
On the Skew-Bounded Minimum-Buffer Routing Tree Problem

Christoph Albrecht, Andrew B. Kahng, Bao Liu, Ion I. Măndoiu, and Alexander Z. Zelikovsky

Abstract

Bounding the load capacitance at gate outputs is a standard element in today’s electrical correctness methodologies for high-speed digital VLSI design.

Bounds on load caps improve coupling noise immunity, reduce degradation of signal transition edges, and reduce delay uncertainty due to coupling noise

[6]. For clock and test distribution, an additional design requirement is bounding the buffer skew, i.e., the difference between the maximum and the minimum

number of buffers over all source-to-sink paths in the routing tree, since buffer skew is one of the main factors affecting delay skew [10]. In this paper we

consider algorithms for buffering a given tree with the minimum number of buffers under given load cap and buffer skew constraints. We show that the

greedy algorithm proposed by Tellez and Sarrafzadeh [10] is suboptimal for non-zero buffer skew bounds and give examples showing that no bottom-up

greedy algorithm can achieve optimality. The main contribution of the paper is an optimal dynamic programming algorithm for the problem. Experiments

on test cases extracted from recent industrial designs show that the dynamic programming algorithm has practical running time and saves up to 37.5% of the

buffers inserted by the algorithm in [10].

I. INTRODUCTION

For high-speed digital VLSI design, bounding the load capacitance at gate outputs is a standard element in today’s electrical

correctness methodologies. Bounds on load caps improve coupling noise immunity, reduce degradation of signal transition

edges, and reduce delay uncertainty due to coupling noise [6].1 According to [9], commercial EDA methodologies and tools

for signal integrity rely heavily on upper-bounding the capacitive loads on driver and buffer outputs (to prevent very long slew

times on signal transitions). Essentially, the load capacitance bounds serve as proxies for bounds on input rise/fall times at

buffers and sinks (Tellez and Sarrafzadeh [10] formally prove this equivalence using a simple linear model). We assume that

such capacitive load bounds are inherent to any buffered routing tree design task. It is natural to propose a minimum-buffer

formulation, so as to minimize changes made to the routing tree in meeting the load bounds.

Buffering to control slew times is also critical to early timing analysis. With lookup-table based modeling of gate delays

and output transition times, very long input slews tend to be propagated inaccurately, resulting in extremely slow transitions.

Static timing analyses that are based on the associated delay calculations will be utterly compromised, and useless for driving

performance optimizations. Thus, early timing analysis must start with a buffering solution that bounds the capacitive loads

of all buffers and of the source driver. Again, a minimum-buffer objective is appropriate.

Last, we observe that buffering of some large routing trees (e.g., for clock and test distribution) is further constrained with

respect to the buffer skew, i.e., the difference between the maximum and the minimum number of buffers over all source-to-
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sink paths in the routing tree [10]. This is because buffer skew reflects the actual buffered clock tree skew after routing. To

accurately estimate tradeoffs between alternative clock tree topologies in the early stages of clock distribution design, the key

problem is to bound the number of buffers needed by a given tree to satisfy given constraints on both slew rate (input rise/fall

times) and buffer skew. Good bounds (or, good constructions that minimize the number of buffers while controlling the buffer

skew) will enable accurate estimation and tradeoff of such system resources as power and area.

From the above context and assumptions, we obtain the following problem formulation:

Bounded Skew Buffering Problem (BSBP): Given a net N, per-unit length wire capacitance, sink and buffer input capaci-

tances, capacitive load bounds for buffers and for the tree source, and an upper bound ∆ on buffer skew, find a buffering of N

that satisfies all bounds while using the minimum number of buffers.

The BSBP was first formulated by Tellez and Sarrafzadeh [10], who suggested a greedy algorithm with runtime O � n � k � ,
where n is the number of sinks in the net N and k is the number of inserted buffers. In this paper, we make the following

contributions:

� We give examples showing the sub-optimality of the Tellez-Sarrafzadeh algorithm for BSBP with non-zero buffer skew

bounds, and further prove that no bottom-up greedy algorithm can achieve optimality (Section III).

� We give a non-trivial dynamic programming algorithm which guarantees optimum solutions for BSBP in O � n � ∆ � 1 � 3NB2 �
time, where n, ∆, and NB are the number of sinks, the given skew bound, and an upper-bound on the optimum number of

inserted buffers, respectively (Section IV).

� We present experimental results on test cases extracted from recent industrial designs, showing that the dynamic program-

ming algorithm has practical running time and inserts up to 37.5% fewer buffers compared to the algorithm in [10] (Section

V).

II. NOTATIONS AND PROBLEM FORMULATION

We start with a few definitions and notations. Let N be a net consisting of a source r and a set of sinks S.

� A routing tree for the net N is a binary2 tree T ��� r� V � E � rooted at r such that each sink of S is a leaf in T .

� A buffered routing tree for the net N is a tree T ���	� r � V � E � B � such that T �	� r � V � E � is a routing tree for N and B is a set of

buffers located on the edges3 of T .

� For any b 
 B �
� r � , the subtree driven by b, Db, also referred to as the stage of b [10], is the maximal subtree of T which

is rooted at b and has no internal buffers. A buffered routing tree T ��� r� V � E � B � has �B ��� 1 stages including a source stage

driven by the source.

