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Abstract

In high-speed digital VLSI design, bounding the load capacitance at gate outputs is a well-known methodology to improve coupling noise immunity,

reduce degradation of signal transition edges, and reduce delay uncertainty due to coupling noise. Bounding load capacitance also improves reliability with

respect to hot-carrier oxide breakdown and AC self-heating in interconnects, and guarantees bounded input rise/fall times at buffers and sinks.

This paper introduces a newminimum-buffer routing problem(MBRP) formulation which requires that the capacitive load of each buffer, and of the

source driver, be upper-bounded by a given constant. Our contributions are as follows:

� We give linear-time algorithms for optimal buffering of a given routing tree with a single (inverting or non-inverting) buffer type.

� For simultaneous routing and buffering with a single non-inverting buffer type, we prove that no algorithm can guarantee a factor smaller than 2

unless P=NP and give an algorithm with approximation factor slightly larger than 2 for typical buffers. For the case of a single inverting buffer type,we give

an algorithm with approximation factor slightly larger than 4.

� We give local-improvement and clustering based MBRP heuristics with improved practical performance, and present a comprehensive experimental

study comparing the runtime/quality tradeoffs of the proposed MBRP heuristics on test cases extracted from recent industrial designs.

I. I NTRODUCTION

In high-speed digital VLSI design, bounding the load capacitance at gate outputs is a well-known part of today’selectrical

correctnessmethodologies. Bounds on load caps improve coupling noise immunity, reduce degradation of signal transition

edges, and reduce delay uncertainty due to coupling noise [13]. According to [21], commercial EDA methodologies and tools

for signal integrity rely heavily on upper-bounding the load caps of drivers and buffers to prevent very long slew times on

signal transitions. Such buffer insertions for long or high-fanout netsare for electrical – not timing optimization – reasons.1

Essentially, load cap bounds serve as proxies for bounds on input rise/fall times at buffers and sinks. Although slew time is not

completely determined by capacitive loads, Tellez and Sarrafzadeh [24] show experimentally the strong correlation between

them. Bounded capacitive loads also improve reliability with respect to hot-carrier oxide breakdown (hot electrons) [10], [12]

and AC self-heating in interconnects [20], and facilitate technology migration since designs are more balanced.

In this work, we do not address the well-studied problem of buffer insertion for timing optimization. Instead, we focus

on the very practical and immediate requirement ofelectrical correctness in large interconnects– a requirement that arises

beforetiming optimization even starts. The motivating observation is that any design flow requires early elimination of all
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electrical violations (i.e., load cap or slew) –even for non-critical nets– as a prerequisite to initiating meaningful placement

and timing optimizations. In other words, until electrical correctness is established, timing analyses are meaningless and

layout/timing optimizations cannot begin. Several reasons for this are as follows: (1) Gates are well-characterized only for

particular cap load ranges, and applying table lookups plus extrapolations in the timing tools will result in garbage transition

times for loads outside these ranges. (2) Any inaccurate slew time caused by a cap load violation will propagate through the

timing graph and cause misleading values downstream. (3) Until all slew time and cap load violations are fixed, static timing

analysis results cannot be trusted and the quality of a floorplan or placement cannot even be evaluated meaningfully.

To make progress with any methodology, it is crucial to have a fast and resource-efficient method for fixing electrical

violations. Of particular interest are practical methods for otherwise non-critical nets that have up totens of thousands of

sinks(e.g., scan enable). Again, such nets are not timing-critical, but timing and layout optimizations require their efficient

buffering for electrical correctness. We observe the following:

� Even if buffers have been inserted by synthesis to honor cap load bounds, the synthesis tool’s buffer insertion is layout-

oblivious. These buffers must be ripped out and recalculated from the placement, analogous to how synthesized clock and

scan structures are treated in modern flows.

� In buffering for electrical correctness, it suffices to use a single buffer and/or inverter type with reasonable drive strength.

One buffer type has been shown to be sufficient to yield good results in timing optimization [4]. (Optimization of buffer drive

strengths can also be performed during later power/timing optimization phases.)

� Since one just wants to quickly fix violations without using too many resources, minimizing the total wire and buffer area

is a suitable objective. A simplified objective is to minimize the number of inserted buffers, which also minimizes the number

of placement perturbations required to accommodate the buffers.

These observations motivate the problem addressed in this paper, informally formulated as follows:

Minimum-Buffered Routing Problem (MBRP): Given a netN, sink input capacitances, and an (inverting) buffer type, find

a minimum-cost (polarity obeying) buffered routing tree forN such that the capacitive load of each buffer and of the source

is at most a given upper bound.

A. Previous Work

The vast amount of research on buffer insertion can be roughly divided into three categories.

Fanout optimization during logic synthesis. Works in this category (see, e.g., [6], [8], [17], [23]) seek buffered routing

topologiesand focus on timing optimization. Since placement information is not available at the logic synthesis stage, the

delay models used in these works consist mainly of gate delay and statistically inferred interconnect delay.In contrast, our

work is targeted to the earlypost-placementphases of the design cycle.

Timing-driven buffer insertion during routing. Works in this category concentrate on bufferingtiming-critical nets, e.g.,

maximizing the required arrival time (RAT) at the source, often with no bounds on the number of buffers, power consumption,

or area. The seminal work of Van Ginneken [25] proposed a dynamic programming approach to finding the optimum buffering
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of an already routed net, using identical buffers and at most one buffer per wire. Lillis et al. [15], [16] extended the dynamic

programming approach by incorporating slew effects into the delay model and performing simultaneous buffer insertion and

wire sizing; they also considered formulations that seek to minimize area or power consumption subject to meeting given

timing constraints. More recently, Alpert and Devgan [1] gave extensions to multiple buffers per wire, and Alpert, Devgan

and Quay [2] extended the approach to simultaneous noise and delay optimization. Okamoto and Cong [18] considered

simultaneous routing and buffer insertion, showing that significant delay reductions can be achieved over previous approaches

which insert buffers into an already routed net.These techniques are appropriate for buffered routing of (relatively small)

timing-critical nets, but not for upper-bounding slew rates innon-criticalnets: (1) quadratic or worse runtimes reduce their

applicability to large (tens of thousands of sinks) instances; (2) timing-driven objectives such as max RAT at the source, and

reliance on unavailable or meaningless timing analyses and constraints, lead to wasted resources (too many buffers inserted);

and (3) minimizing area or power subject to RAT constraints as in [15], [16] cannot guarantee that slew constraints will be

met.

Clock-tree buffering. Work on buffered clock trees has focused on delay [22] and skew minimization [9], [19]. Tellez and

Sarrafzadeh [24] considered minimal buffer insertion inroutedclock trees with skew and slew constraints. They argued that

slew upper-bounds can be met by upper-bounding the lumped capacitive loads of the buffers, and gave a linear time algorithm

for buffering a routed clock tree with a single non-inverting buffer type under these constraints.We differ from [24] in several

respects. (1) We seeksimultaneous routing and buffering, while [24] considers only the problem of buffering analready routed

clock tree. (2) Besides non-inverting buffering, we also consider buffering with a singleinvertingbuffer type, which requires

handling additional sink polarity constraints (the number of inverting buffers on each source-to-sink path must be consistent

with the given polarity of the sink). (3) Clock trees in [24] require bounded buffer skew – this constraint is not necessary in

our application.

B. Our Contributions

Our contributions are as follows:

� We give linear-time algorithms for optimal buffering of a given routing tree with a single (inverting or non-inverting) buffer

type.2

� For simultaneous routing and buffering with a single non-inverting buffer type, we prove that no algorithm can guarantee a

factor smaller than 2 unless P=NP and give an algorithm with approximation factor slightly larger than 2 for typical buffers.

For the case of a single inverting buffer type, we give an algorithm with approximation factor slightly larger than 4.

