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Abstract—We study the problem of assigning transmission
ranges to the nodes of ad hoc wireless networks so that to min-
imize power consumption while ensuring network connectivity.
We give (1) an exact branch and cut algorithm based on a new
integer linear program formulation solving instances with up to
35-40 nodes in 1 hour; (2) a proof thatMIN-POWER SYMMETRIC
CONNECTIVITY WITH ASYMMETRIC POWERREQUIREMENTSis in-
approximable within factor (1 � �) ln jV j for any � > 0 unless
P = NP ; (3) an improved analysis for two approximation algo-
rithms recently proposed by Călinescu et al. (TCS’02), decreasing
the best known approximation factor to5=3 + �; (4) a comprehen-
sive experimental study comparing new and previously proposed
heuristics with the above exact and approximation algorithms.

INTRODUCTION

Ad hoc wireless networks have received significant attention
in recent years due to their potential applications in battlefield,
emergency disaster relief, and other application scenarios (see,
e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]). Unlike wired
networks or cellular networks, no wired backbone infrastruc-
ture is installed in ad hoc wireless networks. A communication
session is achieved either through single-hop transmission if the
recipient is within the transmission range of the source node,
or by relaying through intermediate nodes otherwise. When a
transmission is made by a node it can be received by all nodes
within its transmission range. This feature is extremely useful
for energy-efficient multicast and broadcast communications.

For the purpose of energy conservation, each node can (pos-
sibly dynamically) adjust its transmitting power, based on the
distance to the receiving node and the background noise. In the
most commonly used power-attenuation model [11], the signal
power falls as 1

r�
wherer is the distance from the transmitter

antenna and� is a coefficient dependent on the wireless en-
vironment, typically between2 and4. Under this model the
power requirement for supporting a link from nodeu to nodev
separated by a distancer is given by

p(u; v) = �u�vr
�uv (1)

where�u > 0 is the transmission efficiency of nodeu, �v > 0
is the signal detection sensitivity threshold of nodev, and�uv
is the signal attenuation exponent for the link fromu to v. Typi-
cally it is assumed that all nodes have the same transmission ef-
ficiency and detection sensitivity coefficients, both normalized
to 1, and that signal attenuation exponents�uv have a common
value� (see, e.g., [12]). With these assumptions, the power
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requirement for supporting a link between nodesu andv sepa-
rated by a distancer becomes

p(u; v) = p(v; u) = r� (2)

Unless explicitly stated otherwise, in this paper we assume
symmetric power requirements such as those given by (2).

Having every link established in both directions simplifies
one-hop transmission protocols by allowing acknowledgement
messages to be sent back for every packet (see, for example
[13]). This motivates the study of the MIN-POWER SYMMET-
RIC CONNECTIVITY problem, where a link is established only
if both nodes have transmission range at least as big as the dis-
tance between them, and the goal is to ensure that the network
is connected [1], [14].

Formally, letV be a set representing network nodes. Arange
assignmentis a functionr : V ! R+. We say that aunidi-
rectional link from nodeu to nodev is established under the
range assignmentr if r(u) � p(u; v). Similarly, a bidirec-
tional link uv is established under the range assignmentr if
r(u) � p(u; v) andr(v) � p(v; u). LetB(r) denote the set of
all bidirectional links established between pairs of nodes inV
under the range assignmentr.

MIN-POWER SYMMETRIC CONNECTIVITY: Given a set of
nodesV and symmetric power requirementsp(u; v) = p(v; u),
u; v 2 V , find a range assignmentr : V ! R+ minimizingP

v2V r(v) subject to the constraint that the graph(V;B(r)) is
connected.

Implicit in the work of Clementi, Penna, and Silvestri [4] is
a proof that MIN-POWER SYMMETRIC CONNECTIVITY in E2

is NP-Hard. Therefore, we study approximation algorithms and
heuristics for the problem. In this paper we make the following
contributions:

� We give an exact branch and cut algorithm based on a new
integer linear program formulation for the problem (Sec-
tion I). Experimental results show that the branch and cut
algorithm solves instances with 25 nodes in less than one
minute and instances with up to 35-40 nodes in 1 hour
(Section III).