Throughout the paper we will use the following notations:

n � number of sinks, i.e., n ��� S �
Cw � capacitance of a wire of unit length, which is assumed to be the same for all wires

Cb � buffer input capacitance, assumed to be the same for all buffers4

2In this paper we restrict ourselves to binary routing trees. Every routing tree can be made binary by duplicating nodes and inserting zero-length edges.
3We assume that buffers have a single input and a single output and thus are inserted only on the edges of T .
4We assume that a single type of buffer is used. Using a single buffer type is a widely accepted design strategy since it reduces process variation sensitivity

and facilitates technology migration.
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CU � given upper-bound on the capacitive load of each buffer and of the source driver

cv � input capacitance of sink or buffer v

le � length of wire segment e

ce � capacitance of wire segment e, i.e., ce � Cwle

Tv � subtree of T rooted at v

c � Tv � � lumped capacitance of Tv, i.e., c � Tv � � ∑e
�

Tv ce � ∑v
�

leaves � Tv � cv

l � Tv � � maximum number of buffers on a path from v to a sink s 
 Tv (called longest path in the following)

s � Tv � � minimum number of buffers on a path from v to a sink s 
 Tv (called shortest path in the following)

δ � Tv � � l � Tv ��� s � Tv � (buffer skew of Tv)

Load Constraints

As noted in [10], bounded slew rate can be ensured by upper-bounding the lumped capacitive load of each buffer and of the

source driver. The lumped capacitive load of b 
 B �
� r � is given by

c � Db � � ∑
e
�

Db

ce � ∑
v
�

leaves � Db �
cv (1)

Thus, to ensure bounded slew rate we require that

c � Db ��� CU for every b 
 B �
� r � (2)

Buffer Skew Constraints

Tellez and Sarrafzadeh [10] also note that the buffer skew is a significant factor affecting delay skew. Other sources of delay

skew, such as propagation delays, have been well studied (heuristics and approximation algorithms for constructing unbuffered

trees with zero- or bounded-skew can be found, e.g., in [3], [12]). To guarantee bounded delay skew after buffering we need

to ensure that the difference in the number of buffers of the longest and shortest path from the root r to the sinks is at most a

given buffer skew bound ∆, i.e.,

δ � T � � l � T ��� s � T ��� ∆ (3)

A buffering satisfying both the load constraint (2) and the buffer skew constraint (3) will be called feasible. In this paper

we consider the problem of finding a feasible buffering with minimum number of buffers, formally defined as follows:

Bounded Skew Buffering Problem (BSBP)

Given: (1) net N with source r and set of sinks S, (2) binary routing tree T � � r� V � E � for N, (3) sink input capacitances

cs, s 
 S, (4) buffer input capacitance Cb, (5) unit-length wire capacitance Cw, (6) load upper-bound CU , and (7) buffer-skew

bound ∆,

Find: buffering T ����� r� V � E � B � of T such that:

(a) c � Db �	� CU for every b 
 B �
� r � ,
(b) δ � T � ��� ∆, and

(c) the total number of inserted buffers, �B � , is minimum subject to (a) and (b).

For every v 
 V the branch of v, denoted br � v � , is Tv � � v � parent � v � � (where parent � r � � r). If X is a buffering of a subtree

containing node v, we denote by Xv the buffering X restricted to the branch br � v � .
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For each buffering X of a branch br � v � , we denote by nb � X � , l � X � , s � X � , and cap � X � the total number of buffers, the number

of buffers on the longest path, the number of buffers on the shortest path, and the residual capacitance (i.e., the capacitance

of the stage driven by parent � v � ), respectively. Let X and Y be two bufferings of the same branch B. We say that Y dominates

X if nb � Y � � nb � X � , l � Y � � l � X � , s � Y � � s � X � , and cap � Y � � cap � X � . Note that a buffering X of B can be replaced by a

buffering Y that dominates it in any context (i.e., in any buffering of the entire routing tree) without increasing the number of

buffers or creating load/skew violations.

III. WHY GREEDY DOES NOT WORK

The BSBP has been previously studied by Tellez and Sarrafzadeh [10]. In [10], a greedy algorithm is first presented for

minimum buffering without buffer skew constraints and then the algorithm is modified to handle such constraints. Below we

describe the two algorithms for the case of binary trees; the description in [10] is given for arbitrary trees.

When there are no constraints on buffer skew, the algorithm in [10] starts with an empty buffering X � /0 and then performs

the following two steps for each node u, in bottom-up order:

1. packNode � u � : while cap � Xv � � cap � Xw ��� CU (where v and w are the two children of u), add a buffer at the topmost

position of the child branch with the largest residual capacitance (the greedy choice).

2. packEdge � u � : while cap � Xu ��� CU , add a buffer on the edge � u � parent � u � � , at the highest possible position still meeting

the load cap bound CU .

With buffer skew constraints, packEdge remains the same while the modified packNode-BS(u) consists of the following

four steps:

1. Balance Tu as follows. If l � Xv ��� l � Xw � then swap v and w. If l � Xv � � s � Xw ��� ∆ then insert l � Xv � � s � Xw � � ∆ buffers at

the topmost position of br � w � . Exit if cap � Xu ��� CU .

2. Perform packNode � u � excluding the child branches with maximum longest path, i.e., if l � Xw ��� l � Xv � , then add a buffer

at the topmost position in br � w � . Exit if cap � Xu ��� CU .

3. Insert buffers at the topmost position of all child branches with shortest path equal to l � u ��� ∆ (in order to maintain buffer

skew at most ∆ when we insert buffers on the longest paths in the next step). Exit if cap � Xu ��� CU .

4. Perform packNode � u � considering only child branches with maximum longest path, i.e., longest path equal to s � u � � ∆ � 1.