� We give local-improvement and clustering based MBRP heuristics with improved practical performance, and present a

comprehensive experimental study comparing the runtime/quality tradeoffs of the proposed MBRP heuristics on test cases

extracted from recent industrial designs.

2A different algorithm for non-inverting buffers was previously given in [24].
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C. Organization of the Paper

We formally define MBRP in Section II. Then, in Section III, we describe two exactlinear-timealgorithms for buffering a

given routing tree: a greedy algorithm for buffering with a non-inverting buffer type and a dynamic programming algorithm for

buffering with an inverting buffer type. In Section IV we analyze the approximation complexity of MBRP and give provably-

good approximation algorithms for both inverting and non-inverting buffer types. We give local-improvement and clustering

heuristics with improved practical performance in Section V, and present experimental results comparing the runtime/quality

tradeoffs of the proposed heuristics in Section VI. We conclude in Section VII with directions for future research.

II. PROBLEM FORMULATION

We start with basic definitions and notations. LetN be anetconsisting of asource rand a set ofsinks S.

� A routing treefor the netN is a treeT = (r;V;E) rooted atr such that each sink ofS is a leaf inT.

� A buffered routing treefor the netN is a treeT = (r;V;E;B) such thatT = (r;V;E) is a routing tree forN andB is a set of

buffers located on the edges ofT.3

� For anyb2 B[frg, thesubtree driven by b, also referred to as thestageof b [24], is the maximal subtreeDb of T which

is rooted atb and has no internal buffers. A buffered routing treeT = (r;V;E;B) hasjBj+1 stages, including asource stage

driven by the source.

Throughout the paper we use the following notations:

Cw = capacitance of a wire segment of unit length, assumed to be the same for all wires

Cb = input capacitance of the given buffer type

cv = input capacitance of sink or bufferv

σv = input signal polarity of sink or inverting bufferv

le = length of wire segmente

ce = capacitance of wire segmente, i.e.,ce =Cwle

Tv = subtree ofT rooted atv

c(Tv) = lumped capacitance ofTv, i.e.,c(Tv) = ∑
e2Tv

ce+ ∑
v2leaves(Tv)

cv

CU = given upper-bound on the capacitive load of each buffer.

Load Model

We use thelumped capacitive loadmodel, in which the load of a bufferb is given by

c(Db) = ∑
e2Db

ce+ ∑
v2leaves(Db)

cv

Load Constraints

As noted in [24], bounded slew rate can be ensured by upper-bounding the lumped capacitive load of each bufferb2 B and

of the source driverr. Formally, we require that

c(Db)�CU for every b2 B[frg

3We assume that buffers have a single input and a single output and thus are inserted only on the edges ofT.
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Cost Functions

The cost of a buffered routing treeT is measured by the total wire and buffer area. Denoting the area of each buffer bya, the

combined costof the buffered routingT = (r;V;E;B) can be expressed as follows:

combinedcost(T) = wire area(T)+ jBj �a (1)

The wire area ofT depends on the wirelength in each metal layer and the number of vias. During early post-placement phases

of the design cycle the wire area still cannot be estimated very accurately, since layer assignment and via information is not

yet available. Therefore, we assume that each stage requires the same amount of routing resources and define the simplified

routing cost as the number of stages in the buffered routingT, i.e.,

cost(T) = jBj+1 (2)

Thus, in this paper we adopt the simplified cost measure (2):

Minimum-Buffered Routing Problem (MBRP)

Given a netN with sourcer and set of sinksS(with prescribed polarities), input capacitancecs for every sinks2S, buffer input

capacitanceCb, unit-length wire capacitanceCw, and load upper-boundCU > 2Cb,4 find a buffered routing treeT = (r;V;E;B)

for N such that

(a) c(Db)�CU for everyb2 B[frg,

(b) (for inverting buffer type) the parity of the number of buffers on each path from the source to any positive sink is the

same, and opposite from the parity of the number of buffers on the paths from the source to any negative sink, and

(c) cost(T) = jBj+1 is minimum among all buffered routing trees satisfying conditions (a) and (b).

III. E XACT ALGORITHMS FORBUFFERING ROUTED NETS

In this section we present two algorithms for optimally buffering an already routed net using a single inverting or non-

inverting buffer type. The running time of each algorithm is linear in the number of sinks and the number of inserted buffers.

A. Single Non-Inverting Buffer Type

Our algorithm for buffering a given routing tree with a single non-inverting buffer type is a generalization of a greedy

algorithm for partitioning node-weighted trees due to Kundu and Misra [14]. Like in [14], we traverse the tree in bottom-up

order, inserting “fully loaded” buffers, i.e. buffers that drive a subtree with total capacitance equal toCU . If no fully loaded

buffer can be inserted then we must have reached a nodep with subtree capacitance greater thanCU such that the capacitance

of each child branch is strictly less thanCU . In this case we greedily insert the most loaded buffer, i.e., the buffer at the top of

the child branch with highest capacitance.

Before formally describing the algorithm we need to introduce two more definitions. LetT = (r;V;E) be a routing tree. A

vertexp of T is calledcritical if p is a bottom-most point ofT such thatTp cannot be driven by a single buffer. Formally,

4We require thatCU > 2Cb since otherwise buffering is impossible for some trees.
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p is critical if c(Tp) > CU andc(Tu) �CU for every childu of p. A heaviest child uof p is one which accumulates more

capacitance than any other child ofp. Formally,u is a heaviest child ofp if c(Tu)+c(u;p) � c(Tv)+c(v;p) for every other child

v of p.

The algorithm (see Fig. 1) finds critical vertices by a post-order traversal of the input tree. Then, for every such critical

vertexp, the algorithm repeatedly inserts buffers on the edge connectingp to its heaviest child, untilp is no longer critical.

For simplicity of analysis we give here a recursive implementation of the algorithm.

Remark. The runtime of the algorithm in Fig. 1 isO(jSj � jBj) (since the tree is traversed once for each inserted buffer). An

optimalO(jSj+ jBj) time implementation inserts all buffers in a single bottom-up traversal; see [3] for the full details.

Theorem 1:The algorithm in Fig. 1 finds an optimum buffering of the input treeT with the given non-inverting buffer

type.

The proof of the theorem follows from the following two lemmas, corresponding to the two possible cases in Step 3 of the

algorithm.

Lemma 1: If p is a critical vertex ofT andu is a child ofp with CU �c(Tu)� c(u;p), then there exists an optimum buffering

of T containing a bufferb located on the edge(u; p) such thatc(u;b) =CU �c(Tu) (see Fig. 2).

Proof: Let the optimum buffering ofT consist of the set of buffersBopt. The subtree ofT rooted atb must contain at least

one bufferb0 from Bopt since it has total capacitance equal toCU . The lemma follows by observing that(Boptnfb0g)[fbg is

a feasible buffering ofT.

Lemma 2: If p is a critical vertex ofT andc(u;p) <CU �c(Tu) for the heaviest childu of p, then there exists an optimum

buffering ofT that contains a bufferb placed immediately belowp on the edge(u; p) (see Fig. 3).

Proof: Let the optimum buffering ofT consist of the set of buffersBopt. Sincep is critical, Tp must contain at least

one bufferb0 of Bopt. We claim that(Bopt n fb0g)[fbg is an optimum buffering ofT. The claim follows as in Lemma 1 if

b0 is located inTb. Otherwise, the claim follows by observing that (i) by optimality, there is no buffer ofBopt on the path

connectingb0 to p in T, and (ii)c(Tu)+c(u;p) � c(Db0), sinceu is the heaviest child ofp.

