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Abstract=We study the problem of assigning transmission requirement for supporting a link between nodesndv sepa-
ranges to the nodes of ad hoc wireless networks so that to min- rated by a distancebecomes
imize power consumption while ensuring network connectivity.
We give (1) an exact branch and cut algorithm based on a new
integer linear program formulation solving instances with up to
35-40 nodes in 1 hour; (2) a proof thatMIN-POWER SYMMETRIC .. . . .
CONNECTIVITY WITH ASYMMETRIC POWERREQUIREMENTsisin-  Unless explicitly stated otherwise, in this paper we assume
approximable within factor (1 — €)In|V| for any ¢ > 0 unless Symmetric power requirements such as those given by (2).
P = NP; (3) an improved analysis for two approximation algo- Having every link established in both directions simplifies
rithms recently proposed by Calinescu et al. (TCS'02), decreasing gne-hop transmission protocols by allowing acknowledgement

the best known approximation factor to5/3 + €; (4) a comprehen-
sive experimental study comparing new and previously proposed messages to be sent back for every packet (see, for example

heuristics with the above exact and approximation algorithms. [13]). This motivates the study of the IM-POWER SYMMET-
RIC CONNECTIVITY problem, where a link is established only

if both nodes have transmission range at least as big as the dis-

INTRODUCTION tance between them, and the goal is to ensure that the network
(iﬁﬁconnected [1], [14].
d Formally, letV be a set representing network nodesaAge

Ssignmenis a functionr : V. — R,. We say that ainidi-
rectional link from nodeu to nodew is established under the
gange assignment if r(u) > p(u,v). Similarly, abidirec-
jonal link uv is established under the range assignmetit

) > p(u,v) andr(v) > p(v,u). Let B(r) denote the set of
bidirectional links established between pairs of nodes in
rpg’der the range assignment

p(u,v) = pv,u) =r" ()

Ad hoc wireless networks have received significant attenti
in recent years due to their potential applications in battlefiel
emergency disaster relief, and other application scenarios (
e.g., [1], [2], [3], [4], [5], [6], [7]. [8], [9], [10]). Unlike wired
networks or cellular networks, no wired backbone infrastru
ture is installed in ad hoc wireless networks. A communicati
session is achieved either through single-hop transmission if {f
recipient is within the transmission range of the source no
or by relaying through intermediate nodes otherwise. Whe
transmission is made by a node it can be received by all nod@sy-PoweER SYMMETRIC CONNECTIVITY: Given a set of
within its transmission range. This feature is extremely usefdbdesl” and symmetric power requiremepi(s:, v) = p(v, u),
for energy-efficient multicast and broadcast communications, » ¢ V, find a range assignment: V — R, minimizing

For the purpose of energy conservation, each node can (pgs-_ r(v) subject to the constraint that the gra@h B(r)) is
sibly dynamically) adjust its transmitting power, based on th&nnected.
distance to the receiving node and the background noise. Inthe . ) . R
most commonly used power-attenuation model [11], the Sig“,]aﬂmphmt in the work of Clementi, Penna, and Silvestri [4] is

. . . H 2
power falls as: wherer is the distance from the transmitter? proof that MN-POWER SYMMETRIC CONNECTIVITY in E
antenna and is a coefficient dependent on the wireless e NP-Hard. Therefore, we study approximation algorithms and

vironment, typically betweeg and4. Under this model the heuri§tic§ for the problem. In this paper we make the following
power requirement for supporting a link from nodéo nodey ~ contributions:

separated by a distanesés given by « We give an exact branch and cut algorithm based on a new
integer linear program formulation for the problem (Sec-
p(u,v) = Xuo,rt 1) tion I). Experimental results show that the branch and cut
algorithm solves instances with 25 nodes in less than one
wherey,, > 0 is the transmission efficiency of nodeo, > 0 minute and instances with up to 35-40 nodes in 1 hour
is the signal detection sensitivity threshold of nedands,,, (Section III).
is the signal attenuation exponent for the link franto v. Typi- « We give an improved analysis for two approximation al-

cally itis assumed that all nodes have the same transmission ef- gorithms from [14], decreasing the best known approxi-
ficiency and detection sensitivity coefficients, both normalized mation factot to 5/3 + ¢ (Section 1I-A).