The modified greedy algorithm finds the optimum solution of any given tree when the skew bound ∆ is zero. However,

contrary to the claim made in [10], the modified greedy algorithm may give suboptimal solutions for ∆ � 1. There are several

reasons for its sub-optimality. One reason is that child branches with maximum longest path are considered for buffering after

considering the other branches, regardless of their residual capacitance. This may cause the algorithm to return a suboptimal

solution, e.g., when the skew bound ∆ is so large that the buffer skew constraint never becomes tight (in this case the optimum

is found by always choosing the branch with the largest residual capacitance in packNode).

Fig. 1 shows a small instance for which the Tellez-Sarrafzadeh algorithm fails to find the optimal buffering. In this

instance we have ∆ � 1, Cw � Cb � 0, and sink input capacitances are given by cu � CU and cx � cv � 3
4CU . Fig. 1(a) shows

the suboptimal solution computed by the greedy algorithm while Fig. 1(b) shows one of the optimal solutions. This instance

points to a more basic reason for the sub-optimality of the modified greedy algorithm: the optimum buffering of a given tree

may be suboptimal when restricted to subtrees.
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A natural question prompted by the example in Fig. 1 is whether or not there exists a bottom-up algorithm that computes

a fixed number of solutions for each branch and still guarantees global optimality. Below, we give two series of examples

showing that the answer to this question is negative.

Claim 1: To guarantee optimality, every bottom-up buffering algorithm may need to compute branch bufferings with

m � m � 1 ������� � m � k buffers respectively, where m is the minimum number of buffers for the branch, and k is arbitrarily

large.

Claim 1 follows from the example in Fig. 2, in which ∆ � 1 and Cw � Cb � 0. Each pair of sibling leaves contains a “u”

leaf and a “v” leaf, with cu � CU and CU
� � 2d � 2 � 1 � � cv � CU

�
2d � 2, where d is the depth of Ta.

The minimum number of buffers for each of the two branches into a is 2d � 2, since buffers are only required by the “u”

leaves. If we start with minimum number of buffers for both branches into a, we will have to insert a buffer right below a on

one of them in order to meet the load constraints. This in turn triggers the insertion of a very large number of buffers upstream

due to the skew constraint. The optimum overall solution is to insert buffers right above 2d � 2 of the “v” leaves. This leads to

buffering one of the branches into a with at least 3
2 2d � 2 buffers.

Claim 2: To guarantee optimality, every bottom-up buffering algorithm may need to compute branch bufferings with

longest path equal to l � l � 1 ��������� l � ∆ � 1, respectively, where l is the minimum longest path.

Claim 2 follows from the example in Fig. 3, in which there are n � ∆ “u” leaves, each with input capacitance cu � CU � 2ε,

and one additional “v” leaf, with input capacitance cv � 0. We further assume that Cb � 0 and that the capacitance of every

wire segment in the figure is equal to ε. The n bufferings shown in Fig. 3 have residual capacitance equal to 0 � ε ������� � � n � 1 � ε,

and longest path length equal to n � n � 1 ��������� 1, respectively. None of these solutions can be dropped from consideration by

an optimum algorithm since each of the n different tradeoffs between longest path length and residual capacitance may be

needed upstream.

Indeed, let Bk be the kth buffering (counting from the top) in Fig. 3. Bk has residual capacitance equal to � k � 1 � ε and

length of longest path equal to n � k � 1. Suppose the upstream topology consists of an edge with total capacitance k � CU � ε �
connecting a to the source s, and an edge with total capacitance ε connecting to s a sink b with input capacitance cb � 0. If Bk

is used to buffer the subtree rooted at a, then a feasible buffering is obtained by inserting k � 1 buffers between s and a. On

the other hand:

� If the subtree rooted at a is buffered using Bi, i � k, we will need one additional buffer in order to compensate for the larger

residual capacitance of Bi.

� If the subtree rooted at a is buffered using Bi, i � k, we still need all k � 1 buffers between s and a to satisfy load cap

constraints. This gives a longest path of � n � i � 1 � � � k � 1 � � n, and thus k � i more buffers should be inserted on the edge

� s � b � in order to satisfy the buffer skew constraint.

Thus, Bk is the only buffering from the list in Fig. 3 which can be extended to an optimum buffering under the above upstream

topology.

IV. DYNAMIC PROGRAMMING ALGORITHM

In this section we use dynamic programming to solve the bounded skew buffering problem. The dynamic programming

technique has been applied in the past to timing-driven buffer insertion (see e.g., [1], [7], [11]). Its application to BSBP
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presents non-trivial challenges due to the specific buffer-skew constraint. In this section we first give an exponential time

dynamic programming, then refine it to achieve polynomial time.

A. Exponential time dynamic programming

The basic observation enabling dynamic programming is that it suffices to consider normalized bufferings, i.e., bufferings

in which no buffer can be moved higher (closer to the source) on the tree edge to which it belongs. Let NB be the number of

buffers inserted in the input tree by the algorithm of Tellez and Sarrafzadeh [10] with skew-bound set to zero. Clearly, NB is

an upper-bound on the number of buffers in any optimal buffering with buffer skew ∆ � 0. Thus, we can always guarantee

an optimum buffering if we choose the best among the normalized bufferings with up to NB buffers. The exponential time

dynamic programming algorithm, referred to as DP1, computes for each branch br � u � , in bottom-up order, the set L � u � of all

normalized bufferings with up to NB buffers.