Notice that the capacitive load of each buffer inserted in Step 3 whenc(u;p) �CU �c(Tu) is exactlyCU , i.e., these buffers

are “fully filled.” Although this is not true for the buffers inserted whenc(u;p) <CU �c(Tu), it is easy to see that in this case

inserted buffers have a capacitive load of at leastCU=k, wherek is the degree ofp. In particular, when the routing treeT is

binary, we obtain:

Lemma 3: If the input to the algorithm in Fig. 1 is a binary routing tree, then the load of each inserted buffer is at least

CU=2.

Lemma 3 will be used in proving the approximation guarantee for the algorithms in Section IV. It also gives a way to

satisfy the simultaneous lower- and upper-bound constraints on buffer loads referred to in Footnote 1, since every routing tree

can be converted to a binary tree by inserting zero-length edges.
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B. Single Inverting Buffer Type

Optimal buffering with a single inverting buffer type is more complex than buffering with a non-inverting buffer type. The

greedy approach does not work in this case, and we must use dynamic programming. In bottom-up order, the algorithm (see

Fig. 4) computes two solutions for each subtree ofT, one for positive and one for negative topmost buffer input polarity.

Then, after choosing the best output polarity for the source, it determines the position of the buffers by a top-down traversal.

The running time of the algorithm is linear assuming that the degree of the routing treeT is bounded; in the rectilinear plane

this assumption holds for all standard routing tree constructions, including the minimum spanning tree, the minimum-length

Steiner tree, and approximations of the latter one.

For simplicity, we give the algorithm for binary trees, i.e., we assume that all vertices other than the source (which is the

root of the tree) and the sinks (which are leaves) have outdegree 2. Without loss of generality, we assume that sink input

capacitances are all equal to 0 – nonzero sink capacitances can be compensated by increasing the length of the edges incident

to the sinks. By scaling, we also assume that the unit wirelength capacitance,Cw, is equal to 1. The algorithm associates with

each leafv of the treeT two labels, l+(v) andl�(v), such that one of them belongs to[0;CU ] and the other is 0. The labels

l+(v) and l�(v) represent the penalty capacitance incurred in assuming that the sink has the opposite polarity. Initially, for

each sinks,

l+(s) =

8<
: 0; if σ(s) = +

CU ; otherwise

andl�(s) =CU � l+(s).

For each tree leafv, define thestemof v to be the edge connectingv to its parent. Also, define afork of T to be a set of 4

vertices(u;v;x1;x2), wherex1 andx2 are two leaves,v is the common parent ofx1 andx2, andu is the parent ofv. The bottom-

up phase of the algorithm consists of two main procedures:ReducestemandCollapse fork . The procedureReducestem

simply reduces the length of the stem of a leafv until it becomes strictly less thanCU . The procedure also counts the number

of buffers inserted on the stem ofv, referred to asn+(v) andn�(v), depending on the polarity of the topmost buffer.

The procedureCollapse fork replaces a fork(u;v;x1;x2) with the single edge(u;v), computes the appropriate labels forv,

and modifies the number of buffers inserted on the edges(v;x1) and(v;x2) as needed. The labels ofv depend on the labels

of x1 andx2 and the length of the edges(v;x1) and(v;x2). To guarantee optimality,Collapse fork checks all possibilities of

inserting buffers on the stems(v;x1) and(v;x2). Among the feasible bufferings of these two stems it chooses the one with the

least buffers inserted, breaking ties according to the residual capacitance. Note that after the stems(v;x1) and(v;x2) have been

reduced, the maximum number of buffers that may be inserted on each stem is at most 2. Thus, no more than 9 cases need

to be checked inCollapse fork , depending on whether 0, 1, or 2 buffers are inserted on each stem. In fact, since inserting 2

buffers in each of the two stems is always a dominated solution, we never need to check more than 8 cases.

Theorem 2:The algorithm in Fig. 4 finds an optimum buffering of the input treeT with the given inverting buffer type.
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IV. A PPROXIMATING MBRP

The approximation factor of an algorithmA for a minimization problemP is the worst-case performance ofA. Formally,

the approximation factor ofA is defined as supA(I)
OPT(I) , where the supremum is taken over all instancesI of the problemP, A(I)

is the output value of the algorithmA on inputI , andOPT(I) is the optimal value for the instanceI . In this section we prove

that, unless P=NP, no algorithm can guarantee a factor smaller than 2 for MBRP with single (inverting or non-inverting) buffer

type. On the positive side, for anyε > 0, we give a factor 2(1+ ε)(1+ 1
CU=Cb�2) approximation algorithm for MBRP with

single non-inverting buffer type and a factor 4(1+ ε)(1+ 1
CU=Cb�2) approximation algorithm for MBRP with single inverting

buffer type.

A. Approximation Complexity of MBRP

Theorem 3:For anyε > 0, approximating MBRP within a factor of 2� ε is NP-hard.

Proof: The proof is by reduction from the rectilinear Steiner minimum tree (RSMT) problem, which is NP-hard [11].

An RSMT instance consists of a setR of terminals and a numberK, and the problem is to decide if terminals inR can be

interconnected via a rectilinear Steiner tree of lengthK or less. Letr be an arbitrary terminal inRand letS=Rnfrg. Consider

the MBRP instance in which all sinks have input capacitance 0,Cb = 0,Cw = 1, andCU = K. Then, there exists a rectilinear

Steiner tree of length at mostK for the terminals inR if and only if the above MBRP instance has optimum cost equal to 1,

and any(2� ε)-approximation algorithm for MBRP would find the optimum solution if this is the case.

Remark. Fig. 5 gives an example showing that MBRP is inherently more difficult than the RSMT problem since, in general,

the Steiner points for MBRP do not belong to the Hanan grid, i.e., to the grid formed by the vertical and horizontal lines

passing through terminals. In this example the input capacitance of each sink and of the buffers is 1, the unit wirelength

capacitanceCw is 1, and the buffer load upper-boundCU is 8. Any routing along the Hanan grid must use at least 3 buffers,

while the optimum buffered routing, which uses a non-Hanan edge, has only two buffers.

B. Approximating MBRP with Single Non-Inverting Buffer Type

In this section we show that optimal buffering of an approximate rectilinear Steiner minimum tree over the terminals (see

Fig. 6) comes within a constant factor of the MBRP optimum. Below, the output of a polynomial-time RSMT algorithm with

approximation factor ofα will be referred to as anα-approximate Steiner tree.

Theorem 4:The algorithm in Fig. 6 approximates the MBRP with single non-inverting buffer type within a factor of

2α(1+ 1
CU=Cb�2) for every net with total sink capacitance of at leastCb.5

Proof: Let OPT be the number of stages in an optimum buffered routed netTopt, and letCAPbe the capacitance ofTopt

before buffering, i.e.,

CAP= ∑
s2S

cs + Cw �

 
∑

e2Topt

le

!

5In practice the total sink capacitance is greater thanCb for almost all multipin nets. Also, the ratioCU=Cb is typically much greater than 2 (recall that

CU=Cb > 2 to guarantee that every tree can be buffered). In our benchmarksCU=Cb varies between 12 and 200, which corresponds to an approximation

factor between 2:1α and 2:005α in Theorem 4.



9

In the optimum buffering ofTopt, each of the OPT stages has a capacitance of at mostCU . Since the total capacitance of the

buffered treeTopt is CAP+(OPT�1)Cb, we get thatOPT �CU �CAP+(OPT�1)Cb, i.e.,

OPT�
CAP�Cb

CU �Cb
(3)

Let CAP0 be the capacitance before buffering of theα-approximate Steiner tree constructed by the algorithm in Fig. 6.