� We give an improved analysis for two approximation al-
gorithms from [14], decreasing the best known approxi-
mation factor1 to 5=3 + � (Section II-A).

� We show that MIN-POWER SYMMETRIC CONNECTIV-
ITY WITH ASYMMETRIC POWER REQUIREMENTSis in-
approximable within factor(1 � �) ln jV j for any � > 0
unlessP = NP (Section II-B).

1Theapproximation factorof an algorithmA for a minimization problem is
the supremum, over all possible instancesI, of the ratio between the cost of
the output ofA when run onI and the cost of an optimal solution forI (the
smaller the performance ratio, the better). We say thatA is an�-approximation
algorithm if its approximation ratio is at most�.



� We present a comprehensive experimental study compar-
ing new and previously proposed heuristics with the above
exact and approximation algorithms. Experimental results
show an average of 5-6% reduction in power consumption
compared to the simple MST based solution (Section III).

For the important special case of nodes located on a line and
monotonic symmetric power requirements, MIN-POWERSYM -
METRIC CONNECTIVITY can be solved in polynomial time by
dynamic programming; we omit the details for space reasons.

A. Related Work

Kirousis, Kranakis, Krizanc, and Pelc [5] give a mini-
mum spanning tree (MST) based 2-approximation algorithm
for MIN-POWER SYMMETRIC CONNECTIVITY (their algo-
rithm is actually designed for the COMPLETE RANGE AS-
SIGNMENT problem discussed below). C˘alinescu et al. [14]
push the approximation ratio below 2 by exploiting similari-
ties between MIN-POWER SYMMETRIC CONNECTIVITY and
the classic STEINER TREE problem. In particular, [14] gives a
fully polynomial1+ln 2 approximation scheme2 based on [15]
and a more practical15=8 approximation algorithm based on
[16]. Blough et al. [1] give asymptotic bounds on the solution
cost for random and so called(�; Æ) Euclidean instances.

The objective of minimizing the total power has been more
extensively addressed under the specific power requirements
given by (2) and the relatedasymmetricconnectivity model, in
which unidirectional links give raise to a directed graph onV
(see [12]). Four problems have been studied under this model.

1. ASYMMETRIC UNICAST, which requires establishing a
minimum power directed path from a sources to a destina-
tion t. ASYMMETRIC UNICAST is easily solved in polynomial
time by shortest-path algorithms. The related MIN-POWER

SYMMETRIC UNICAST problem can also be solved efficiently
by a shortest-path computation in an appropriately constructed
graph [14].

2. ASYMMETRIC BROADCAST, which requires establishing
a minimum power arborescence rooted at a given vertexs [8],
[10]. Clementi et al. [3] prove that ASYMMETRIC BROAD-
CAST is NP-Hard when the nodes are inE2. The best known
approximation algorithm for ASYMMETRIC BROADCAST [9],
based on computing a minimum spanning tree, has performance
ratio of at most 12 when the nodes are inE2. Chu and Niko-
laidis [2] give an experimental study of asymmetric broadcast
algorithms for mobile ad hoc networks. As noted in [14], the re-
lated SYMMETRIC BROADCAST problem is identical to MIN-
POWER SYMMETRIC CONNECTIVITY.

3. ASYMMETRIC MULTICAST, in which one is given a roots
and a set of terminalsT , and the goal is to establish a minimum-
power branching rooted ats which reaches all vertices ofT . As
a generalization of ASYMMETRIC BROADCAST, ASYMMET-
RIC MULTICAST is also NP-Hard, and based on the work of
[9], it is immediate that a minimum Steiner tree would give an
approximation ratio of12�, where� is the approximation for
Steiner tree in graphs (the best result known at this moment,
given in [17], is� = 1 + 1

2
ln 3 + ").

4. COMPLETERANGE ASSIGNMENT, in which the objective
is establishing a strongly connected subgraph ofV . Kirousis,

2A fully polynomial� approximation schemeis a family of algorithmsA"

such that, for every" > 0,A" (1) has performance ratio at most�+ ", and (2)
runs in time polynomial in the size of the instance and1=".