For a sink u, L � u � consists of the normalized buffering Z of br � u � � � u � parent � u � � with minimum feasible number of

buffers k, plus all bufferings obtained from Z by adding just below parent � u � 1 ��� � � � NB � k buffers, respectively. For a node

u with children v and w, each buffering of L � u � is the union of a buffering X 
 L � v � , a buffering Y 
 L � w � , and a buffering

of the edge � u � parent � u � � . Each pair of bufferings � X � Y � is combined with the buffering of � u � parent � u � � with minimum

feasible number of buffers k, as well as all bufferings having between 1 and NB � k � nb � X � � nb � Y � extra buffers inserted

just below parent � u � . A pair of bufferings � X � Y � is dropped from consideration if

(a) cap � X � � cap � Y � � CU (load cap violation),

(b) nb � X � � nb � Y � � k � NB (too many buffers), or

(c) max � l � X ��� s � Y � � l � Y � � s � X � � � ∆ (skew bound violation).

It is easy to prove by induction that L � u � contains all normalized bufferings of br � u � with up to NB buffers. Thus, by returning

a buffering with minimum number of buffers from L � r � , DP1 guarantees optimality. The main drawback of DP1 is that, in

the worst case, the size of L � u � ’s, and hence the runtime, grows exponentially.5

B. Polynomial time dynamic programming

In this section we describe a polynomial time refinement of DP1, referred to as DP2. In contrast to DP1, DP2 (see Fig. 5)

does not add to L � u � bufferings of br � u � with more than one buffer right below parent � u � . More precisely, for each branch

br � u � , DP2 adds to L � u � only non-redundant bufferings, where a buffering Y of br � u � is said to be redundant if there exists a

normalized buffering X such that cap � X � � cap � Y � , nb � X � � nb � Y ��� k, l � X � � l � Y ��� k and s � X � � s � Y � � k, where k
�

1.

For a sink u, L � u � consists of all non-redundant bufferings of br � u � � � u � parent � u � � . There are at most two such non-

redundant bufferings: the buffering Z of � u � parent � u � � with minimum feasible number of buffers, and, if cap � Z � � Cb,

the buffering Z � obtained from Z by adding one buffer just below parent � u � . Note that the buffering Z � is redundant when

cap � Z �	� Cb since then cap � Z �	� cap � Z � � � Cb, nb � Z � � nb � Z � ��� 1, l � Z � � l � Z � ��� 1, and s � Z � � s � Z � ��� 1.

For a node u with children v and w, let X and Y be bufferings in L � v � , respectively L � w � . Since redundant bufferings are

not explicitly kept as in DP1, DP2 may insert extra buffers at the top of either br � u � or br � w � when combining X and Y . Just

as DP1, DP2 drops the pair � X � Y � from consideration when cap � X � � cap � Y ��� CU or when combining the pair � X � Y � with

5An upper-bound on the size of L
�
u � is ∑NB

n � 0 kn � O
�
kNB � , where k denotes the number of edges in br

�
u � .
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the minimum feasible buffering of the edge � u � parent � u � � results in more than NB buffers. If the skew bound for X � Y is

violated, instead of dropping the pair � X � Y � DP2 fixes the skew by inserting enough buffers at the top of the branch with

fewest buffers on the shortest path. For example, when l � X � � s � Y ��� ∆ (see Fig. 4(a)) DP2 inserts l � X � � s � Y � � ∆ buffers

at the top of br � w � (see Fig. 4(b)). Furthermore, DP2 generates more bufferings by inserting extra buffers at the top of the

branch with fewest buffers on the shortest path while neither the interval � s � X � � l � X ��� nor the interval � s � Y � � l � Y ��� is fully inside

the other.6 For example, for a pair � X � Y � as in Fig. 4(b), extra buffers are inserted one by one at the top of br � w � until either

shortest or longest paths on br � v � and br � w � become equal (see Fig. 4(c)). Each of these pairs of augumented bufferings of

br � v � and br � w � is completed to (at most) two non-redundant bufferings of br � u � by inserting on the edge � u � parent � u � � the

minimum feasible number of buffers, and (possibly) one extra buffer just below parent � u � . Finally, DP2 refines the set L � u �
by removing all dominated (Step 3(b)) and redundant bufferings (Step 3(c)).7

Correctness of DP2 follows from the following:

Theorem 1: For each buffering Z of br � u � , there exists buffering Z � 
 L � u � and k
�

0 such that Z is dominated by Z � with

k buffers added at the top.

Proof: The proof is by induction on the depth of u. The claim is trivially true when u is a sink, i.e., a leaf of T . Assume

that the lemma holds for the two children v and w of u. Let X and Y be the restrictions of Z to br � v � and br � w � . By induction,

there exist X � 
 L � v � , Y � 
 L � w � , and i � j � 0, such that X and Y are dominated by X � and Y � with i (respectively j) buffers

added at the top of the respective branches. Additionally, we can assume that i and j are the minimum numbers of redundant

buffers with the above property.

Let Z � be the buffering of br � u � obtained from Z by replacing X and Y by X � (respectively Y � ) with i (respectively j) buffers

added at the top of br � v � (resp. br � w � ). Clearly, Z � dominates Z. To complete the proof we need to show that Z � is added by

DP2 to L � u � . It is easy to see that this is true when i � j � 0. If both i and j are positive, then we can replace Z � with the

buffering obtained by deleting min � i � j � redundant buffers from the top of each of the branches br � v � and br � w � and inserting

min � i � j � redundant buffer at the top of br � u � (see Fig. 6). W.l.o.g., in the following we assume that i � 0 and j � 0.