ThenCAP0�s� α(CAP�s), wheres= ∑s2Scs is the total input capacitance of the sinks. Since we assume thats�Cb, this

givesCAP0 � αCAP� (α�1)s� α(CAP�Cb)+Cb, i.e.,

CAP0�Cb � α(CAP�Cb) (4)

Let A be the number of stages in the buffering produced by the algorithm. SinceT is a binary tree, by Lemma 3 every buffer

inserted by the algorithm in Fig. 1 has a minimum load ofCU=2. Furthermore, the total capacitance of the source stage and

of the stage driven by the last inserted buffer is greater thanCU (otherwise the source can drive alone both stages). Thus,

CAP0+(A�1)Cb � A � (CU=2), i.e.,

A�
CAP0�Cb

CU=2�Cb
= 2

CAP0�Cb

CU �2 �Cb
(5)

Finally, inequalities (3-5) give

A
OPT

� 2
CAP0�Cb

CAP�Cb
�

CU �Cb

CU �2 �Cb
� 2α �

�
1+

1
CU=Cb�2

�

Since the rectilinear Steiner tree for a given set of terminals can be approximated in polynomial time to within any desired

accuracy using Arora’s PTAS [5], Theorem 4 gives:

Corollary 1: For anyε > 0, the MBRP with single non-inverting buffer type can be approximated within a factor of

2(1+ ε)(1+ 1
CU=Cb�2) in time O(jSj(logjSj)O(1=ε)+ jBj).

C. Approximating MBRP with Single Inverting Buffer Type

A naive solution to handling sink polarities is to make the polarity of all sinks the same by inserting one inverter for each

sink of the minority polarity, and then use non-inverting buffers to route the signal from the source. In the worst case this

solution may require as many asjSj=2 inverters, plus the non-inverter buffers needed to drive a Steiner tree spanning all

terminals. A better solution is to construct two separate Steiner trees, one for the positive sinks and one for the negative sinks,

buffer them optimally with non-inverting buffers using the RNB algorithm, and then insert a single inverter at the top of one

of them.

If an inverting buffer occupies less than half the area of a non-inverting buffer with the same driving strength, an even

better solution is provided by algorithm in Fig. 7. In this algorithm we construct a routing tree for all sinks, buffer it with

non-inverting buffers, and then make it consistent with sink polarities by replacing each non-inverting buffer by two inverters.

Theorem 5:The algorithm in Fig. 7 approximates the MBRP with single inverting buffer type within a factor of at most

4α(1+ 1
CU=Cb�2).
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Proof: First we show thatT is a feasible solution. Indeed, by construction, each inserted inverter drives sinks or inverters

of the same polarity. Also, the load of each inverter inserted inT is at mostCU , since this load is never larger than the load of

the corresponding stageDb of T 0.6

The key observation is that the optimum number of inverting buffers,OPT, is no less than the optimum number of non-

inverting buffersOPT0. Let A0 andA be the number of buffers inserted by the algorithms STB and STIB, respectively. Then,

by Theorem 4,A� 2 �A0 � 4α(1+ 1
CU=Cb�2)OPT0 � 4α(1+ 1

CU=Cb�2)OPT.

Using Arora’s PTAS [5], Theorem 5 gives:

Corollary 2: For anyε > 0, the MBRP with single inverting buffer type can be approximated within a factor of 4(1+

ε)(1+ 1
CU=Cb�2) in time O(jSj(logjSj)O(1=ε)+ jBj).

By Theorem 3, no approximation algorithm with a factor better than 2 exists for MBRP with single inverting buffer type.

Closing the gap between Corollary 2 and this hardness result is an interesting open problem.

V. MBRP HEURISTICS WITH IMPROVED PRACTICAL PERFORMANCE

A. Non-Inverting Buffer Type

Theorems 3 and 4 imply that the STB algorithm is essentially the best possible from the point of view of worst case

approximation guarantee. In this section we describe two MBRP heuristics which, by changing the topology of the Steiner

tree, improve upon the STB algorithm on practical instances.

The first heuristic, called Cut&Connect (see Fig. 9), modifies the Steiner tree constructed by STB in a bottom-up fashion,

starting from the sinks and working towards the root. When finding a bufferb whose load is smaller thanCU , the heuristic

tries to fill b’s load up toCU by cutting a subtree from some other part of the tree and reconnecting it to the closest point inTb.

If the resulted modified stage of the bufferb has the capacitive load still no more thanCU , then such reconnect is accepted,

otherwise the reconnect is reversed. If needed, the position ofb may be adjusted to ensure that its load remains at mostCU

(see Fig. 8(a-b)).

Similar to Cut&Connect, the Clustering heuristic (see Fig. 10) repeatedly chops off buffer stages from a Steiner tree over

terminals. The Clustering heuristic is essentially a greedy algorithm which tries the reconnected vertex with the largest gain.

There are two main differences between Clustering and Cut&Connect. The first difference is in the way buffer loads are filled:

Clustering always adds one sink at a time, while Cut&Connect adds whole subtrees. For example, Clustering constructs the

tree in Fig. 8(c), while Cut&Connect cannot. The second difference is in the fact that Clustering recomputes the Steiner

tree after chopping off each buffer stage. Tree recomputation improves solution quality, but also leads to a much higher time

complexity, ofO(jBjTrsmt), whereTrsmt is the time needed to compute a Steiner tree. To achieve a competitive running time,

our implementation of Clustering uses minimum spanning trees as approximate Steiner trees.

6For simplicity we assume that the buffer input capacitanceCb is less than any sink capacitance. The algorithm in Fig. 7 can be modified such that this

assumption is not necessary.
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B. Inverting Buffer Type

Both algorithms in this section are improved versions of the STIB algorithm in Section IV-C. The improvement in the first

algorithm (see Fig. 11) is based on the following observations: The STIB algorithm replaces each buffer inserted by the STB

algorithm by a pair of inverters, but if all sinks driven by a buffer have the same polarity then a single inverter replacement is

sufficient. Furthermore, new saving opportunities can be created for higher levels byswappingthe two inverters in an inserted

pair such that the most appropriate polarity comes on top.

A significant limitation of the STIB-S algorithm is that it inserts inverters only at locations of buffers inserted by the STB

algorithm. In order to avoid leaving too much unused driving capacity, the algorithm in Fig. 13 computes the placement

of inverters in bottom-up order as the highest position which can still drive all positive (respectively negative) sinks below,

thus in effect “filling” the load of each inverter as close as possible to the its full capacity. Similar to the STIB and STIB-S

algorithms, whenever an inverter is inserted by the algorithm in Fig. 12 the driven sinks/buffers are connected to the inverter

by duplicating paths of the routing tree (see Fig. 13).

In the algorithm in Fig. 12 we use some additional notation. For every nodev of a treeT, let D+
v (D�

v ) be the tree rooted at

v which is the union of all paths fromv to the positive (respectively negative) driven sinks/buffers inDv, and denote byS+(v)

(S�(v)) the total capacitance ofD+
v (respectivelyD�

v ), e.g.,S+(v) = cv if v is positive sink andS+(v) = 0 if v is a negative

sink. Also, letBr+v = D+
v +(v; parent(v)) if S+(v)> 0 andBr+(v) = /0 otherwise, and, similarly,Br�v = D�

v +(v; parent(v))

if S�(v)> 0 andBr�(v) = /0 otherwise.

VI. EXPERIMENTAL RESULTS

We have implemented the Routed Net Buffering (RNB) and Routed Net Inverting Buffering (RNIB) algorithms for opti-

mally buffering a given tree with a single non-inverting, respectively inverting, buffer type, the Cut&Connect and Clustering

heuristics for MBRP with single non-inverting buffer type, as well as the Steiner Tree Inverting Buffering with Swapping

(STIB-S) and the Steiner Tree Inverting Buffering with Load Filling (STIB-LF) heuristics for MBRP with single inverting

buffer type. Tables I–III give the results obtained by these heuristics on eight large nets extracted from recent industrial de-

signs. For all heuristics, the initial tree is a minimum spanning tree over the terminals. The runtime is in CPU seconds on a

SUN Ultra 60 and includes the time for computing the initial minimum spanning tree. For all datasets,Cw = 0:177f F=µm,

Cb = 37:5 f F, while sink input capacitances are varying between 2:04f F and 200f F.