Kranakis, Krizanc, and Pelc [5] give anO(n4) dynamic pro-
grammig algorithm for the case ofn colinear nodes and power
requirements given by (2), prove that COMPLETE RANGE AS-
SIGNMENT inE3 is NP-Hard, and give a 2-approximation algo-
rithm based on the minimum spanning tree, As opposed to the
ASYMMETRIC BROADCAST approximation of [9], the COM-
PLETE RANGE ASSIGNMENT approximation of [5] is valid in
arbitrary graphs (that is, the distance between two points could
be arbitrary, not necessarily Euclidean). Clementi, Penna, and
Silvestri [4] give an elaborate reduction proving that COM-
PLETE RANGE ASSIGNMENT in E2 is also NP-Hard. As
shown in [14], the power required by for the asymmetric COM-
PLETE RANGE ASSIGNMENT can be as low as half the power
required for MIN-POWER SYMMETRIC CONNECTIVITY.

I. I NTEGERLINEAR PROGRAM FORMULATION

In this section we give an integer linear program (ILP) for-
mulation for MIN-POWER SYMMETRIC CONNECTIVITY and
describe a branch and cut algorithm based on it. The results
in Section III show that the algorithm is practical for instances
with up to 35-40 nodes.

We begin by reformulating MIN-POWER SYMMETRIC

CONNECTIVITY in graph theoretical terms. LetG = (V;E; c)
be an edge-weighted graph anduv denote the undirected edge
between nodesu andv. The costc(uv) of an edgeuv 2 E
corresponds to the (symmetric) power requirementp(u; v) =
p(v; u). For a nodeu 2 V and a spanning treeT of G, let uuT
be the maximum cost edge incident tou in T , i.e.,uuT 2 T and
c(uuT ) � c(uv) for all uv 2 T . Thepower costof a spanning
treeT is

p(T ) =
X
u2V

c(uuT )

Since any connected graph contains a spanning tree, an equiv-
alent formulation of MIN-POWER SYMMETRIC CONNECTIV-
ITY is to ask for a spanning tree with minimum power-cost in
the complete graph onV with edge costs given byc(uv) =
kuvk

�. Thus, MIN-POWER SYMMETRIC CONNECTIVITY can
be reformulated as follows:

MINIMUM POWER-COST SPANNING TREE: Given a con-
nected edge-weighted graphG = (V;E; c), find a spanning
treeT of G with minimum power-cost.

To formulate MINIMUM POWER-COST SPANNING TREEas
a linear integer program we use two types of binary decision
variables:
xuv for all uv 2 E; xuv is set to 1 ifuv belongs to the

selected spanning treeT and to 0 otherwise. We call
these variables thetree variables.

yuv for all uv 2 E := fuv; vu j uv 2 Eg; yuv is set to 1
if uT = v (i.e., if uv 2 T andc(uv) � c(uw) for all
uw 2 T . We call these variables therange variables.

Note that there arejEj tree variables andjEj = 2jEj range
variables. LetST be set of the incidence vectors of all spanning
trees ofG (viewed as subsets ofE). Our ILP formulation is as
follows.

min
X
uv2E

c(uv)yuv

s.t.
X

v2V juv2E

yuv = 1; 8u 2 V (3)
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Fig. 1. Letxe = 1=2 for all edges in the picture (xe = 1, if there are two
parallel edges). Let range variablesyu2v be equal to 1/2 forv = u1; u3,
and to 0 otherwise. Then constraints of type (3) and (4), are satisfied, but the
constraint (6) is violated forS = fu1; u2g.

xuv �
X

uw2Ejc(uw)�c(uv)

yuw; 8uv 2 E (4)

x 2 conv(ST ) (5)

x 2 f0; 1gjEj

y 2 f0; 1gjEj

The constraints (3) enforce that we select exactly one range
variable for every nodev 2 V , i.e., we properly define the range
of each node. The constraints (4) enforce that an edgeuv is in-
cluded in the tree only if the range of each endpoint is at least
the cost of the edge. The constraints (5) enforce that the tree
variables indeed form a spanning tree. There are several well
known linear descriptions forx 2 conv(ST ). We use the fol-
lowing, most famous formulation:x 2 conv(ST ) , x �
0;
P

e2E xe = jV j � 1 and
P

e2
(S) xe � jSj � 1 for all S �
E, where
(S) is the set of edges ofE with both ends inS.