If s � X � � � s � Y � � � j, then Z � can be replaced by the buffering Z � � obtained by removing k � min � j � s � Y � � � j � s � X � � �
redundant buffers from the top of br � w � , which dominates Z. Indeed, nb � Z � � � � nb � Z � � k, l � Z � � � � l � Z � , and cap � Z � � � �
cap � Z � (because the removed buffers are redundant). Finally, s � Z � � � � s � Z � since s � X � � � s � Y � � � j (see Fig. 7). If k � j,

then Z � � is added by DP2 to L � u � when combining X � with Y � and the proof is complete. Otherwise, we may assume that the

updated number j of redundant buffers satisfies

s � X � � � s � Y � � � j (4)

Similarly, if l � X � ��� l � Y � � � j, then Z � can be replaced by the buffering Z � � obtained by moving k � min � j � l � Y � � � j � l � X � � �
redundant buffers from the top of br � w � to the top of br � u � . Z � � dominates Z because nb � Z � � � � nb � Z � , l � Z � � � � l � Z � , cap � Z � � � �
Cb � cap � Z � , and s � Z � � � � s � Z � by (4) (see Fig. 8). Again, if k � j then Z � � is added by DP2 to L � u � when combining X � with

6The bufferings created in this way may be useful since they have smaller skew than X � Y . On the other hand, the bufferings obtained by continuing to

insert buffers after one of the intervals � s �
X ��� l �

X �	� and � s �
Y ��� l �

Y �
� encloses the other are dominated by bufferings with these buffers inserted at the top of
�
u � parent

�
u � � .

7This refinement is required since dominated or redundant solutions may be added to L
�
u � by combining different pairs

�
X � Y � .
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Y � , and the proof is complete. Otherwise, we may assume that

l � X � � � l � Y � � � j (5)

We now show that inequalities (4) and (5) imply that Z � is generated by Step 3(a) of DP2 when combining X � 
 L � v � with

Y � 
 L � w � . First, note that j
�

t � max � 0 � l � X ��� s � Y ��� ∆ � since Z � is feasible and thus l � X � ��� s � Y � ��� j � ∆. Finally, Step

3a(*) of DP2 inserts j buffers at the top of br � w � , since, by (4) and (5), the intervals � s � X � � � l � X � ��� and � s � Y � � � j � l � Y � � � j � are

not strictly containing one another.

Finally, the theorem follows from the fact that only dominated or redundant bufferings are deleted in Steps 3(b) and 3(c) of

DP2. Indeed, if Z � is deleted, then there exists a buffering W 
 L � u � and k
�

2 such that nb � Z � � � nb �W � � k, l � Z � � � l �W � � k,

and s � Z � � � s � W � � k. Since nb � Z � � � 2 it follows that cap � Z � � � Cb and thus Z � is dominated by W with k buffers added at

the top of br � u � .
Lemma 1: For each node u of T , the set L � u � computed by DP2 contains at most 2 � ∆ � 1 � NB bufferings.

Proof: Let us call a triple � nb � l � s � of integers represented in L � u � if there exists a buffering X 
 L � u � such that

nb � X � � nb, l � X � � l, and s � X � � s. Since dominated bufferings are removed in Step 3(b), any triple of parameters � nb � l � s � can

be represented at most once by the bufferings surviving in L � u � (by a buffering with smallest possible residual capacitance).

We will show that no more than 2 � ∆ � 1 � NB triples � nb � l � s � can be represented. Indeed, consider all triples � nb � l � s � with

l � s � δ and nb � l � m, i.e., triples of the form � nb � nb � m � nb � m � δ � . For every fixed δ and m, there are at most two

values of nb for which � nb � nb � m � nb � m � δ � will survive the deletions in Steps 3(c) of DP2. The lemma follows since all

bufferings generated by the algorithm have 0 � δ � ∆ and 0 � m � NB.

Theorem 2: DP2 returns the optimum buffering in time O � n � ∆ � 1 � 3NB2 � .
Proof: The running time follows by observing that, for each of the n � 1 non-sink nodes, DP2 needs O � � ∆ � 1 � 3NB2 �

time to compute the set L � u � . Indeed, the time needed by Step 3(a) is O � � ∆ � 1 ��� �L � v � ��� �L � w � � � , where v and w are the two

children of u. Lemma 1 implies that at the end of Step 3(a) the size of L � u � is M � 4 � ∆ � 1 � 3NB2. To complete the proof we

need to show that Steps 3(b) and 3(c) can be implemented in O � M � time. This is done as follows:

1. For each buffering X compute m � X � � nb � X � � l � X � and distribute X’s into NB buckets each containing bufferings with

the same m;

2. Distribute all bufferings in each bucket between ∆ � 1 subbuckets each containing bufferings with the same skew δ 

� 0 � 1 ������� � ∆ � .
3. In one linear traversal, extract from each subbucket two bufferings: a buffering with minimum number of buffers nb and,

subject to this, minimum residual capacitance, plus, if it exists, a buffering with nb � 1 buffers and residual capacitance equal

to Cb (all other bufferings are either dominated or redundant).

V. EXPERIMENTAL RESULTS

Both DP2 and the greedy algorithm of [10] have been implemented in C. Table I gives the results obtained by running

the two algorithms on 6 testcases from [2]. In this set of experiments the initial tree was computed using the Greedy-

DME algorithm of [3] with linear delay. The unit wire capacitance was Cw � 0 � 177 f F
�
µm and buffer input capacitance
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was Cb � 37 � 5 f F. The first column of Table I gives the total wirelength of the Greedy-DME tree (WL) and the minimum,

maximum, and the total sink input capacitance for each instance (sink capacitances vary between 2 � 04 f F and 63 � 57 f F in

these testcases). Reported runtimes are for a SUN Ultra 60 running SunOS 5.7.