Table I gives the results obtained by the three heuristics for non-inverting buffering. For comparison, Table I includes a

lower bound on the optimum number of buffers, calculated according to (3) with RSMT length estimated using the edge-

based heuristic of [7]. The lower-bound estimates the number of buffers by assuming that (a) the tree is shortest possible,

and (b) each buffer is fully loaded. Since the optimum solution is unlikely to meet these two conditions simultaneously, the

lower-bound may significantly under-estimate the optimum number of buffers.

Results in Table I show that, on the average, the Cut&Connect heuristic inserts 5.81% fewer buffers than the RNB algorithm,

while increasing the wirelength by 6.52%. The Clustering heuristic inserts 10.43% fewer buffers than RNB on the average,

with an average wirelength increase of only 2.02%. In fact, Clustering solutions are almost always better than Cut&Connect
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resultsboth in number of inserted buffers and total wirelength. As expected, the Clustering heuristic – which recomputes a

minimum spanning tree after each buffer insertion – has the slowest runtime, being as much as 267 times slower than RNB and

24 times slower than Cut&Connect. However, Clustering runtime remains practical: even for the nets with tens of thousands

of sinks Clustering takes just a little over one second of CPU time per inserted buffer.

We have compared the inverting buffering heuristics on two sets of datasets. In one set (Table II) all sinks are assigned the

same polarity, while in the second (Table III) sink polarities are assigned at random. The results indicate that optimal inverting

buffering of a minimum length spanning or Steiner tree can be very far from optimal, and that heuristics for simultaneous tree

construction and buffering are particularly important in this case.

The results for uniform sink polarities given in Table II show that the STIB-S heuristic inserts on the average 25.74% fewer

buffers compared to the MST buffered optimally using RNIB; the STIB-S wirelength is larger than the MST wirelength by

an average of 13.38%. With the same or even smaller runtime, the STIB-LF heuristic reduces the number of buffers by an

average of 57.23% compared to RNIB, with an average wirelength increase of 20.84%.

Table III gives the results obtained by the inverting buffering heuristics on testcases with random sink polarities. We have

included in comparison two variants of each heuristic: the first variant buffers (or starts with) an MST spanningall sinks,

while the second variant computes separate MSTs for the sinks of each polarity and buffers each tree independently. Such

a “split” construction proves to be particularly important for RNIB buffering, since on the average half of the sinks require

an inverter when RNIB is run on the MST over all sinks.7 The split MST construction also helps the STIB-S heuristic in

most cases, reducing the number of buffers by an average of 8.21% compared to the running STIB-S on the MST over all

sinks. Interestingly, however, the split MST constructionhurtsthe STIB-LF heuristic in most cases, increasing the number of

buffers by an average of 13.64% and the wirelength by 6.44%. The STIB-LF heuristic on the MST for all sinks gives the best

results on the average, with 42.31% fewer buffers and 13.90% wirelength increase compared to RNIB over the split MST,

respectively 25.30% fewer buffers and 1.05% wirelength increase compared to STIB-S over the split MST.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

In this paper we have addressed a minimum-buffered routing problem which asks for bounded input rise/fall time for all

buffers and sinks. We have analyzed the approximation complexity of this problem and given provably-good algorithms

for buffering with a single inverting or non-inverting buffer type. We have also proposed local-improvement and clustering

heuristics with improved practical performance; experiments conducted on industrial datasets show that our heuristics are

efficient and insert a near-optimum number of buffers.

A natural research direction is to extend the results in this paper to MBRP with multiple buffer/invertor types. If the

buffer library can be arbitrary the problem becomes considerably harder than the single buffer type case considered in this

paper. For example, a direct reduction from the subset sum problem shows that even finding the optimum buffering of a

routed 2-pin net is NP-hard. Our ongoing research addresses the case of libraries with small number of buffer types. We also

investigate multi-source formulations, in which the buffer solution should be legal for multiple rooted orientations of the tree,

7The number of inverters inserted by RNIB is almost the same for the whole range of driving strengths since most inverters are inserted to meet polarity,

not load cap, constraints.
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and multi-constraint formulations, in which, e.g., input capacitance and fanout must be upper-bounded simultaneously.
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Footnote 1: For signal integrity purposes buffer insertion should alsolower-boundthe capacitive load of drivers and buffers,

since a driver that is too strong relative to its load will result in too sharp a transition, creating a stronger aggressor to

neighboring potential victim nets. Our algorithms can be extended to simultaneously ensure that the capacitive load of each

buffer isat least halfthe given load upper-bound (see Lemma 3).

Footnote 2: A different algorithm for non-inverting buffers was previously given in [24].

Footnote 3: We assume that buffers have a single input and a single output and thus are inserted only on the edges ofT.

Footnote 4: We require thatCU > 2Cb since otherwise buffering is impossible for some trees.

Footnote 5: In practice the total sink capacitance is greater thanCb for almost all multipin nets. Also, the ratioCU=Cb is

typically much greater than 2 (recall thatCU=Cb > 2 to guarantee that every tree can be buffered). In our benchmarksCU=Cb

varies between 12 and 200, which corresponds to an approximation factor between 2:1α and 2:005α in Theorem 4.

Footnote 6: For simplicity we assume that the buffer input capacitanceCb is less than any sink capacitance. The algorithm

in Fig. 7 can be modified such that this assumption is not necessary.

Footnote 7: The number of inverters inserted by RNIB is almost the same for the whole range of driving strengths since

most inverters are inserted to meet polarity, not load cap, constraints.
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Fig. 1. The Routed Net Buffering (RNB) algorithm.

Fig. 2. Sincec(Tb) =CU , the treeTb (shaded area) must contain a bufferb0 in any optimum bufferingBopt. (Boptnfb0g)[fbg

is then an optimum buffering ofT containingb.

Fig. 3. Whenb0 is located on a different branch (shaded area) than that of the heaviest childu, c(Tu)+c(u;p) � c(Db0). Hence,

(Boptnfb0g)[fbg is an optimum buffering ofT containingb.

Fig. 4. The Routed Net Inverting Buffering (RNIB) Algorithm.

Fig. 5. (a) Four terminal net and optimum buffered routing using a non-Hanan grid edge. (b) Best buffered routing on the

Hanan grid for the same net.

Fig. 6. The Steiner Tree Buffering (STB) Algorithm.

Fig. 7. The Steiner Tree Inverting Buffering (STIB) algorithm.

Fig. 8. An example execution of the Cut& Connect heuristic, whereCU = 14,Cb = 0, andCw = 1. (a) The original routing

tree after applying RNB. (b) The modified routing tree after cutting the leftmost terminal and “filling” the first buffer. (c) The

optimal buffered routed tree with a single buffer.

Fig. 9. The Cut&Connect algorithm.

Fig. 10. The Clustering algorithm.

Fig. 11. The Steiner Tree Inverting Buffering with Swapping (STIB-S) algorithm.

Fig. 12. The Steiner Tree Inverting Buffering with Load Filling (STIB-LF) algorithm.

Fig. 13. Inverter insertion with the algorithm in Fig. 12. (a) Tree before inverter insertion. (b) Tree after inserting an inverter

driving the “�” sinks.

Table I. Number of buffers, wirelength (mm), and runtime (CPU sec.) for the Routed Net Buffering (RNB), Cut&Connect,

and Clustering heuristics for non-inverting buffer insertion.

Table II. Number of buffers, wirelength (mm), and runtime (CPU sec.) for Routed Net Inverting Buffering (RNIB), Steiner

Tree Inverting Buffering with Swapping (STIB-S), and Steiner Tree Inverting Buffering with Load Filling (STIB-LF) heuris-

tics on testcases with all sinks of the same polarity.

