality of a floorplan or placement cannot even
be evaluated meaningfully.

To make progress with any methodology, it is crucial to have a fast
and resource-efficient method for fixing electrical violations. Of par-
ticular interest are practical methods for otherwise non-critical nets that
have up totens of thousands of sinks(e.g., scan enable). Again, such nets
are not timing-critical, but timing and layout optimizations require their
efficient buffering for electrical correctness. We observe the following:

� Even if buffers have been inserted by synthesis to honor cap load
bounds, the synthesis tool’s buffer insertion is layout-oblivious.
These buffers must be ripped out and recalculated from the place-
ment, analogous to how synthesized clock and scan structures are
treated in modern flows.

� In buffering for electrical correctness, it suffices to use a single
buffer and/or inverter type with reasonable drive strength. One
buffer type has been shown to be sufficient to yield good re-
sults in timing optimization [4]. (Optimization of buffer drive
strengths can also be performed during later power/timing opti-
mization phases.)

� Since one just wants to quickly fix violations without using too
many resources, minimizing the total wire and buffer area is a suit-
able objective. A simplified objective is to minimize the number of
inserted buffers, which also minimizes the number of ECO place-
ment perturbations required to accommodate the buffers.

These observations motivate the problem addressed in this paper, infor-
mally formulated as follows:

Minimum-Buffered Routing Problem (MBRP): Given a netN, sink
input capacitances, and an (inverting) buffer type, find a minimum-cost
(polarity obeying) buffered routing tree forN such that the capacitive
load of each buffer and of the source is at most a given upper bound.
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1.1 Previous Work

The vast amount of research on buffer insertion can be roughly divided
into three categories.
Fanout optimization during logic synthesis. Works in this category
(see, e.g., [6, 7, 17, 23]) seek buffered routingtopologiesand focus on
timing optimization. Since placement information is not available at the
logic synthesis stage, the delay models used in these works mainly con-
sist of gate delay and statistically inferred interconnect delay.In con-
trast, our work is targeted to the earlypost-placementphases of the de-
sign cycle.
Timing-driven buffer insertion during routing. Works in this cate-
gory concentrate on bufferingtiming-critical nets, e.g., maximizing the
required arrival time (RAT) at the source, often with no bounds on the
number of buffers, power consumption, or area. The seminal work
of Van Ginneken [25] proposed a dynamic programming approach to
finding the optimum buffering of an already routed net, using identical
buffers and at most one buffer per wire. Lillis et al. [15, 16] extended
the dynamic programming approach by incorporating slew effects into
the delay model and performing simultaneous buffer insertion and wire
sizing; they also considered formulations that seek to minimize area or
power consumption subject to meeting given timing constraints. More
recently, Alpert and Devgan [1] gave extensions to multiple buffers per
wire, and Alpert, Devgan and Quay [2] extended the approach to simul-
taneous noise and delay optimization. Okamoto and Cong [18] consid-
ered simultaneous routing and buffer insertion, showing that significant
delay reductions can be achieved over previous approaches which in-
sert buffers into an already routed net.These techniques are appropriate
for buffered routing of (relatively small) timing-critical nets, but not for
upper-bounding slew rates innon-criticalnets: (1) quadratic or worse
runtimes reduce their applicability to large (tens of thousands of sinks)
instances; (2) timing-driven objectives such as max RAT at the source,
and reliance on unavailable or meaningless timing analyses and con-
straints, lead to wasted resources (too many buffers inserted); and (3)
minimizing area or power subject to RAT constraints as in [15, 16] can-
not guarantee that slew constraints will be met.
Clock-tree buffering. Work on buffered clock trees has focused on de-
lay [22] and skew minimization [8, 19]. Tellez and Sarrafzadeh [24]
considered minimal buffer insertion inroutedclock trees with skew and
slew constraints. They argued that slew upper-bounds can be met by
upper-bounding the lumped capacitive loads of the buffers, and gave a
linear time algorithm for buffering a routed clock tree with a single non-
inverting buffer type under these constraints.We differ from [24] in sev-
eral respects. (1) We seeksimultaneous routing and buffering, while [24]
considers only the problem of buffering analready routedclock tree. (2)
Besides non-inverting buffering, we also consider buffering with a single
inverting buffer type, which requires handling additional sink polarity
constraints (the number of inverting buffers on each source-to-sink path
must be consistent with the given polarity of the sink). (3) Clock trees
in [24] require bounded buffer skew – this constraint is not necessary in
our application.

1.2 Our Contributions

Our contributions as as follows:
� We give linear-time algorithms for optimal buffering of a given

routing tree with a single (inverting or non-inverting) buffer type.2

� For simultaneous routing and buffering with a single non-inverting
buffer type, we give a factor 2(1+ ε) approximation algorithm and
prove that no algorithm can guarantee a factor smaller than 2 unless
P=NP. For the case of a single inverting buffer type, we give a factor
4(1+ ε) approximation algorithm.