The first observation is that, although slower than the greedy algorithm of [10] by a factor of up to 20 � , DP2 has very

practical runtime (even for the 12,000 sink testcase, DP2 finishes in less than two seconds). The results suggest that the

worst-case bound in Theorem 2 is an overly pessimistic estimation of actual runtime. Indeed, in our experiments, the average

size of L � u � ’s was always significantly smaller than the bound given in Lemma 1.

As expected, both algorithms insert the optimum number of buffers when a buffer skew bound of 0 is imposed. For non-

zero skew bounds, DP2 inserts almost always strictly fewer buffers compared to the greedy algorithm of [10], with savings

reaching as much as 37.5%. Table I also shows that a significant reduction in the number of inserted buffers can be achieved

with a small increase in buffer skew, e.g., when going from zero buffer skew to a buffer skew of 1. For comparison, we have

also included in the table a lower bound on the number of buffers, which is the minimum number of buffers needed to meet

the load cap constraints while disregarding buffer skew constraints. This lower bound was computed using the linear time

algorithm given in [2]. In all but one case, the lower bound is matched by the optimum buffering with ∆ � 4, and often it is

matched with a buffer skew as small as 2.

The effectiveness of the buffer skew model was verified by SPICE simulation based on the 130nm ITRS Predictive Tech-

nology Beta Version device model. In these simulation buffers were formed as pairs of inverters. Interconnect wire segments

were represented by a Π-model with 0 � 076Ω unit wire resistance and equal wire capacitance lumped at both ends of the

segment. Each interconnect was driven by a ramped input signal with 150ps slew time under 1 � 5V supply voltage. Tables

II and III show the maximum, minimum, and the skew of 50% SPICE insertion delay from the source to each sink for trees

constructed using the Greedy-DME algorithm with linear, respectively Elmore, delay. As expected, the more accurate Elmore

delay leads to much smaller skew values. Delay skews after buffering are relatively small, and can be further reduced by

optimizations that do not affect the number of buffers, e.g., fine tuning of load buffers. Furthermore, the results on both types

of trees exhibit a strong correlation between buffer skew and delay skew, thus justifying the use of the buffer skew model for

early estimation of buffering resources.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have addressed the problem of finding the minimum-buffered routing of a given tree under buffer load

and skew constraints. We have shown that a greedy algorithm previously proposed for this problem in [10] may fail to find

the optimum solution, and we have proposed an exact dynamic programming algorithm. Experimental results on test cases

extracted from recent industrial designs show that the dynamic programming algorithm has practical running time and inserts

up to 37.5% fewer buffers compared to the greedy algorithm of [10].

Our future research will address

(i) multi-constraint formulations, in which, e.g., input capacitance and fanout must be upper-bounded simultaneously,

(ii) minimum inverter insertion in a given tree subject to sink polarity constraints, in addition to inverter load and skew

constraints, and

(iii) simultaneous tree construction and buffering under given buffer load and skew constraints.
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Footnote 1: Such bounds also improve reliability with respect to hot-carrier oxide breakdown (hot electrons) [4], [5] and

AC self-heating in interconnects [8], and facilitate technology migration since designs are more balanced.

Footnote 2: In this paper we restrict ourselves to binary routing trees. Every routing tree can be made binary by duplicating

nodes and inserting zero-length edges.

Footnote 3: We assume that buffers have a single input and a single output and thus are inserted only on the edges of T .

Footnote 4: We assume that a single type of buffer is used. Using a single buffer type is a widely accepted design strategy

since it reduces process variation sensitivity and facilitates technology migration.

Footnote 5: An upper-bound on the size of L � u � is ∑NB
n � 0 kn � O � kNB � , where k denotes the number of edges in br � u � .

Footnote 6: The bufferings created in this way may be useful since they have smaller skew than X � Y . On the other hand,

bufferings obtained by continuing to insert buffers after one of the intervals � s � X � � l � X ��� and � s � Y � � l � Y ��� encloses the other

have larger skew, and are thus dominated.

Footnote 7: This refinement is required since dominated or redundant solutions may be added to L � u � by combining different

pairs � X � Y � .
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equal (with the former case represented here).



Input: Net N with source r and set of sinks S, binary routing tree T � �
r� V � E � for N, input capacitances cs, s � S, buffer input capacitance Cb,

unit-length wire capacitance Cw, load upper-bound CU , buffer-skew bound ∆, and upper bound NB on the number of buffers in an optimal solution