to 1, and that signal attenuation exponefts have a common « We show that MN-POWER SYMMETRIC CONNECTIV-
value k (see, e.g., [12]). With these assumptions, the power ITY WITH ASYMMETRIC POWER REQUIREMENTSIS in-

roximable within f 1—¢)l for an
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« We present a comprehensive experimental study compiranakis, Krizanc, and Pelc [5] give an(n*) dynamic pro-
ing new and previously proposed heuristics with the aboggammig algorithm for the case efcolinear nodes and power
exact and approximation algorithms. Experimental resultsquirements given by (2), prove thab@PLETE RANGE As-
show an average of 5-6% reduction in power consumptiamcNMENTIN E?2 is NP-Hard, and give a 2-approximation algo-
compared to the simple MST based solution (Section lllyithm based on the minimum spanning tree, As opposed to the
For the important special case of nodes located on a line ah8YMMETRIC BROADCAST approximation of [9], the OMm-
monotonic symmetric power requirementsi\MPOWERSYM-  PLETE RANGE ASSIGNMENT approximation of [5] is valid in
METRIC CONNECTIVITY can be solved in polynomial time by arbitrary graphs (that is, the distance between two points could
dynamic programming; we omit the details for space reason®g€ arbitrary, not necessarily Euclidean). Clementi, Penna, and
Silvestri [4] give an elaborate reduction proving thadN&
A Related Work PLETE _RANGE ASSIGNMENT _in E? is also NP—Hard._ As
' shown in [14], the power required by for the asymmetr@nG
Kirousis, Kranakis, Krizanc, and Pelc [5] give a minip gTE RANGE ASSIGNMENT can be as low as half the power

mum spanning tree (MST) based 2-approximation algorithpaquired for MN-POWER SYMMETRIC CONNECTIVITY.
for MIN-POWER SYMMETRIC CONNECTIVITY (their algo-
rithm is aCtua”y deSigned for the @PLETE RANGE As- |. INTEGERLINEAR PROGRAM FORMULATION
S'GS';‘]MtEeNTapr?glema?.'sgursa?%dbtﬁ(l)owg %mgscro.?tnal's.r[nlgr._ In this section we give an integer linear program (ILP) for-
!t:i)(lajs betweepanVNX-lPOV\I/ER SYIMMETRVIVC CgNNXEpCTII\I/I?Y :inld 'mulation for MIN-POWER SYMMETRIC CONNECTIVITY and

. : . describe a branch and cut algorithm based on it. The results
the classic $EINER TREE problem. In particular, [14] gives a

fully polynomial1 + In 2 approximation scherRdased on [15] in Section Il show that the algorithm is practical for instances

. N : with up to 35-40 nodes.
and a more practical5/8 approximation algorithm based on We begin by reformulating Mi-POWER SYMMETRIC

[16]. Blough et al. [1] give asymptotic bounds on the SO|UtiO|&ONNECTIVITY in graph theoretical terms. Lét = (V, E, c)

cost for random and so calléd, §) Euclidean instances. be an edge-weighted graph amd denote the undirected edge

The objective of minimizing the total power has been mortgzﬁtween nodes andv. The coste(uv) of an edgew € E

extensively addressed under the specific power requireme Sres . ; _
: ' - . ponds to the (symmetric) power requiremsnt v) =
given by (2) and the relatemsymmetricconnectivity model, in p(v,u). For anode: € V and a spanning tréE of G, let uur

which unidirectional links give raise to a directed graphion be the maximum cost edge incidenttin T, i.e.,uur € T and

(see [12]). Four problems have been studied under this model. :
1. AsyMMETRIC UNICAST, which requires establishing ackuuT) 2 c(uv) foralluv € T'. Thepower cosbf a spanning

o . . treeT is
minimum power directed path from a sourgdo a destina-
P b p(T) =" c(uur)

tiont. ASYMMETRIC UNICAST is easily solved in polynomial
time by shortest-path algorithms. The relatedNMPOWER i ) .
SYMMETRIC UNICAST problem can also be solved efficiently>ince any connected graph contains a spanning tree, an equiv-
by a shortest-path computation in an appropriately construc@gnt formulation of MN-POWER SYMMETRIC CONNECTIV-
graph [14]. ITY is to ask for a spanning tree with minimum power-cost in