� We give local-improvement and clustering based MBRP heuristics
with improved practical performance, and present a comprehen-
sive experimental study comparing the runtime/quality tradeoffs of
the proposed MBRP heuristics on test cases extracted from recent
industrial designs.

2A different algorithm for non-inverting buffers was previously given in [24].

1.3 Organization of the Paper

We formally define MBRP in Section 2. Then, in Section 3, we describe
two exactlinear-time algorithms for buffering a given routing tree: a
greedy algorithm for buffering with a non-inverting buffer type and a
dynamic programming algorithm for buffering with an inverting buffer
type. In Section 4 we analyze the approximation complexity of MBRP
and give provably-good approximation algorithms for both inverting and
non-inverting buffer types. We give local-improvement and clustering
heuristics with improved practical performance in Section 5, and present
experimental results comparing the runtime/quality tradeoffs of the pro-
posed heuristics in Section 6. We conclude in Section 7 with directions
for future research.

2 Problem Formulation

We start with basic definitions and notations. LetN be anetconsisting
of asource rand a set ofsinks S.

� A routing treefor the netN is a treeT = (r;V;E) rooted atr such
that each sink ofS is a leaf inT.

� A buffered routing treefor the netN is a treeT = (r;V;E;B) such
that T = (r;V;E) is a routing tree forN andB is a set of buffers
located on the edges ofT.3

� For anyb2 B[frg, thesubtree driven by b, also referred to as the
stageof b [24], is the maximal subtreeDb of T which is rooted atb
and has no internal buffers. A buffered routing treeT = (r;V;E;B)
hasjBj+1 stages, including asource stagedriven by the source.

Throughout the paper we use the following notations:
Cw = capacitance of a wire segment of unit length, assumed to be the

same for all wires
Cb = input capacitance of the given buffer type
cv = input capacitance of sink or bufferv
σv = input signal polarity of sink or inverting bufferv
le = length of wire segmente
ce = capacitance of wire segmente, i.e.,ce =Cwle
Tv = subtree ofT rooted atv
c(Tv) = lumped capacitance ofTv, i.e.,c(Tv) = ∑

e2Tv

ce+ ∑
v2leaves(Tv)

cv

CU = given upper-bound on the capacitive load of each buffer

Load Model
We use thelumped capacitive loadmodel, in which the load of a buffer
b is given by

c(Db) = ∑
e2Db

ce+ ∑
v2leaves(Db)

cv

Load Constraints
As noted in [24], bounded slew rate can be ensured by upper-bounding
the lumped capacitive load of each bufferb2 B and of the source driver
r. Formally, we require that

c(Db)�CU for every b2 B[frg

Cost Functions
The cost of a buffered routing treeT is measured by the total wire and
buffer area. Denoting the area of each buffer bya, thecombined costof
the buffered routingT = (r;V;E;B) can be expressed as follows:

combinedcost(T) = wire area(T)+ jBj �a (1)

The wire area ofT depends on the wirelength in each metal layer and
the number of vias. During early post-placement phases of the design

3We assume that buffers have a single input and a single output and thus are inserted only
on the edges ofT.
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Figure 1: Sincec(Tb) = CU , the treeTb (shaded area) must contain a
buffer b0 in any optimum bufferingBopt. (Bopt n fb0g)[fbg is then an
optimum buffering ofT containingb.

cycle the wire area still cannot be estimated very accurately, since layer
assignment and via information is not yet available. Therefore, we as-
sume that each stage requires the same amount of routing resources and
define the simplified routing cost as the number of stages in the buffered
routingT, i.e.,

cost(T) = jBj+1 (2)

Thus, in this paper we adopt the simplified cost measure (2):

Minimum-Buffered Routing Problem (MBRP)
Given a netN with sourcer and set of sinksS (with prescribed pari-
ties), input capacitancecs for every sinks2 S, buffer input capacitance
Cb, unit-length wire capacitanceCw, and load upper-boundCU , find a
buffered routing treeT = (r;V;E;B) for N such that

(a) c(Db)�CU for everyb2 B[frg,
(b) (for inverting buffer type) the parity of the number of buffers on

each path from the source to any positive sink is the same, and
opposite from the parity of the number of buffers on the paths from
the source to any negative sink, and

(c) cost(T) = jBj+1 is minimum among all buffered routing trees sat-
isfying conditions (a) and (b).

3 Exact Algorithms for Buffering Routed Nets

In this section we present two algorithms for optimally buffering an al-
ready routed net using a single inverting or non-inverting buffer type.
The running time of each algorithm is linear in the number of sinks and
the number of inserted buffers.