Output: Minimum size feasible buffering of T

1. For each u � V , L
�
u ��� /0

2. For each sink s � S do

Add to L
�
s � the buffering Z of

�
s � parent

�
s � � with minimum feasible number of buffers

If cap
�
Z ��� Cb, add to L

�
s � the buffering Z with one more buffer added just below parent

�
u �

3. For each non-sink node u with children v and w, in bottom-up order (postorder), do

(a) For each X � L
�
v � and Y � L

�
w � s.t. cap

�
X ��� cap

�
Y ��� CU do

If l
�
X �	� l

�
Y � then

t � max 
 0 � l �
X ��� s

�
Y ��� ∆ 


Repeat forever

Let W be the buffering of br
�
u � obtained from X � Y by

(*) adding t buffers at the top of br
�
w � , and

(**) buffering the edge
�
u � parent

�
u � � with minimum feasible number of buffers

If nb
�
W ��� NB then add W to L

�
s �

If cap
�
W �	� Cb and nb

�
W ��� 1 � NB then add to L

�
s � the buffering W with one more buffer added at the top of br

�
u �

If nb
�
W ��� NB or one of the intervals � s �

X ��� l �
X �
� and � s �

Y ��� t � l �
Y ��� t � is inside the other, then exit the repeat loop

Else t � t � 1

If l
�
X �	� l

�
Y � , repeat above code in which X and br

�
v � reverse roles with Y and br

�
w �

(b) Remove from L
�
u � all dominated bufferings

(c) For each buffering W � L
�
u � remove from L

�
u � all bufferings Z � with nb

�
Z � � � nb

�
W ��� k, l

�
Z � � � l

�
W ��� k, and s

�
Z � � � s

�
W ��� k, where

k � 2

4. Return the buffering X � L
�
r � with minimum nb

�
X �

Fig. 5. The DP2 algorithm for BSBP.
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Testcase CU ∆ � 0 ∆ � 1 ∆ � 2 ∆ � 3 ∆ � 4 Lower
Parameters (fF) Greedy DP2 Greedy DP2 Gain Greedy DP2 Gain Greedy DP2 Gain Greedy DP2 Gain Bound