To solve the ILP we use branch and cut, i.e., we drop the in-
tegrality constraints and solve the corresponding LP relaxation.
If the solution of the LP is integral, we found the optimal so-
lution, otherwise we pick a variable with a fractional value and
split the problem into two subproblems by setting the variable
to 0 and1 in the subproblems. We solve the subproblems recur-
sively and disregard a subproblem if its LP bound is worse than
the best known solution.

Since there are an exponential number of inequalities in this
formulation of spanning trees, we can not solve the LP directly.
Instead, we start with a small subset of these inequalities and al-
gorithmically test whether the LP solution violates an inequal-
ity which is not in the current LP. If so, we add the inequality
to the LP, otherwise we found the solution of the LP with the
exponential number of inequalities. The inequalities added to
the LP if needed are calledcutting planes, algorithms that find
violated cutting planes are calledseparation algorithms.

In our case, the initial LP consists of the constraints (3)
and (4), the constraint

P
e2E xe = jV j � 1, and the bound

constraints, i.e., the constraints0 � x � 1 and 0 � y �
1. The only constraints added on demand are the constraintsP

e2
(S) xe � jSj � 1 for all S � E. A separation algorithm
for these inequalities is due to Padberg and Wolsey [18].

The running time of a branch and cut algorithm can improved
by tightening the LP relaxation, i.e., by finding additional in-
equalities which are valid for all integer points, but may be
violated by solutions to the LP relaxation (Figure 1 shows an
example). We use the following class of valid inequalities. Let
S � V . For everyu 2 S letuS 2 V nS so thatc(uus) � c(uv)

Input: Edge-weighted graphG = (V;E; c)
Output: Spanning tree ofG

T  MST (G), H  ;
Repeat forever

Find a forkK with the maximumg = gainT (K)
If g � 0 then exit repeat
H  H [K,G G=K, T  T=K

Output T [H

Fig. 2. The greedy fork-contraction algorithm.

for all v 2 V n S. The inequality

X
u2S

X
v2V jc(uv)�c(uuS)

yuv � 1 (6)

is valid for the problem above. We can argue as follows. There
is at least one edge in the spanning treeT crossing the cutS.
Let uv be such an edge andu 2 S. Thenc(uv) � c(uuS) and
the range ofu is at leastc(uv). Thus

P
v2V jc(uv)�c(uuS)

yuv is
one and the inequality is valid.

Since we do not have a separation algorithm for these in-
equalities, we use the following heuristic to separate some of
them. We chose an arbitrary nodeu. For every nodev 2
V n fug, we compute the minimal directed cut fromu to v
and fromv to u, where the capacity of an edgexy is given byP

xwjc(xw)�c(xy) yxw. For all computed cuts, we test whether
the corresponding inequality is violated.

II. A PPROXIMATION ALGORITHMS

In this section we give an improved analysis for two approxi-
mation algorithms proposed in [14] for MIN-POWERSYMMET-
RIC CONNECTIVITY and show that MIN-POWER SYMMET-
RIC CONNECTIVITY WITH ASYMMETRIC POWER REQUIRE-
MENTS cannot be approximated within factor(1� �) ln jV j for
any� > 0 unlessP = NP ;

A. Improved Approximations for Symmetric Requirements

Recently, [14] proposed an algorithm with approximation ra-
tio of 7=4+ � based on polynomial time approximation scheme
for computing the minimum-weight spanning cactus in a 3-
uniform hypergraph, and a more practical greedy algorithm
with approximation ratio of 15/8. Below we improve the ap-
proximation factors of these two algorithms to5=3+� and 11/6,
respectively.