3.1 Single Non-Inverting Buffer Type

Our algorithm for buffering a given routing tree with a single non-
inverting buffer type is a generalization of a greedy algorithm for par-
titioning node-weighted trees due to Kundu and Misra [14]. Before de-
scribing the algorithm we need to introduce two more definitions. Let
T = (r;V;E) be a routing tree. A vertexp of T is calledcritical if p
is a bottom-most point ofT such thatTp cannot be driven by a single
buffer. Formally,p is critical if c(Tp) > CU andc(Tu) �CU for every
child u of p. A heaviest child uof p is one which accumulates more
capacitance than any other child ofp. Formally,u is a heaviest child of
p if c(Tu)+c(u;p) � c(Tv)+c(v;p) for every other childv of p.

The algorithm (see Algorithm 1) finds critical vertices by a post-
order traversal of the input tree. Then, for every such critical vertexp,

u

b’

c(T ) + c(u,p)

to the root r

p

u
b

Figure 2: Whenb0 is located on a different branch (shaded area) than that
of the heaviest childu, c(Tu)+ c(u;p) � c(Db0 ). Hence,(Bopt n fb0g)[
fbg is an optimum buffering ofT containingb.

the algorithm repeatedly inserts buffers on the edge connectingp to its
heaviest child, untilp is no longer critical. Due to space limitations we
only give here a simple recursive description of the algorithm; the details
of anO(jSj+ jBj) time implementation can be found in [3].

Algorithm 1: Routed Net Buffering (RNB)

Input: Routing treeT = (r;V;E) for net N with sourcer and sinksS, sink
input capacitancescs, load upper-boundCU
Output: Optimum bufferingB of T such thatc(Db)�CU for everyb2 frg[B

1. Find a critical vertexp by a post-order traversal ofT
2. Find a heaviest child,u, of p.
3. Insert a bufferb on the edge(u; p) such thatc(u;b) =minfCU �c(Tu);c(u;p)g

4. Recursively find an optimum bufferingB0 of T nTb
5. ReturnB= B0[fbg

Theorem 1 Algorithm 1 finds an optimum buffering of the input tree T
with the given non-inverting buffer type.

The proof of the theorem follows from the following two lemmas,
corresponding to the two possible cases in Step 3 of the algorithm.

Lemma 1 If p is a critical vertex of T and u is a child of p with CU �

c(Tu) � c(u;p), then there exists an optimum buffering of T containing
a buffer b located on the edge(u; p) such that c(u;b) =CU � c(Tu) (see
Figure 1).

Proof. Let the optimum buffering ofT consist of the set of buffersBopt.
The subtree ofT rooted atb must contain at least one bufferb0 from
Bopt since it has total capacitance equal toCU . The lemma follows by
observing that(Bopt nfb0g)[fbg is a feasible buffering ofT. ut

Lemma 2 If p is a critical vertex of T and c(u;p) <CU � c(Tu) for the
heaviest child u of p, then there exists an optimum buffering of T that
contains a buffer b placed immediately below p on the edge(u; p) (see
Figure 2).

Proof. Let the optimum buffering ofT consist of the set of buffersBopt.
Sincep is critical, Tp must contain at least one bufferb0 of Bopt. We
claim that(Bopt nfb0g)[fbg is an optimum buffering ofT. The claim
follows as in Lemma 1 ifb0 is located inTb. Otherwise, the claim follows
by observing that (i) by optimality, there is no buffer ofBopt on the path
connectingb0 to p in T, and (ii) c(Tu)+ c(u;p) � c(Db0 ), sinceu is the
heaviest child ofp. ut
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Notice that the capacitive load of each buffer inserted in Step 3 when
c(u;p) � CU � c(Tu) is exactlyCU , i.e., these buffers are “fully filled.”
Although this is not true for the buffers inserted whenc(u;p) < CU �

c(Tu), it is easy to see that in this case inserted buffers have a capacitive
load of at leastCU=k, wherek is the degree ofp. In particular, when the
routing treeT is binary, we obtain:

Lemma 3 If the input to Algorithm 1 is a binary routing tree, then the
lumped capacitive load of each inserted buffer is at least CU=2.

Lemma 3 will be used in proving the approximation guarantee for
the algorithms in Section 4. It also gives a way to satisfy the simulta-
neous lower- and upper-bound constraints on buffer loads referred to in
Footnote 1, since every routing tree can be converted to a binary tree by
inserting zero-length edges.

3.2 Single Inverting Buffer Type

Optimal buffering with a single inverting buffer type is more complex
than buffering with a non-inverting buffer type. The greedy approach
does not work in this case, and we must use dynamic programming.
In bottom-up order, the algorithm (see Algorithm 2) computes two solu-
tions for each subtree ofT, one for positive and one for negative topmost
buffer input polarity. Then, after choosing the best output polarity for the
source, it determines the position of the buffers by a top-down traversal.
The running time of the algorithm is linear assuming that the degree of
the routing treeT is bounded; in the rectilinear plane this assumption
holds for all standard routing tree constructions, including the minimum
spanning tree, the minimum-length Steiner tree, and approximations of
the latter one.