2. ASYMMETRIC BROADCAST, which requires establishing the complete graph ol with edge costs given by(uv) =
a minimum power arborescence rooted at a given ver{@}, |[“v|". Thus, MN-POWER SYMMETRIC CONNECTIVITY can
[10]. Clementi et al. [3] prove that #&vMMETRIC BRoap- D€ reformulated as follows:
CcAST is NP-Hard when the nodes are B¥. The best known MiNIMUM POWER-COST SPANNING TREE Given a con-
approximation algorithm for AYMMETRIC BROADCAST [9], nected edge-weighted gragh = (V, E, ¢), find a spanning
based on computing a minimum spanningﬁtree, has performage@T of G' with minimum power-cost.
ratio of at most 12 when the nodes arefin. Chu and Niko-
laidis [2] give an experimental study of asymmetric broadcagtgﬁef::ﬁttjlezt:r'\g%g;% I:VOeWuEStCt:v(\is-E;)PeASN("\)‘]:Nb?n;?yE(?:siSion
algorithms for mobile ad hoc networks. As noted in [14], the 'S ariables:
lated S'MMETRIC BROADCAST problem is identical to MN- ' . .
POWER SYMMETRIC CONNECTIVITY. Ty foralluv € E; Tyy IS SEtto 1 ifuv belqngs to the

3. ASYMMETRIC MULTICAST, in which one is given a roat selected spanning trdéar)d to 0 otherwise. We call
and a set of terminalg, and the goal is to establish a minimum- these Erlaties tmﬁ’ \Erlables . .
power branching rooted atwhich reaches all vertices @f. As Y@@ forallw € E := {uv,vu | uv € E}; yzy is setto 1
a generalization of AYMMETRIC BROADCAST, ASYMMET- if ur = v (i.e., ifuv € T ande(uv) > c(uw) for all
RIC MULTICAST is also NP-Hard, and based on the work of uw € T. We call these_ variables thange variables
[9], it is immediate that a minimum Steiner tree would give aNOte that there argl’| tree variables angl?| = 2|E| range
approximation ratio ofi2p, wherep is the approximation for variables. LetST be set of the incidence vectors of all spanning

Steiner tree in graphs (the best result known at this momeﬁﬁf‘es ofZ (viewed as subsets df). Our ILP formulation is as
givenin [17],isp = 1 + 1 In3 + ¢). oflows.
4. COMPLETERANGE ASSIGNMENT, in which the objective

ueV

is establishing a strongly connected subgraphyofKirousis, min Z c(uv)yas
2A fully polynomiala approximation schemis a family of algorithmsA. wveE
such that, for every > 0, A. (1) has performance ratio at mast- , and (2)
runs in time polynomial in the size of the instance arfd. S.t. Z Yaw = 1, VueV (3)

U€V|WEE



Input: Edge-weighted graptf = (V, E, ¢)
Output: Spanning tree of7

T+ MST(G),H + 0

Repeat forever
Find a fork K with the maximuny = gainr(K)
If g < 0then exit repeat
H+— HUK, G+ G/K, T+ T/K

Output TU H

Fig. 2. The greedy fork-contraction algorithm.

Fig. 1. Letz, = 1/2 for all edges in the picturez¢ = 1, if there are two for all v € V' \ S. The inequality
parallel edges). Let range variablgs;: be equal to 1/2 fon = wup,us,

and to 0 otherwise. Then constraints of type (3) and (4), are satisfied, but the

constraint (6) is violated fof = {u1,u2}. Z Z Yaw > 1 (6)

ueSveVc(uv)>c(uus)

Tuv < L Z Yuw Ve e £ (4) is valid for the problem above. We can argue as follows. There
uweBle(uw)zc(uv) is at least one edge in the spanning tféerossing the cus.
x € conv(ST) (5)  Letuw be such an edge ande S. Thenc(uv) > c(uus) and
z € {0,1}/7l the range of; is at least(uv). Thuszvev‘c(uv)zduw) Yaw IS
B one and the inequality is valid.
y €{0,1} Since we do not have a separation algorithm for these in-

. equalities, we use the following heuristic to separate some of
The constraints (3) enforce that we select exactly one rande, We chose an arbitrary node For every nodes €
variable for every node € V, i.e., we properly define the range '