Table III. Number of buffers, wirelength (mm), and runtime (CPU sec.) for Routed Net Inverting Buffering (RNIB), Steiner

Tree Inverting Buffering with Swapping (STIB-S), and Steiner Tree Inverting Buffering with Load Filling (STIB-LF) heuris-

tics on testcases with random sink polarities. SplitMST variants correspond to independently buffering minimum spanning

trees for the positive and negative sinks.



Input: Routing treeT = (r;V;E) for net N with sourcer and sinksS, sink

input capacitancescs, load upper-boundCU

Output: Optimum buffering ofT with c(Db)�CU for eachb2 frg[B

1. Find a critical vertexp by a post-order traversal ofT

2. Find a heaviest child,u, of p

3. Insert a bufferb on the edge(u; p) such that

c(u;b) =minfCU �c(Tu);c(u;p)g

4. Recursively find an optimum bufferingB0 of T nTb

5. ReturnB= B0[fbg

Fig. 1. The Routed Net Buffering (RNB) algorithm.
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Input: Binary routing treeT = (r;V;E) for netN with sourcer and sinksS,

sink input capacitancescs and polaritiesσs, upper-boundCU

Output: Optimum bufferingB of T consistent with sink polarities such that
c(Db)�CU for everyb2 frg[B

1. T 0 = T

2. For eachs2 Sdo:

If σs =+ thenl+(s) = 0, elsel+(s) =CU

l�(s) =CU � l+(s)

Reducestem(s)
3. While there is a fork(u;v;x1;x2) in T 0, Collapse fork (u;v;x1;x2)

4. Insert buffers inT in top-down order:

Let v be the single remaining leafv in T 0, andµ2 f+;�g s.t. lµ(v) = 0

Insertnµ(v) buffers on the edge(r;v)
For each fork(r;v;x1;x2), in reverse order of collapsing, do:

Insertnσ(xi) buffers on edges(v;xi ), i = 1;2, whereσ = µ if nµ(v) is

odd andσ =�µ if nµ(v) is even

5. Return the setB of inserted buffers

ProcedureReducestem(v)
1. n+(v) = n�(v) = 0 // Initialize # of buffers onv’s stem

2. While l(u;v) >CU do:

For eachσ 2 f+;�g, nσ(v) = nσ(v)+1

l(u;v) = l(u;v) � (CU �Cb)

Swapl�(v) with l+(v) // Switch topmost buffer polarity

ProcedureCollapse fork (u;v;x1;x2)

// Check all feasible bufferings of the stems(v;x1) and(v;x2)

1. For each(i; j) 2 f0;1;2g�f0;1;2g andσ 2 f+;�g do:

lσ
i j = maxf0; l(v;x1)+ lσ(x1)� i � (CU �Cb)g

+ maxf0; l(v;x2)+ lσ(x2)� j � (CU �Cb)g

If lσ
i j �CU thenlσ

i j = lσ
i j +(i+ j)CU

Elselσ
i j = ∞ // i+ j buffers are not sufficient

// Choose the topmost buffer positions

2. For eachσ 2 f+;�g do:

lσ(v) = minflσ
i j ji; j = 0;1;2g

(iσ; jσ) = argminflσ
i j ji; j = 0;1;2g

// Find minimal label and normalize the opposite polarity label

3. lµ(v) =minfl+(v); l�(v)g

If l�µ(v)> lµ(v)+CU , then(i�µ; j�µ) = (iµ; jµ), l�µ(v) = lµ(v)+CU

// Increment # of buffers for both stems and restorev’s labels

4. For eachσ 2 f+;�g do:

nσ(x1) = nσ(x1)+ iσ, nσ(x2) = nσ(x1)+ jσ

lσ(v) = lσ(v)� (iσ + jσ)Cu

// Reduce minimal label ofv to 0, remove leavesx1 andx2, and reducev’s stem

5. l(u;v) = l(u;v)+ lµ(v), l�µ(v) = l�µ(v)� lµ(v), lµ(v) = 0

6. T 0 = T 0 nfx1;x2g

7. Reducestem(v)

Fig. 4. The Routed Net Inverting Buffering (RNIB) Algorithm.
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Input: Net N with sourcer and set of sinksS, sink input capacitancescs,

upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for

everyb2 frg[B

1. Find anα-approximate Steiner treeT for frg[S

2. TransformT into a binary tree in which all sinks are leaves by duplicating

internal nodes of degree> 3 and sinks of degree> 1 and adding zero-length
edges between duplicated nodes

3. Add buffers toT using the RNB algorithm (see Fig. 1)

Fig. 6. The Steiner Tree Buffering (STB) Algorithm.



Input: Net N with sourcer and set of sinksS, sink input capacitancescs and

polaritiesσs, upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N consistent with sink

polarities such thatc(Db)�CU for everyb2 frg[B

1. Find a buffered routing treeT 0 = (r;V 0;E0;B0) using the STB algorithm

2. For eachb2 B0[frg, in the order given by a postorder traversal ofT 0, do:

Replaceb with two invertersb+ andb� such that
- the parent ofb� is b+ andl(b� ;b+) = 0

- the parent ofb+ is the parentp of b in T 0 andl(b+ ;p) = l(b;p)

For eachσ 2 f+;�g add toT a Steiner tree rooted atbσ and spanning

all sinks with polarityσ in Db

T 0 = T 0 nDb

3. ReturnT

Fig. 7. The Steiner Tree Inverting Buffering (STIB) algorithm.
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tree after applying RNB. (b) The modified routing tree after cutting the leftmost terminal and “filling” the first buffer. (c) The

optimal buffered routed tree with a single buffer.



Input: Net N with sourcer and set of sinksS, sink input capacitancescs,

upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for

everyb2 frg[B

1. T = /0; B= /0
2. T 0 = Steiner tree forS[frg, rooted atr

3. Whilec(T 0)>CU do:
Find the position of the first bufferb inserted by the RNB algorithm inT 0

If c(T 0

b)<CU then

// Fill b’s capacitive load by joining a subtree toT 0

b

For each nodei which is neither ancestor nor descendant ofb, do:

ComputeT 0

p by joining T 0

i to T 0

b, wherep is eitherb or the point

closest toparent(b) on the shortest path betweeni andT 0

b,

whichever of the two is closer toparent(b)

If c(T 0

p)<CU then
Setb0(i) at distance(CU �c(T 0

p))=Cw from p towardsparent(b)

Setgain(i) = c(T 0

i )=Cw�distance(b;b0(i))

End if

End for

Find i� with maximum gain and joinT 0

i� to T 0

b

Move bufferb to positionb0(i�)

End if

B= B[fbg, T = T [T 0

b, T 0 = T 0 nT 0

b

End while

4. ReturnT [T 0, with buffer setB

Fig. 9. The Cut&Connect algorithm.



Input: Net N with sourcer and set of sinksS, sink input capacitancescs,

upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N such thatc(Db)�CU for

everyb2 frg[B

1. T = /0; B= /0
2. T 0 = Steiner tree forS[frg, rooted atr

3. Whilec(T 0)>CU do:

// Find a critical node with maximum subtree capacitance

Find v2 T 0 with maximumc(T 0

v) s.t. c(T 0

v)<CU andc(T 0

parent(v))>CU

// Fill the load of the subtree by connecting neighboring sinks

subtreeload= c(T 0

v); S0 = T 0

v \S; T = T [T 0

v

q = sink inSnS0 closest toS0; p= sink of S0 closest toq

While subtreeload+Cwl(p;q)+cq <CU do:
subtreeload= subtreeload+Cwl(p;q)+cq

S0 = S0[fqg; T = T+(p;q)

q = sink inSnS0 closest toS0; p= sink of S0 closest toq

End while

Place bufferb at distance(CU �subtreeload)=Cw from p, towardsq

B= B[fbg; S= (SnS0)[fbg

T 0 = Steiner tree forS[frg, rooted atr

End while

4. ReturnT [T 0, with buffer setB

Fig. 10. The Clustering algorithm.