For simplicity, we give the algorithm for binary trees, i.e., we assume
that all vertices other than the source (which is the root of the tree) and
the sinks (which are leaves) have outdegree 2. Without loss of generality,
we assume that sink input capacitances are all equal to 0 – nonzero sink
capacitances can be compensated by increasing the length of the edges
incident to the sinks. By scaling, we also assume that the unit wirelength
capacitance,Cw, is equal to 1. The algorithm associates with each leafv
of the treeT two labels l+(v) and l�(v) such that one of them belongs
to [0;CU ] and the other is 0. The labelsl+(v) and l�(v) represent the
penalty capacitance incurred in assuming that the sink has the opposite
polarity. Initially, for each sinks,

l+(s) =

�
0; if σ(s) = +
CU ; otherwise

andl�(s) =CU � l+(s).
For each tree leafv, define thestemof v to be the edge connectingv

to its parent. Also, define afork of T to be a set of 4 vertices(u;v;x1;x2),
wherex1 andx2 are two leaves,v is the common parent ofx1 andx2, and
u is the parent ofv. The bottom-up phase of the algorithm consists of
two main procedures:ReducestemandCollapse fork . The procedure
Reducestem simply reduces the length of the stem of a leafv until it
becomes strictly less thanCU . The procedure also counts the number
of buffers inserted on the stem ofv, referred to asn+(v) and n�(v),
depending on the polarity of the topmost buffer.

The procedureCollapse fork replaces a fork(u;v;x1;x2) with the
single edge(u;v), computes the appropriate labels forv, and modifies the
number of buffers inserted on the edges(v;x1) and(v;x2) as needed. The
labels ofv depend on the labels ofx1 andx2 and the length of the edges
(v;x1) and (v;x2). To guarantee optimality,Collapse fork checks all
possibilities of inserting buffers on the stems(v;x1) and(v;x2). Among
the feasible bufferings of these two stems it chooses the one with the
least buffers inserted, breaking ties according to the residual capacitance.
Note that after the stems(v;x1) and(v;x2) have been reduced, the max-
imum number of buffers that may be inserted on each stem is at most
2. Thus, no more than 9 cases need to be checked inCollapse fork , de-
pending on whether 0, 1, or 2 buffers are inserted on each stem. In fact,
since inserting 2 buffers in each of the two stems is always a dominated
solution, we never need to check more than 8 cases.

Theorem 2 Algorithm 2 finds an optimum buffering of the input tree T
with the given inverting buffer type.

Algorithm 2: Routed Net Inverting Buffering (RNIB)

Input: Binary routing treeT = (r;V;E) for net N with sourcer and sinksS,
sink input capacitancescs and polaritiesσs, upper-boundCU
Output: Optimum bufferingB of T consistent with sink polarities such that
c(Db)�CU for everyb2 frg[B

1. T 0 = T
2. For eachs2 Sdo:

If σs =+ thenl+(s) = 0, elsel+(s) =CU
l�(s) =CU � l+(s)
Reducestem(s)

3. While there is a fork(u;v;x1;x2) in T 0, Collapse fork (u;v;x1;x2)

4. Insert buffers inT in top-down order:
Let v be the single remaining leafv in T 0, andµ2 f+;�g s.t. lµ(v) = 0
Insertnµ(v) buffers on the edge(r;v)
For each fork(r;v;x1;x2), in reverse order of collapsing, do:

Insertnσ(xi) buffers on edges(v;xi ), i = 1;2, whereσ = µ if nµ(v) is
odd andσ =�µ if nµ(v) is even

5. Return the setB of inserted buffers

ProcedureReducestem(v)
1. n+(v) = n�(v) = 0 // Initialize # of buffers onv’s stem
2. While l(u;v) >CU do:

For eachσ 2 f+;�g, nσ(v) = nσ(v)+1
l(u;v) = l(u;v) � (CU �Cb)

Swapl�(v) with l+(v) // Switch topmost buffer polarity

ProcedureCollapse fork (u;v;x1;x2)

// Check all feasible bufferings of the stems(v;x1) and(v;x2)

1. For each(i; j) 2 f0;1;2g�f0;1;2g andσ 2 f+;�g do:
lσ
i j = maxf0; l(v;x1)+ lσ(x1)� i � (CU �Cb)g

+ maxf0; l(v;x2)+ lσ(x2)� j � (CU �Cb)g

If lσ
i j �CU thenlσ

i j = lσ
i j +(i+ j)CU

Else,lσ
i j = ∞ // i+ j buffers are not sufficient

// Choose the topmost buffer positions
2. For eachσ 2 f+;�g do:

lσ(v) = minflσ
i j ji; j = 0;1;2g

(iσ; jσ) = argminflσ
i j ji; j = 0;1;2g

// Find minimal label and normalize the opposite polarity label
3. lµ(v) = minfl+(v); l�(v)g