The greedy algorithm in [14] (see Figure 2) iteratively im-
proves the MST by inserting the bestfork, i.e., pair of edges
of G sharing a node. Note that the power cost of forkK =
fe1; e2g is p(K) = 2maxfc(e1); c(e1)g +minfc(e1); c(e1)g.
The edges of forkK added to the MST replace the highest cost
edges in the two created cycles. As a result the power cost may
decrease. Thegainof fork K is defined by

gain(K) = 2mst(G)� 2mst(G=K)� p(K)

wheremst(G) the minimum cost of a spanning tree ofG,G=K
is the graph obtained fromG by collapsing all nodes ofK into
a single node.

The proof of the approximation ratios in [14] is based on on
the notion of3-restricted decompositionof a treeT , which is
a partition of the edges ofT into forks and individual edges.
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Fig. 3. (a) Partitioned treeT . Each vertex has a single outgoing arc denoting
its maximum incident edge, double arcs are roots and dashed edges are bridges.
(b) Consecutive line graphs for the components. Vertices represent edges of
T and edges represent forks ofT ; “consecutive” edges are solid and “parity”
edges are dashed.

The power-cost of a 3-restricted decompositionQ, p(Q), is the
sum of power-costs of its elements, i.e., forks and individual
edges. It is proved in [14] that, if there exists a 3-restricted de-
compositionQ with P (Q) � �p(T ), then the greedy algorithm
in Figure 2 has approximation ratio1 + �=2 and there is PTAS
with approximation ratio� + �. Below we prove that� � 5=3
improving the ratio7=4 from [14].

Theorem 1:For any treeT , there is a 3-restricted decompo-
sitionQ of T such thatp(Q) � 5

3
p(T ).

Proof: The proof proceeds in three steps. First we partition
the edges ofT into disjoint components using structural infor-
mation derived from power requirements. Then we construct a
weighted subgraph of the line graph of each component, which
we refer to as the “consecutive” line graph. Finally, we show
that the consecutive line graph of each component has a match-
ing exceeding a certain weight; the edges in these matchings
correspond to the forks in the desired 3-restricted decomposi-
tion of T .

To describe how we partition the edges ofT (see Figure 3(a))
we need to introduce some additional notations. Letmax(u)
be the maximum edge ofT incident to a vertexu.3 For each
vertexu, we direct the edgemax(u) away fromu. An edge
uv is calledroot if it is directed both ways (i.e.,max(u) =
max(v) = uv), and calledbridge if it remains undirected (i.e.,
max(u) 6= uv andmax(v) 6= uv). In the power-cost ofT ,
roots are counted twice (for both endpoints), bridges are not
counted at all, and all other edges are counted exactly once.
Thus, denoting byR the set of roots and byB the set of bridges,
we have:

p(T ) = c(T ) + c(R)� c(B) (7)

The edges ofT are partitioned as follows. First, we start with
the connected components ofT �B; note that each such com-
ponent contains exactly one root. Then we add each bridgeb of
B to one of the two adjacent components ofT � B, such that
each component gets at most one bridge. A bridge assignment
with this property is obtained by selecting an arbitrary vertex
v0 and assigning to each component ofT � B not containing
v0 the unique adjacent bridge on the path tov0. We denote by
D the resulting partition.
3W.l.o.g., we assume that no two edges ofT have the same cost.

A fork (e1 = uv; e2 = u0v) is calledconsecutiveif c(e1) <
c(e2) and there is no edge e2 D incident tov such thatc(e1) <
c(e) < c(e2). For each componentD 2 D, theconsecutive line
graphLD is defined as follows (see Figure 3(b)):

– vertices ofLD are the edges ofD
– LD has “consecutive” edges connecting each consecutive

forks ofD, and at most two “parity” edges connecting the
root ofD and the second most expensive non-root edge
incident to each end of the root

– for every edge (e1; e2) of LD, w(e1; e2) =
minfc(e1); c(e2)g

By construction, each edge ofLD corresponds to a fork of
D. Therefore, each matchingX of LD corresponds to a 3-
restricted decomposition ofD (edges ofX correspond to forks
and isolated vertices correspond to isolated edges) which we
denoteQX . It is easy to see thatp(QX) = 2c(D)� w(X).