Input: Net N with sourcer and set of sinksS, sink input capacitancescs and polaritiesσs, upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N consistent with sink polarities such thatc(Db)�CU for everyb2 frg[B

1. Find a buffered routing treeT 0 = (r;V 0;E0;B0) using the STB algorithm

2. For eachb2 B0[frg, in the order given by a postorder traversal ofT 0, do:

If b drives sinks or non-swappable inverters with both polarities then

For every swappable “�” inverter q� driven byb, reconnectq� as a child of its siblingq+

Replaceb by two siblings, which are swappable invertersb+ andb� with polarity “+”, resp. “�”
Deleteb’s stageD0

b from T 0, then add toT a Steiner tree rooted atb+ having as leaves all “�” sinks and non-swappable inverters inD0

b

and a Steiner tree rooted atb� having as leaves all “+” sinks/inverters inD0

b

Else, ifb drives no sink or non-swappable inverter with “�” polarity, then

For every swappable “�” inverter q� driven byb�, reconnectq� as a child of its siblingq+

Replaceb by a non-swappable inverterb� with “�” polarity, deleteb’s stage fromT 0 and add it toT
Else //b drives no sink or non-swappable inverter with “+” polarity

For every swappable “+” inverter q+ driven byb+, reconnectq+ as a child of its siblingq�

Replaceb by a non-swappable inverterb+ with “+” polarity, deleteb’s stage fromT 0 and add it toT

3. ReturnT

Fig. 11. The Steiner Tree Inverting Buffering with Swapping (STIB-S) algorithm.



Input: Net N with sourcer and set of sinksS, sink input capacitancescs and polaritiesσs, upper-boundCU

Output: Buffered routing treeT = (r;V;E;B) for N consistent with sink polarities such thatc(Db)�CU for everyb2 frg[B

1. Find anα-approximate Steiner treeT for frg[S

2. TransformT into a binary tree in which all sinks are leaves by duplicating internal nodes of degree> 3 and sinks of degree> 1 and adding

zero-length edges between duplicated nodes

3. For each nodev of T, in postorder, do:

Repeat forever
If S+(v)>CU �Cb andS�(v)>CU �Cb then insert an inverter with appropriate polarity in the highest position on the branch with maximum

capacitance amongBr+u1
, Br+u2

, Br�u1
, Br�u2

, whereu1 andu2 arev’s children

If S+(v)>CU then insert inverter with “�” polarity in the highest feasible position on the maximum capacitance branch amongBr+u1
, Br+u2

If S�(v)>CU then insert inverter with “+” polarity in the highest feasible position on the maximum capacitance branch amongBr�u1
, Br�u2

Else exit repeat loop
5. ReturnT

Fig. 12. The Steiner Tree Inverting Buffering with Load Filling (STIB-LF) algorithm.
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Fig. 13. Inverter insertion with the algorithm in Fig. 12. (a) Tree before inverter insertion. (b) Tree after inserting an inverter

driving the “�” sinks.



Benchmark MST+RNB MST+Cut&Conn. MST+Cluster Lower
#term. CU #b WL time #b WL time #b WL time bound

500 17 25 0.81 16 26 0.83 16 25 0.94 15
1000 8 25 0.81 8 26 0.82 7 26 0.83 7

330 2000 4 25 0.81 4 28 0.83 3 26 0.81 2
4000 2 25 0.81 1 26 0.82 1 25 0.78 0
8000 0 25 0.81 0 25 0.82 0 25 0.78 0
500 34 68 0.97 34 69 0.97 33 69 2.05 32

1000 17 68 0.97 16 69 0.96 16 70 1.32 15
830 2000 8 68 0.97 8 71 0.96 8 72 1.06 6

4000 3 68 0.97 3 68 0.96 3 68 0.95 2
8000 1 68 0.97 1 68 0.96 1 68 0.88 0
500 56 45 1.02 54 50 1.33 51 46 3.27 49

1000 28 45 1.02 26 53 1.43 24 46 1.93 23
1900 2000 13 45 1.01 12 51 1.33 12 47 1.36 11

4000 6 45 1.02 6 47 1.18 5 46 1.06 5
8000 2 45 1.01 2 45 1.05 2 45 0.94 1
500 74 58 1.07 70 65 1.61 64 59 4.93 62

1000 33 58 1.06 32 62 1.43 31 59 2.65 29
2400 2000 17 58 1.06 17 64 1.87 15 59 1.73 14

4000 8 58 1.07 8 60 1.45 7 58 1.29 7
8000 4 58 1.07 3 60 1.35 3 59 1.07 2
500 147 89 1.15 144 98 1.73 134 92 10.39 128

1000 70 89 1.14 67 99 1.99 63 91 5.40 61
2600 2000 33 89 1.14 32 99 1.72 31 91 3.02 30

4000 17 89 1.14 16 96 1.92 15 90 1.96 14
8000 8 89 1.15 8 92 1.61 7 91 1.39 6
500 244 266 2.63 236 285 9.27 222 272 106.83 184

1000 116 266 2.63 113 283 11.54 106 272 46.90 88
12000 2000 56 266 2.63 55 279 12.42 52 271 21.25 42

4000 28 266 2.64 28 290 13.32 25 269 10.59 20
8000 13 266 2.63 13 274 8.10 12 268 5.82 9
500 1418 1396 4.39 1395 1551 21.62 1305 1476 1172.75 1197

1000 674 1396 4.39 656 1524 30.36 613 1444 540.28 575
22000 2000 330 1396 4.39 319 1506 49.58 298 1437 257.99 282

4000 164 1396 4.39 159 1471 95.40 146 1426 121.24 139
8000 80 1396 4.39 78 1448 106.98 72 1420 60.33 68
500 806 990 6.59 778 1068 39.13 729 1016 890.01 591

1000 388 990 6.58 374 1071 58.55 350 1011 424.81 283
34000 2000 191 990 6.58 153 1058 89.04 171 1009 208.79 138

4000 95 990 6.57 92 1065 147.62 84 1002 103.59 68
8000 45 990 6.57 44 1036 113.80 42 1000 49.25 33

Table I. Number of buffers, wirelength (mm), and runtime (CPU sec.) for the Routed Net Buffering (RNB), Cut&Connect,

and Clustering heuristics for non-inverting buffer insertion.



Benchmark MST+RNIB MST+STIB-S MST+STIB-LF
#term. CU #b WL time #b WL time #b WL time

500 34 25 0.99 26 31 0.96 21 36 0.97
1000 16 25 0.99 11 30 0.96 9 32 0.97

330 2000 8 25 0.98 6 27 0.96 5 30 0.97
4000 4 25 0.99 3 27 0.96 3 28 0.97
8000 0 25 0.99 0 25 0.96 0 25 0.97
500 64 68 1.09 50 92 1.04 50 106 1.06

1000 34 68 1.08 26 93 1.04 22 100 1.05
830 2000 16 68 1.08 12 89 1.04 11 103 1.05

4000 6 68 1.08 5 90 1.04 4 90 1.05
8000 2 68 1.08 2 76 1.05 2 76 1.05
500 112 45 1.10 80 51 1.07 61 55 1.06

1000 56 45 1.09 40 50 1.07 30 53 1.05
1900 2000 26 45 1.09 19 49 1.07 14 51 1.05

4000 12 45 1.10 9 47 1.06 7 50 1.05
8000 4 45 1.09 3 48 1.06 3 48 1.06
500 148 58 1.14 109 66 1.09 79 71 1.12

1000 66 58 1.15 47 65 1.09 35 68 1.11
2400 2000 34 58 1.15 25 62 1.09 18 65 1.12

4000 16 58 1.14 11 61 1.09 9 63 1.11
8000 8 58 1.15 6 61 1.09 5 62 1.11
500 292 89 1.17 215 107 1.12 165 118 1.11