If l�µ(v)> lµ(v)+CU , then(i�µ; j�µ) = (iµ; jµ), l�µ(v) = lµ(v)+CU

// Increment # of buffers for both stems and restorev’s labels
4. For eachσ 2 f+;�g do:

nσ(x1) = nσ(x1)+ iσ, nσ(x2) = nσ(x1)+ jσ

lσ(v) = lσ(v)� (iσ + jσ)Cu

// Reduce minimal label ofv to 0, remove leavesx1 andx2, and reducev’s stem
5. l(u;v) = l(u;v)+ lµ(v), l�µ(v) = l�µ(v)� lµ(v), lµ(v) = 0
6. T 0 = T 0 nfx1;x2g

7. Reducestem(v)

4 Approximating MBRP

The approximation factor of an algorithmA for a minimization problem
P is the worst-case performance ofA. Formally, the approximation fac-

tor of A is defined as supA(I)
OPT(I) , where the supremum is taken over all

instancesI of the problemP, A(I) is the output value of the algorithm
A on inputI , andOPT(I) is the optimal value for the instanceI . In this
section we prove that, unless P=NP, no algorithm can guarantee a factor
smaller than 2 for MBRP with single (inverting or non-inverting) buffer
type. On the positive side, we give a factor(2+ ε) approximation al-
gorithm for MBRP with single non-inverting buffer type, and a factor
(4+ ε) approximation algorithm for MBRP with single inverting buffer
type.
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Figure 3: (a) Optimum buffered routing of a 4 terminal net with non-
Hanan grid edge. (b) Best buffered routing on the Hanan grid.

4.1 Approximation Complexity of MBRP

Theorem 3 For anyε> 0, approximating MBRP within a factor of2�ε
is NP-hard.

Proof. The proof is by reduction from the rectilinear Steiner minimum
tree (RSMT) problem, which is NP-hard [10]. An RSMT instance con-
sists of a setRof terminals and a numberK, and the problem is to decide
if terminals inR can be interconnected via a rectilinear Steiner tree of
lengthK or less. Letr be an arbitrary terminal inR and letS= Rnfrg.
Consider the MBRP instance in which all sinks have input capacitance 0,
Cb = 0,Cw = 1, andCU = K. Then, there exists a rectilinear Steiner tree
of length at mostK for the terminals inR if and only if the above MBRP
instance has optimum cost equal to 1, and any(2� ε)-approximation al-
gorithm for MBRP would find the optimum solution if this is the case.

ut

Remark. Figure 3 gives an example showing that MBRP is inherently
more difficult than the RSMT problem since, in general, the Steiner
points for MBRP do not belong to the Hanan grid, i.e., to the grid formed
by the vertical and horizontal lines passing through terminals. In this ex-
ample the input capacitance of each sink and of the buffers is 1, the unit
wirelength capacitanceCw is 1, and the buffer load upper-boundCU is 8.
Any routing along the Hanan grid must use at least 3 buffers, while the
optimum buffered routing, which uses a non-Hanan edge, has only two
buffers.

4.2 Approximating MBRP with Single Non-Inverting Buffer Type

In this section we show that optimal buffering of an approximate rec-
tilinear Steiner minimum tree over the terminals (Algorithm 3) comes
within a constant factor of the MBRP optimum. Below, the output of a
polynomial-time RSMT algorithm with approximation factor ofα will
be referred to as anα-approximate Steiner tree.

Algorithm 3: Steiner Tree Buffering (STB)

Input: Net N with sourcer and set of sinksS, sink input capacitancescs,
upper-boundCU
Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for
everyb2 frg[B

1. Find anα-approximate Steiner treeT for frg[S
2. TransformT into a binary tree in which all sinks are leaves by duplicating

internal nodes of degree> 3 and sinks of degree> 1 and adding zero-length
edges between duplicated nodes

3. Add buffers toT using the RNB algorithm (Algorithm 1)

Theorem 4 Algorithm 3 approximates the MBRP with single non-
inverting buffer type within a factor of2α(1+ ε), whereε = 1

CU=Cb�2 .4

Proof. Let OPT be the number of stages in an optimum buffered routed
netTopt, and letCAPbe the capacitance ofTopt before buffering, i.e.,

CAP= ∑
s2S

cs + Cw �

 
∑

e2Topt

le

!