The theorem follows if, for eachD 2 D, we find a matching
XD in LD such that

w(XD) �
c(D)� c(rD) + c(bD)

3
(8)

wherec(D) is the total cost of the edges inD, rD is the single
root inD, andbD is the single bridge inD, if one exists. Indeed,

p(
[
D2D

QXD ) =
X
D2D

(2c(D)� w(XD))

�
X
D2D

�
5

3
c(D) +

1

3
c(rD)�

1

3
c(bD)

�

=
5

3
c(T ) +

1

3
c(R)�

1

3
c(B)

�
5

3
p(T )

where the last inequality comes from (7) and the fact that
c(T ) � p(T ) (see, e.g., [14]).

By Edmonds’ theorem [19] it is sufficient to construct a frac-
tional matchingXD satisfying (8). Afractional matchingof
LD is an assignment of nonnegative fractionsx(e1; e2) to ev-
ery edge(e1; e2) 2 LD such that

(i) the sum of fractions assigned to the edges incident to a
vertexe of LD is at most 1, and

(ii) the sum of fractions assigned to all edges with both end-
points in a set of2k + 1 vertices ofLD is at mostk.

The weight of a fractional matchingXD is given by

w(XD) =
X

(e;e0)2E(D)

x(e; e0)w(e; e0)

We construct a fractional matchingXD by assigning1=3 to
each consecutive edge(e1; e2) of LD. This fractional matching
satisfies (i) since eache 2 D is incident to at most 3 consecutive
edges ofLD (if e is not the rootrD, then it participates into
one consecutive edge ofLD ase1, and into up to two edges as
e2; the root participates as the heaviest end in up to two edges).
Condition (ii) follows from the fact that consecutive edges form
a tree. Since every vertexe of LD except the root participates
in exactly one consecutive fork(e1; e2) ase1, we get that the
weight ofX 0

D is equal to(c(D)� c(rD))=3.
If D has no bridge then (8) follows. Otherwise we modify

XD such that the weight increases byc(bD)=3 as follows. Let



P = (bD = e0; f0; e1; f1; :::; ek; fk; ek+1 = rD) be the unique
path of consecutive edges ofLD, wherefi = (ei; ei+1), i =
1; : : : ; k are edges ofLD corresponding to consecutive forks
in D. We add 1/3 tox(fi), i = 0; 2; 4; : : :, and substract 1/3
from x(fi), i = 1; 3; : : :. Since bothbD and rD participate
in at most two consecutive forks, the above change leads to a
feasible fractional matching (the sum of fractions assigned to
the edges incident to each intermediate vertex ofP remains the
same). Ifk is even then the total weight ofXD increases by at
leastc(bD)=3 sincew(f2l�1) = c(e2l�1) < c(e2l) = w(f2l),
l = 1; : : : ; k=2 and we are done.

If k is odd we add back 1/3 tox(fk) to guarantee increasing
of w(XD) by at leastc(bD)=3. If ek has degree 2 inLD then
we are done, since the sum of all fractions assigned to the edges
incident toek equals to 1. Otherwise,ek has degree 3 and we
need to further modifyXD in order to make it a feasible frac-
tional matching. Letv be the common vertex ofek and rD.
Sincefk = (ek; ek+1 = rD) is a consecutive fork,ek is the
most expensive non-root edge ofD incident tov. Let e be the
second most expensive non-root edge ofD incident tov. Since
e andek form a consecutive fork,LD contains the(e; ek). Re-
call thatLD also contains a parity edge(e; rD). We modifyXD

as follows:
� If ek�1 6= e (i.e.,ek�1 is not adjacent to the root), then we

substract 1/3 fromx(e; ek) and setx(e; rD) to 1/3.
� If ek�1 = e (i.e., ek�1 is adjacent to the root), then we

substract 1/3 fromx(fk�1) and setx(e = ek�1; rD) to
1/3.

In both cases, the resulting sums of fractions assigned to the
edges incident each ofek andrD are equal to 1, and henceXD

satisfies (i). Condition (ii) is valid since edges with non-zero
weight inXD continue to form a tree.