1000 140 89 1.17 102 102 1.12 76 111 1.12
2600 2000 66 89 1.16 49 101 1.12 36 108 1.11

4000 34 89 1.17 25 98 1.12 18 104 1.11
8000 16 89 1.17 12 97 1.13 9 99 1.12
500 484 266 2.02 354 305 1.82 276 328 1.83

1000 232 266 2.01 168 298 1.82 128 317 1.82
12000 2000 112 266 2.02 82 288 1.81 62 303 1.83

4000 56 266 2.02 41 286 1.81 29 299 1.83
8000 26 266 2.02 19 282 1.81 14 292 1.82
500 2832 1396 3.23 2069 1706 2.69 1664 1912 2.72

1000 1344 1396 3.14 974 1646 2.67 756 1807 2.72
22000 2000 660 1396 3.09 476 1583 2.68 360 1709 2.71

4000 328 1396 3.07 236 1550 2.68 175 1646 2.71
8000 160 1396 3.07 114 1509 2.68 86 1585 2.71
500 1606 990 4.31 1173 1133 3.68 899 1233 3.72

1000 774 990 4.26 563 1109 3.67 427 1190 3.72
34000 2000 382 990 4.22 274 1087 3.67 206 1157 3.71

4000 190 990 4.23 138 1067 3.66 103 1130 3.71
8000 90 990 4.21 67 1068 3.67 48 1104 3.71

Table II. Number of buffers, wirelength (mm), and runtime (CPU sec.) for Routed Net Inverting Buffering (RNIB), Steiner

Tree Inverting Buffering with Swapping (STIB-S), and Steiner Tree Inverting Buffering with Load Filling (STIB-LF) heuris-

tics on testcases with all sinks of the same polarity.



Benchmark MST+RNIB SplitMST+RNIB MST+STIB-S SplitMST+STIB-S MST+STIB-LF SplitMST+STIB-LF
#term. CU #b WL time #b WL time #b WL time #b WL time #b WL time #b WL time

500 177 25 0.99 45 42 1.94 34 43 0.98 34 55 1.93 25 46 0.97 31 60 1.91
1000 177 25 0.99 21 42 1.94 17 45 0.98 17 50 1.93 12 45 0.97 15 53 1.90

330 2000 177 25 0.99 9 42 1.95 9 46 0.98 7 46 1.93 5 46 0.97 7 49 1.90
4000 177 25 0.99 5 42 1.94 5 46 0.98 5 45 1.93 3 46 0.97 5 45 1.90
8000 177 25 0.99 1 42 1.94 1 46 0.98 1 42 1.94 1 46 0.97 1 42 1.90
500 420 68 1.07 99 117 2.00 67 115 1.05 79 161 1.96 56 120 1.06 81 184 1.99

1000 420 68 1.08 49 117 2.00 35 121 1.05 39 161 1.96 27 123 1.05 38 177 1.99
830 2000 420 68 1.07 25 117 1.99 17 122 1.05 19 155 1.96 14 123 1.05 19 165 1.99

4000 420 68 1.08 13 117 2.00 7 122 1.05 10 146 1.96 7 123 1.05 10 156 1.99
8000 420 68 1.07 5 117 1.99 3 123 1.05 5 133 1.97 3 123 1.06 5 133 2.01
500 984 45 1.10 131 67 2.06 113 76 1.06 95 75 2.00 70 76 1.08 75 82 2.00

1000 984 45 1.10 63 67 2.06 57 76 1.06 46 75 2.00 34 76 1.07 35 78 2.00
1900 2000 984 45 1.10 31 67 2.06 27 76 1.05 23 72 1.99 17 76 1.07 18 75 2.00

4000 984 45 1.10 13 67 2.06 13 76 1.05 11 71 1.99 9 76 1.08 9 71 2.00
8000 984 45 1.10 5 67 2.06 5 76 1.05 5 67 1.99 3 76 1.08 5 67 2.00
500 1245 58 1.15 163 83 2.09 149 96 1.09 120 96 2.06 93 97 1.09 91 105 2.04

1000 1245 58 1.15 79 83 2.09 67 97 1.09 59 92 2.06 41 97 1.08 44 99 2.03
2400 2000 1245 58 1.15 37 83 2.09 35 97 1.08 28 91 2.06 20 97 1.09 21 95 2.03

4000 1245 58 1.15 17 83 2.09 17 97 1.09 13 89 2.07 11 97 1.08 11 92 2.03
8000 1245 58 1.15 9 83 2.09 9 97 1.09 7 85 2.06 5 97 1.09 7 85 2.03
500 1359 89 1.19 323 130 2.12 295 146 1.12 237 154 2.07 179 150 1.12 183 173 2.07

1000 1355 89 1.19 153 130 2.11 141 149 1.11 111 149 2.07 83 150 1.11 85 163 2.06
2600 2000 1355 89 1.19 75 130 2.11 67 150 1.11 56 147 2.07 40 150 1.12 41 159 2.06

4000 1355 89 1.19 37 130 2.10 35 150 1.12 29 144 2.06 21 150 1.11 20 150 2.06
8000 1355 89 1.19 17 130 2.12 17 150 1.11 13 135 2.07 11 150 1.12 11 141 2.06
500 6000 266 2.24 583 381 2.95 488 445 1.84 425 437 2.74 335 449 1.84 336 476 2.76

1000 6000 266 2.24 285 381 2.93 233 448 1.83 209 432 2.73 156 449 1.84 158 459 2.75
12000 2000 6000 266 2.23 139 381 2.93 113 448 1.84 100 416 2.73 76 449 1.84 76 440 2.74

4000 6000 266 2.25 65 381 2.93 57 449 1.84 49 409 2.74 36 449 1.84 38 431 2.75
8000 6000 266 2.24 31 381 2.94 27 449 1.84 22 406 2.74 19 449 1.84 18 420 2.75
500 11366 1396 3.96 3350 2008 4.11 2815 2289 2.71 2456 2461 3.61 1849 2350 2.73 2007 2764 3.63

1000 11284 1396 3.94 1596 2008 4.03 1349 2337 2.71 1160 2369 3.61 875 2358 2.72 928 2605 3.63
22000 2000 11284 1396 3.95 781 2008 3.98 661 2353 2.71 565 2297 3.60 429 2360 2.73 442 2482 3.61

4000 11284 1396 3.96 383 2008 3.98 329 2358 2.71 280 2235 3.59 211 2361 2.73 211 2360 3.62
8000 11284 1396 3.96 189 2008 3.99 161 2360 2.71 138 2160 3.59 106 2361 2.73 104 2281 3.61
500 17252 990 5.91 1983 1434 5.09 1613 1657 3.68 1453 1659 4.47 1110 1670 3.72 1163 1831 4.52

1000 17252 990 5.91 939 1434 5.03 777 1665 3.68 687 1635 4.47 533 1671 3.72 541 1776 4.52
34000 2000 17252 990 5.92 471 1434 5.06 383 1670 3.67 339 1594 4.47 256 1672 3.72 261 1718 4.51

4000 17252 990 5.96 227 1434 5.04 191 1672 3.67 163 1577 4.46 125 1672 3.72 127 1684 4.50
8000 17252 990 5.94 111 1434 5.02 91 1672 3.68 81 1548 4.46 63 1672 3.72 61 1619 4.51

Table III. Number of buffers, wirelength (mm), and runtime (CPU sec.) for Routed Net Inverting Buffering (RNIB), Steiner

Tree Inverting Buffering with Swapping (STIB-S), and Steiner Tree Inverting Buffering with Load Filling (STIB-LF) heuris-

tics on testcases with random sink polarities. SplitMST variants correspond to independently buffering minimum spanning

trees for the positive and negative sinks.