In the optimum buffering ofTopt, each of the OPT stages has a capaci-
tance of at mostCU . Since the total capacitance of the buffered treeTopt
is CAP+(OPT� 1)Cb, we get thatOPT �CU �CAP+(OPT� 1)Cb,
i.e.,

OPT�
CAP�Cb

CU �Cb
(3)

Let CAP0 be the capacitance before buffering of theα-approximate
Steiner tree constructed by Algorithm 3. ThenCAP0�s� α(CAP�s),
wheres= ∑s2Scs is the total input capacitance of the sinks. Sinces�
Cb, this givesCAP0 � αCAP� (α�1)s� α(CAP�Cb)+Cb, i.e.,

CAP0�Cb � α(CAP�Cb) (4)

LetA be the number of stages in the buffering produced by the algorithm.
SinceT is a binary tree, by Lemma 3 every buffer inserted by Algorithm
1 has a minimum load ofCU=2. Thus,CAP0+(A�1)Cb � A � (CU=2),
i.e.,

A�
CAP0�Cb

CU=2�Cb
= 2

CAP0�Cb

CU �2�Cb
(5)

Finally, inequalities (3-5) give

A
OPT

� 2
CAP0�Cb

CAP�Cb
�

CU �Cb

CU �2�Cb
� 2α �

�
1+

1
CU=Cb�2

�

ut

Since the rectilinear Steiner tree for a given set of terminals can be
approximated in polynomial time to within any desired accuracy using
Arora’s PTAS [5], Theorem 4 gives:

Corollary 1 The MBRP with single non-inverting buffer type can be
approximated in polynomial time within a factor of2(1+ ε) for any
ε > 1

CU=Cb�2 .

4.3 Approximating MBRP with Single Inverting Buffer Type

A naive solution to handling sink polarities is to make the polarity of
all sinks the same by inserting one inverter for each sink of the minority
polarity, and then use non-inverting buffers to route the signal from the
source. In the worst case this solution may require as many asjSj=2 in-
verters, plus the non-inverter buffers needed to drive a Steiner tree span-
ning all terminals. A better solution is to construct two separate Steiner
trees, one for the positive sinks and one for the negative sinks, buffer
them optimally with non-inverting buffers using the RNB algorithm, and
then insert a single inverter at the top of one of them.

If a non-inverting buffer occupies close to twice the area of an in-
verter with the same driving strength, an even better solution is provided
by Algorithm 4. In this algorithm we construct a routing tree for all
sinks, buffer it with non-inverting buffers, and then make it consistent
with sink polarities by iteratively replacing non-inverting buffers by in-
verters. In the worst case each non-inverting buffer is replaced by a pair
of inverters, but if all sinks driven by a buffer have the same polarity then
a single inverter replacement is sufficient.

4We require thatCU=Cb > 2 since otherwise buffering is impossible. In practiceCU=Cb�

2; in our benchmarks the ratio varies between 12 and 200, which corresponds to a value ofε
between 0.1 and 0.005.
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Algorithm 4: Steiner Tree Inverting Buffering (STIB)

Input: Net N with sourcer and set of sinksS, sink input capacitancescs and
polaritiesσs, upper-boundCU
Output: Buffered routing treeT = (r;V;E;B) for N consistent with sink po-
larities such thatc(Db)�CU for everyb2 frg[B

1. Find a buffered routing treeT 0 = (r;V 0;E0;B0) using the STB algorithm
2. For eachb2 B0[frg, in the order given by a postorder traversal ofT 0, do:

If b drives only sinks with the same polarity then
Replaceb by an inverter and addb’s stage toT

Else //b drives both positive and negative sinks
Replaceb with two invertersb+ andb� such that

- the parent ofb� is b+, andl(b� ;b+) = 0
- the parent ofb+ is the parentp of b in T 0 andl(b+ ;p) = l(b;p)

For eachσ 2 f+;�g do:
Add toT a Steiner tree rooted atbσ and spanning all sinks

with polarity σ in Db
End for

End if
T 0 = T 0 nDb

End for
3. ReturnT

Theorem 5 Algorithm 4 approximates the MBRP with single inverting
buffer type within a factor of at most4α(1+ ε), whereε = 1

CU=Cb�2 .

Proof. First we show thatT is a feasible solution. Indeed, by construc-
tion, each inserted inverter drives sinks or inverters of the same polarity.
Also, the load of each inverter inserted inT is at mostCU , since this load
is never larger than the load of the corresponding stageDb of T 0.5

The key observation is that the optimum number of inverting buffers,
OPT, is no less than the optimum number of non-inverting buffersOPT0.
LetA0 andAbe the number of buffers inserted by the algorithms STB and
STIB, respectively. Then, by Theorem 4,A� 2�A0 � 4α(1+ ε)OPT0 �
4α(1+ ε)OPT. ut

Using Arora’s PTAS [5], Theorem 5 gives:

Corollary 2 The MBRP with single inverting buffer type can be ap-
proximated in polynomial time within a factor of4(1+ ε) for any
ε > 1

CU=Cb�2 .

By Theorem 3, no approximation algorithm with a factor better than
2 exists for MBRP with single inverting buffer type. Closing the gap
between Corollary 2 and this hardness result is an interesting open prob-
lem. Here we note that a practical, if not theoretical, improvement of
Algorithm 4 is to compute the placement of inverters by a polarity-aware
version of the RNB algorithm, instead of using the locations of the non-
inverting buffers inserted by STB.