B. Hardness of Approximation for Asymmetric Requirements
The following theorem shows that handling asymmetric

power requirements is intrinsically more difficult than handling
symmetric requirements, e.g., under asymmetric power require-
ments the minimum total power cannot be approximated within
any constant.

Theorem 2:MIN-POWER SYMMETRIC CONNECTIVITY

WITH ASYMMETRIC POWER REQUIREMENTS cannot be ap-
proximated in polynomial time within factor(1 � �) ln jV j for
any� > 0 unlesP = NP .

Proof: We will prove the theorem by reduction from
the set cover problem which is known to be non-approximable
within factor(1� �) ln jV j for any� > 0 unlesP = NP [20].

For any instance of the set cover problem, we construct an in-
stance of the problem of MIN-POWER SYMMETRIC CONNEC-
TIVITY WITH ASYMMETRIC POWER REQUIREMENTS such
that approximating the second problem within a factorF im-
plies approximating the first problem within the same factor.

Let S1; S2; : : : ; Sk be subsets of a ground setX =
fx1; x2; : : : ; xn. The set cover problem asks for the minimum
number of subsets covering the entire setX . We construct an
instance of Min-Power Symmetric Connectivity in which each
point cooresponds to either a setSi or an elementxj 2 X
or is an auxiliary pointX (see Figure 4). We set the power
reqirements as follows: ifxj 2 Si, thenp(xj ; Si) = 0 and
p(Si; xj) = 1. Alsop(Si; X) = p(X;Si) = 0. All other power
requirements are infinity. It is easy to see that the minimum to-
tal power equals the minimum number of setsSi coveringX .

S2

0

1

00 0 0

1

S3S1

x3

Sk

x1 x2 xn

0 0 0

X

0

1 1

Fig. 4. Solid dots coorrespond to subsets and empty dots correspond to ele-
ments of the setX in the instance of the set cover problem. Each bididrected
arc shows that an elemnt belongs to a subset.

Remark. Theorem 2 relies on using non-Euclidean distances;
we leave open the aproximability status of MIN-POWER SYM -
METRIC CONNECTIVITY with power requirements given by
(1).

III. E XPERIMENTAL STUDY

We have implemented the exact branch and cut algorithm de-
scribed in Section I (OPT), the greedy fork-contraction algo-
rithm of [14] (GFC), and three new heuristics:

� A simple edge-switching (ES) heuristic that starts from the
MST, and repeatedly replaces a tree edge with a non-tree
edge re-establishing connectivity. At every step, the algo-
rithm chooses the pair of edges that results in the largest
reduction in power cost; the process is repeated as long as
improvement is still possible. We simulated a distributed
implementation of the algorithm in which only non-tree
edges that connect nodes within 10 tree-hops from each
other are considered for switching.

� A heuristic performing both edge and fork switching
(EFS). At every step the algorithm chooses the edge or the
fork whose addition to the tree leads to the largest reduc-
tion in power cost. Unlike GFC, forks are not contracted,
which means that an edge in an added fork can later be
removed from the tree by other edge or fork switches.

� A Kruskal-like heuristic (KR) that starts with isolated
nodes and iteratively adds an edge connecting two differ-
ent components withminimum increasein power cost. A
similar heuristic (called incremental search) was studied
by Chu and Nikolaidis for computing low-power ASYM-
METRIC BROADCAST trees in a mobile environment [2].

We included in our comparison faster versions of OPT and
GFC, OPT-D and GFC-D, which speed-up the computation by
working on the Delaunay graph defined by the nodes instead
of the complete graph. We also implemented a faster version
of EFS, EFS-D, in which only forks consisting of Delaunay
edges (but still all non-tree edges) are considered as switching
candidates.

All algorithms were implemented in C++, including the
branch and bound algorithm whose implementation is built on
SCIL [21]. The heuristics were compiled usinggpp with -O2
optimization, and run on an AMD Duron 600MHz PC. The ex-
periments were run on randomly generated testcases. For each
instance sizen between 10 and 100, in increments of 5, 50 dif-
ferent instances were generated by chosingn points uniformly
at random from a grid of size10; 000� 10; 000.