#Sinks=330 500
34

0.01
34

0.02
31

0.00
26

0.03
16.1% 27

0.01
25

0.05
7.4% 27

0.00
25

0.07
7.4% 27

0.00
25

0.09
7.4% 25

0.00

WL=42mm 1000
19

0.01
19

0.01
17

0.00
14

0.03
17.6% 15

0.01
12

0.06
20.0% 16

0.00
12

0.07
25.0% 16

0.00
12

0.09
25.0% 12

0.01

Cb=37.50fF 2000
8

0.01
8

0.01
7

0.00
6

0.03
14.3% 7

0.01
5

0.05
28.6% 7

0.00
5

0.07
28.6% 7

0.00
5

0.09
28.6% 5

0.00

Min/Max/Σcs (fF) 4000
5

0.00
5

0.01
4

0.00
3

0.03
25.0% 3

0.01
3

0.05
0.0% 3

0.01
3

0.07
0.0% 3

0.00
3

0.08
0.0% 3

0.00

2.04/27.75/3017 8000
2

0.00
2

0.01
1

0.00
1

0.03
0.0% 1

0.01
1

0.04
0.0% 1

0.01
1

0.07
0.0% 1

0.00
1

0.09
0.0% 1

0.00

#Sinks=830 500
101
0.02

101
0.03

91
0.01

87
0.04

4.4% 90
0.01

83
0.08

7.8% 89
0.01

81
0.10

9.0% 88
0.01

81
0.11

8.0% 81
0.01

WL=170mm 1000
46

0.01
46

0.02
45

0.01
41

0.04
8.9% 45

0.01
38

0.06
15.6% 43

0.01
38

0.08
11.6% 42

0.01
38

0.10
9.5% 38

0.01

Cb=37.50fF 2000
25

0.01
25

0.02
23

0.01
20

0.05
13.0% 24

0.01
19

0.07
20.8% 23

0.01
19

0.10
17.4% 23

0.01
19

0.12
17.4% 19

0.00

Min/Max/Σcs (fF) 4000
11

0.01
11

0.02
9

0.01
9

0.04
0.0% 9

0.01
9

0.07
0.0% 10

0.01
9

0.09
10.0% 10

0.01
9

0.10
10.0% 9

0.01

4.25/4.25/3528 8000
5

0.02
5

0.02
5

0.02
4

0.05
20.0% 4

0.01
4

0.06
0.0% 4

0.01
4

0.09
0.0% 4

0.01
4

0.11
0.0% 4

0.01

#Sinks=1900 500
105
0.03

105
0.08

90
0.03

84
0.14

6.7% 87
0.03

79
0.22

9.2% 87
0.03

79
0.30

9.2% 85
0.03

78
0.37

8.2% 78
0.02

WL=76mm 1000
53

0.02
53

0.05
46

0.02
42

0.12
8.7% 43

0.03
40

0.21
7.0% 43

0.03
39

0.29
9.3% 44

0.02
39

0.35
11.4% 39

0.02

Cb=37.50fF 2000
26

0.03
26

0.05
23

0.03
20

0.13
13.0% 22

0.03
19

0.20
13.6% 21

0.03
19

0.27
9.5% 21

0.03
19

0.33
9.5% 19

0.02

Min/Max/Σcs (fF) 4000
14

0.03
14

0.06
12

0.03
10

0.13
16.7% 11

0.04
9

0.20
18.2% 11

0.03
9

0.27
18.2% 11

0.03
9

0.31
18.2% 9

0.02

7.97/7.97/15494 8000
6

0.03
6

0.06
4

0.04
4

0.12
0.0% 4

0.03
4

0.20
0.0% 4

0.03
4

0.25
0.0% 4

0.04
4

0.32
0.0% 4

0.03

#Sinks=2400 500
133
0.04

133
0.10

121
0.03

105
0.18

13.2% 115
0.03

102
0.29

11.3% 116
0.04

100
0.39

13.8% 116
0.03

99
0.49

14.7% 99
0.03

WL=97mm 1000
62

0.03
62

0.07
54

0.03
50

0.16
7.4% 52

0.04
48

0.27
7.7% 52

0.04
47

0.37
9.6% 52

0.04
47

0.45
9.6% 47

0.02

Cb=37.50fF 2000
29

0.03
29

0.08
26

0.03
24

0.16
7.7% 26

0.04
23

0.25
11.5% 25

0.04
23

0.35
8.0% 25

0.03
23

0.44
8.0% 23

0.02

Min/Max/Σcs (fF) 4000
16

0.03
16

0.07
15

0.04
12

0.16
20.0% 15

0.04
10

0.25
33.3% 14

0.04
10

0.33
28.6% 14

0.04
10

0.42
28.6% 10

0.03

7.97/7.97/19423 8000
9

0.04
9

0.08
8

0.05
5

0.17
37.5% 7

0.04
5

0.25
28.6% 7

0.05
5

0.34
28.6% 7

0.04
5

0.41
28.6% 5

0.03

#Sinks=2600 500
266
0.04

266
0.14

238
0.04

211
0.36

11.3% 229
0.04

204
0.66

10.9% 226
0.04

198
0.93

12.4% 227
0.03

196
1.12

13.7% 196
0.02

WL=150mm 1000
125
0.03

125
0.12

117
0.04

104
0.32

11.1% 109
0.04

99
0.55

9.2% 106
0.04

98
0.79

7.5% 106
0.04

98
0.98

7.5% 97
0.03

Cb=37.50fF 2000
64

0.04
64

0.12
55

0.04
50

0.31
9.1% 52

0.05
49

0.55
5.8% 52

0.04
48

0.78
7.7% 52

0.04
48

0.97
7.7% 48

0.02

Min/Max/Σcs (fF) 4000
34

0.04
34

0.12
30

0.04
26

0.32
13.3% 29

0.05
23

0.55
20.7% 28

0.04
22

0.78
21.4% 28

0.05
22

0.97
21.4% 22

0.03

2.96/63.57/45077 8000
15

0.04
15

0.12
15

0.05
12

0.31
20.0% 13

0.05
11

0.52
15.4% 13

0.05
11

0.73
15.4% 13

0.05
11

0.90
15.4% 11

0.04

#Sinks=12000 500
489
0.18

489
0.42

441
0.19

399
0.75

9.5% 424
0.20

375
1.20

11.6% 426
0.19

369
1.62

13.4% 423
0.19

366
1.95

13.5% 366
0.13

WL=452mm 1000
227
0.19

227
0.34

208
0.21

185
0.69

11.1% 202
0.21

173
1.12

14.4% 202
0.21

171
1.52

15.3% 200
0.21

170
1.86

15.0% 170
0.15

Cb=37.50fF 2000
114
0.19

114
0.36

100
0.22

89
0.70

11.0% 98
0.24

87
1.11

11.2% 98
0.22

86
1.46

12.2% 97
0.23

85
1.80

12.4% 85
0.16

Min/Max/Σcs (fF) 4000
53

0.21
53

0.35
48

0.22
45

0.67
6.2% 49

0.25
44

1.02
10.2% 49

0.24
44

1.37
10.2% 49

0.26
44

1.70
10.2% 44

0.18

4.55/4.55/54837 8000
28

0.22
28

0.36
25

0.25
21

0.68
16.0% 25

0.26
20

1.06
20.0% 24

0.26
19

1.41
20.8% 24

0.25
19

1.72
20.8% 19

0.20

TABLE I. NUMBER OF BUFFERS (BOLDFACE) AND RUNTIME (IN SECONDS) FOR DP2 AND THE GREEDY ALGORITHM

IN [10] FOR TREES CONSTRUCTED USING GREEDY-DME WITH LINEAR DELAY.



#Sinks CU (fF) Delay ∆ � 0 ∆ � 1 ∆ � 2 ∆ � 3 Unbuffered

330 500
Max

Min

Skew

390

277

113

442

290

152

490

274

216

490

274

216

1943

1590

353

330 1000
Max

Min

Skew

483

336

147

494

273

220

644

316

327

644

316

327

1943

1590

353

830 500
Max

Min

Skew

758

648

110

754

599

154

847

589

258

873

575

298

6706

4153

2553

830 1000
Max

Min

Skew

773

618

154

841

598

242

911

601

309

989

589

400

6706

4153

2553

TABLE II. MIN/MAX SPICE INSERTION DELAY AND SKEW (ALL IN PICOSECONDS) FOR GREEDY-DME (LINEAR

DELAY) UNBUFFERED TREES AND THEIR OPTIMUM BUFFERINGS WITH ∆ 
 � 0 � 1 � 2 � 3 � .



#Sinks CU (fF) Delay ∆ � 0 ∆ � 1 ∆ � 2 ∆ � 3 Unbuffered

330 500
Max

Min

Skew

377

308

69

408

275

132

433

234

198

495

228

266

1860

1848

12

330 1000
Max

Min

Skew

422

307

115

465

299

165

565

282

282

583

226

356

1860

1848

12

830 500
Max

Min

Skew

785

694

90

806

661

145

843

657

186

919

666

252

6627

6567

59

830 1000
Max

Min

Skew

825

657

167

884

689

195

973

723

249

973

723

249

6627

6567

59

TABLE III. MIN/MAX SPICE INSERTION DELAY AND SKEW (ALL IN PICOSECONDS) FOR GREEDY-DME (ELMORE

DELAY) UNBUFFERED TREES AND THEIR OPTIMUM BUFFERINGS WITH ∆ 
 � 0 � 1 � 2 � 3 � .