5 MBRP Heuristics with Improved Practical Performance

Theorems 3 and 4 imply that the STB algorithm is essentially the best
possible from the point of view of worst case approximation guarantee.
In this section we describe two MBRP heuristics which, by changing
the topology of the Steiner tree, improve upon the STB algorithm on
practical instances.

The first heuristic, called Cut&Connect, modifies the Steiner tree
constructed by STB in a bottom-up fashion, starting from the sinks and
working towards the root. When finding a bufferb whose load is smaller
thanCU , the heuristic tries to fillb’s load up toCU by cutting a subtree
from some other part of the tree and re-connecting it to the closest point
in Tb.

5For simplicity we assume that the buffer input capacitanceCb is less than any sink ca-
pacitance. Algorithm 4 can be modified such that this assumption is not necessary.

Algorithm 5: Cut&Connect

Input: Net N with sourcer and set of sinksS, sink input capacitancescs,
upper-boundCU
Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for
everyb2 frg[B

1. T = /0; B= /0
2. T 0 = Steiner tree forS[frg, rooted atr
3. Whilec(T 0)>CU do:

Find the position of the first bufferb inserted by the RNB algorithm inT 0

If c(T 0

b)<CU then

// Fill b’s capacitive load by joining a subtree toT 0

b
For each nodei which is neither ancestor nor descendant ofb, do:

ComputeT 0

p by joining T 0

i to T 0

b, wherep is eitherb or the point
closest toparent(b) on the shortest path betweeni andT 0

b,
whichever of the two is closer toparent(b)

If c(T 0

p)<CU then
Placeb0(i) at distance(CU �c(T 0

p))=Cw from p,
towardsparent(b)

Setgain(i) = c(T 0

i )=Cw�distance(b;b0(i))
End if

End for
Find i� with maximum gain and joinT 0

i� to T 0

b
Move bufferb to positionb0(i�)

End if
B B[fbg; T = T [T 0

b
T 0 = T 0 nT 0

b
End while

4. ReturnT [T 0, with buffer setB

Similar to Cut&Connect, the Clustering heuristic repeatedly chops
off buffer stages from a Steiner tree over terminals. The main differ-
ences between Clustering and Cut&Connect are in the way buffer loads
are filled (Clustering adds one sink at a time, as opposed to a whole
subtree in Cut&Connect) and in the fact that Clustering recomputes the
Steiner tree after chopping off each buffer stage. To achieve a com-
petitive running time, our implementation of Clustering uses minimum
spanning trees as approximate Steiner trees.

Algorithm 6: Clustering

Input: Net N with sourcer and set of sinksS, sink input capacitancescs,
upper-boundCU
Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for
everyb2 frg[B

1. T = /0; B= /0
2. T 0 = Steiner tree forS[frg, rooted atr
3. Whilec(T 0)>CU do:

// Find a critical node with maximum subtree capacitance
Find v2 T 0 with maximumc(T 0

v) s.t. c(T 0

v)<CU andc(T 0

parent(v))>CU

// Fill the load of the subtree by connecting neighboring sinks
subtreeload= c(T 0

v); S0 = T 0

v \S; T = T [T 0

v
q = sink inSnS0 closest toS0; p= sink of S0 closest toq
While subtreeload+Cwl(p;q) <CU do:

subtreeload= subtreeload+Cwl(p;q)

S0 = S0[fqg; T = T+(p;q)
q = sink inSnS0 closest toS0; p= sink of S0 closest toq

End while
Place bufferb at distance(CU �subtreeload)=Cw from p, towardsq
B B[fbg; S= (SnS0)[fbg
T 0 = Steiner tree forS[frg, rooted atr

End while
4. ReturnT [T 0, with buffer setB
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6 Experimental Results

We have implemented the RNB and RNIB algorithms for optimally
buffering a given tree with a single non-inverting, respectively invert-
ing, buffer type, as well as the Cut&Connect and Clustering heuristics
for MBRP with single non-inverting buffer type. Table 1 gives the num-
ber of buffers inserted by the four algorithms on datasets extracted from
recent industrial designs. In these experiments, all algorithms start with
the minimum spanning tree over given terminals. For comparison, Table
1 includes the lower bound (3) on the optimum number of buffers.6

The results show that the Clustering heuristic finds consistently bet-
ter solutions than the Cut&Connect heuristic, which in turn is consis-
tently better than the STB algorithm. The Clustering heuristic comes
closest to the computed lower bound, especially for large values ofCU ,
i.e, when few buffers are inserted. The seemingly larger room for im-
provement for the larger nets may be caused by the inaccuracy of the
lower bound. The Cut&Connect and Clustering heuristics modify the
tree in order to decrease the number of buffers, this results in a small
wirelength increase (1-2%) compared to the length of the initial MST.