In Table I and Figure 5 we report thepercent improvement
over MST, i.e.,100 � p(MST )�p(Algo)

p(MST )
for the compared algo-



n OPT OPT-D ES EFS EFS-D KR GFC GFC-D
10 4.01 3.66 3.81 4.00 3.94 0.49 1.39 1.19
15 4.77 4.26 4.48 4.70 4.51 1.72 1.56 0.48
20 5.84 5.17 5.46 5.75 5.47 2.54 2.01 1.40
25 5.63 4.72 4.78 5.53 5.12 2.19 1.56 0.72
30 5.46 4.90 4.87 5.36 5.03 1.77 1.65 0.24
35 5.68 5.11 5.04 5.60 5.40 2.13 1.93 0.96
40 5.413 4.82 5.01 5.51 5.25 1.82 1.37 0.26
45 — 5.37 5.13 5.77 5.47 2.17 2.22 0.67
50 — 5.36 5.55 5.90 5.62 2.45 2.03 0.33
55 — 6.09 5.61 6.54 6.21 2.65 2.60 1.19
60 — 5.464 5.25 6.06 5.73 2.31 2.15 0.50
65 — — 5.01 5.80 5.56 2.30 1.65 0.38
70 — — 5.12 6.01 5.60 2.41 1.94 0.24
75 — — 5.10 5.78 5.50 2.46 1.69 0.48
80 — — 5.14 6.03 5.77 2.88 2.00 0.64
85 — — 4.73 5.69 5.37 2.52 1.82 0.39
90 — — 5.42 6.30 6.01 2.84 2.18 0.38
95 — — 5.29 6.08 5.81 2.35 1.73 0.19

100 — — 5.45 6.25 6.09 2.56 2.30 0.99

TABLE I
PERCENT IMPROVEMENT OVER THEMST (AVERAGES OVER50

INSTANCES OF EACH SIZE).
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Fig. 5. Average percent improvement over MST for the implemented algo-
rithms.

rithms. Running times are reported in Table II. The results
show that OPT has practical running time up to 35 nodes, and
produces an average improvement over MST of 5-6%. The De-
launay version of OPT has practical runtime up to 60 nodes, but
gives slightly worse solutions.

The provably good GFC algorithm, its faster Delaunay ver-
sion, GFC-D, as well as the natural Kruskal-like heuristic KR
are all very fast, but give less than half of the optimum im-
provement. In contrast, EFS, EFS-D, and even the distributed
ES heuristic, come on the average within a fraction of a percent
of the optimal improvement with very well scaling runtime.
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[14] G. Călinescu, I. Măndoiu, and A. Zelikovsky, “Symmetric connectivity

with minimum power consumption in radio networks,” in2nd IFIP In-
ternational Conference on Theoretical Computer Science (TCS 2002).
Kluwer Academic Publishers, 2002, pp. 119–130.

[15] A. Zelikovsky, “Better approximation bounds for the network and Eu-
clidean Steiner tree problems,” Department of Computer Science, Uni-
versity of Virginia, Tech. Rep. CS-96-06, 1996.

[16] ——, “An 11/6-approximation algorithm for the network Steiner prob-
lem,” Algorithmica, vol. 9, pp. 463–470, 1993.

[17] G. Robins and A. Zelikovsky, “Improved Steiner tree approximation in
graphs,” inProceedings of the 11th ACM-SIAM Annual Symposium on
Discrete Algorithms, 2000, pp. 770–779.

[18] M. Padberg and L. Wolsey, “Trees and cuts,”Anals of Discrete Mathe-
matics, vol. 17, pp. 511–517, 1983.

[19] L. Lovász and M. Plummer,Matching theory. Amsterdam–New York:
North-Holland, 1986.

[20] U. Feige, “A treshold oflnn for approximating set cover,”Journal of the
ACM, vol. 45, pp. 634–652, 1998.

[21] “SCIL–Symbolic Constraints for Integer Linear programming,”
www.mpi-sb.mpg.de/SCIL.

3Average does not include two intances not solved within one day.
4Average does not include one intance not solved within one day.