The RNIB results show that, for a fixed routing tree, the number of
buffers that need to be inserted in order to enforce polarity constraints
is 20–100% larger than the number of buffers needed without polarity
constraints (the increase in buffer area depends on the relative size of
inverting vs. non-inverting buffers with the same driving strength). We
are currently exploring practical heuristics based on the STIB algorithm
to reduce the number of inserted inverters by simultaneous routing and
buffering.

7 Conclusions and Future Research

In this paper we have addressed a minimum-buffered routing problem
which asks for bounded input rise/fall time for all buffers and sinks. We
have analyzed the approximation complexity of this problem and given
provably-good algorithms for buffering with a single inverting or non-
inverting buffer type. We have also proposed local-improvement and
clustering heuristics with improved practical performance; experiments
conducted on industrial datasets show that our heuristics are efficient and
insert a near-optimum number of buffers.

Our ongoing research addresses (i) multi-source formulations, in
which the buffer solution should be legal for multiple rooted orientations
of the tree, and (ii) multi-constraint formulations, in which, e.g., input
capacitance and fanout must be upper-bounded simultaneously. We have
already obtained encouraging preliminary results for these extensions.
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Benchmark MST+RNB MST+Cut&Conn. MST+Cluster MST+RNIB Lower
#terminals CU #b runtime #b runtime #b runtime #b runtime Bound

330 500 17 0.81 16 0.83 16 0.94 21 0.83 15
330 1000 8 0.81 8 0.82 7 0.83 11 0.82 7
330 2000 4 0.81 4 0.83 3 0.81 7 0.82 2
330 4000 2 0.81 1 0.82 1 0.78 4 0.83 0
330 8000 0 0.81 0 0.82 0 0.78 0 0.82 0
830 500 34 0.97 34 0.97 33 2.05 42 0.96 32
830 1000 17 0.97 16 0.96 16 1.32 22 0.96 15
830 2000 8 0.97 8 0.96 8 1.06 10 0.96 6
830 4000 3 0.97 3 0.96 3 0.95 3 0.96 2
830 8000 1 0.97 1 0.96 1 0.88 1 0.97 0

1900 500 56 1.02 54 1.33 51 3.27 97 1.07 49
1900 1000 28 1.02 26 1.43 24 1.93 53 1.08 23
1900 2000 13 1.01 12 1.33 12 1.36 25 1.07 11
1900 4000 6 1.02 6 1.18 5 1.06 11 1.07 5
1900 8000 2 1.01 2 1.05 2 0.94 4 1.07 1
2400 500 74 1.07 70 1.61 64 4.93 133 1.17 62
2400 1000 33 1.06 32 1.43 31 2.65 56 1.18 29
2400 2000 17 1.06 17 1.87 15 1.73 32 1.18 14
2400 4000 8 1.07 8 1.45 7 1.29 15 1.18 7
2400 8000 4 1.07 3 1.35 3 1.07 8 1.18 2
2600 500 147 1.15 144 1.73 134 10.39 226 1.24 128
2600 1000 70 1.14 67 1.99 63 5.40 123 1.25 61
2600 2000 33 1.14 32 1.72 31 3.02 60 1.24 30
2600 4000 17 1.14 16 1.92 15 1.96 32 1.24 14
2600 8000 8 1.15 8 1.61 7 1.39 15 1.25 6

12000 500 244 2.63 236 9.27 222 106.83 420 3.05 184
12000 1000 116 2.63 113 11.54 106 46.90 207 3.05 88
12000 2000 56 2.63 55 12.42 52 21.25 103 3.06 42
12000 4000 28 2.64 28 13.32 25 10.59 55 3.06 20
12000 8000 13 2.63 13 8.1 12 5.82 26 3.07 9
22000 500 1418 4.39 1395 21.62 1305 1172.75 2094 5.10 1197
22000 1000 674 4.39 656 30.36 613 540.28 1126 5.10 575
22000 2000 330 4.39 319 49.58 298 257.99 583 5.11 282
22000 4000 164 4.39 159 95.40 146 121.24 297 5.11 139
22000 8000 80 4.39 78 106.98 72 60.33 145 5.14 68
34000 500 806 6.59 778 39.13 729 890.01 1387 7.74 591
34000 1000 388 6.58 374 58.55 350 424.81 696 7.76 283
34000 2000 191 6.58 153 89.04 171 208.79 354 7.75 138
34000 4000 95 6.57 92 147.62 84 103.59 179 7.74 68
34000 8000 45 6.57 44 113.80 42 49.25 85 7.76 33

Table 1: Number of buffers inserted and runtime of the four heuristics on eight industrial datasets. For all four heuristics, the initial tree is a minimum
spanning tree over the terminals. The runtime is in CPU seconds on a SUN Ultra 60 and includes the time for computing the initial minimum
spanning tree. The lower bound has been calculated according to (3) with RSMT length estimated using the BI1S heuristic [12]. For all datasets,
Cw = 0:177f F=µm andCb = 37:5 f F ; sink input capacitances varies between 2:04f F and 200f F .
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