. o V \ {u}, we compute the minimal directed cut fromto v
of each'node. The cons_tramts (4) enforce that an i"”*g.e n- an(\j Ero%nv to u, wr?ere the capacity of an edgg is given by
cluded in the tree only if the range of each endpoint is at le For all computed cuts. we test whether
the cost of the edge. The constraints (5) enforce that the triggwlc(zw)>c(zy) Yaw- 1l comp '
variables indeed form a spanning tree. There are several w ﬁ:correspondlng inequality is violated.
known linear descriptions for € conv(ST). We use the fol-

lowing, most famous formulationz € conv(ST) & = > [l. APPROXIMATION ALGORITHMS
0,2 cep@e =[V[—Tland} . sz <|S|—1foralls C In this section we give an improved analysis for two approxi-
E, wherey(S) is the set of edges df with both ends inS. mation algorithms proposed in [14] forIM-POWER SYMMET-

To solve the ILP we use branch and cut, i.e., we drop the iRtc CONNECTIVITY and show that MN-POWER SYMMET-
tegrality constraints and solve the corresponding LP relaxatichc CONNECTIVITY WITH ASYMMETRIC POWER REQUIRE-
If the solution of the LP is integral, we found the optimal somENTS cannot be approximated within fact@r— €) In [V| for
lution, otherwise we pick a variable with a fractional value andnye > 0 unlessP = N P;
split the problem into two subproblems by setting the variable
to 0 and1 in the subproblems. We solve the subproblems recug- N : .
sively and disregard a subproblem if its LP bound is worse th%ri Improved Approximations for Symmetrlc Reqwr?mer]ts
the best known solution. Recently, [14] proposed an algorithm with approximation ra-

Since there are an exponential number of inequalities in thig of 7/4 + € based on polynomial time approximation scheme
formulation of spanning trees, we can not solve the LP directh?r computing the minimum-weight spanning cactus in a 3-
Instead, we start with a small subset of these inequalities and#iform hypergraph, and a more practical greedy algorithm
gorithmically test whether the LP solution violates an inequafith approximation ratio of 15/8. Below we improve the ap-
ity which is not in the current LP. If so, we add the inequalitproximation factors of these two algorithms(s + ¢ and 11/6,
to the LP, otherwise we found the solution of the LP with thEespectively. o _ o _
exponential number of inequalities. The inequalities added tohe greedy algorithm in [14] (see Figure 2) iteratively im-
the LP if needed are callemitting planesalgorithms that find Proves the MST Dby inserting the befstk, i.e., pair of edges
violated cutting planes are callegparation algorithms of G sharing a node. Note that the power cost of féfk=

In our case, the initial LP consists of the constraints (31{)@1:62} is p(K) = 2max{c(e1), c(e1) } + min{c(e1), c(e1)}.
and (4), the constraint ., z. = |V| — 1, and the bound he edges of forks added to the MST replace the highest cost
constraints, i.e., the constraimts< = < 1 and0 < y < e€dgesinthe two created cycles. As a result the power cost may

1. The only constraints added on demand are the constraifigerease. Thgainof fork K is defined by

Zeew(s) z. < |S|—1forall S C E. A separation algorithm . _

for these inequalities is due to Padberg and Wolsey [18]. gain(K) = 2mst(G) — 2mst(G/K) — p(K)
The running time of a branch and cut algorithm can improveg, .o, <+

by tightening the LP relaxation, i.e., by finding additional in- h h : f lapsi I .
equalities which are valid for all integer points, but may bg,stinzlir?]%dgbtamed roii by collapsing all nodes ok” into

violated by solutions to the LP relaxation (Figure 1 shows an The proof of the approximation ratios in [14] is based on on

example). We use the following class of valid inequalities. L"{’ﬁe notion of3-restricted decompositioof a treeT, which is
S CV.Forevenu € Sletus € V\Ssothat(uus) < c(uv) 5 partition of the edges dF into forks and individual edges.

(G) the minimum cost of a spanning tree@fG / K



Afork (e; = uv,es = u'v) is calledconsecutivéf c(e;) <
c(e2) and there is no edgeceD incident tov such that(e;) <
c¢(e) < c(e2). For each compone® € D, theconsecutive line
graph Lp is defined as follows (see Figure 3(b)):
— vertices ofL , are the edges dP
— Lp has “consecutive” edges connecting each consecutive
forks of D, and at most two “parity” edges connecting the
root of D and the second most expensive non-root edge
@ incident to each end of the root
— for every edge (e1,es) of Lp, w(er,ex) =
min{c(e1), c(e2)}
By construction, each edge dfp, corresponds to a fork of
D. Therefore, each matching of Lp corresponds to a 3-
restricted decomposition d? (edges ofX correspond to forks
and isolated vertices correspond to isolated edges) which we
denote) x . Itis easy to see that(Q x) = 2¢(D) — w(X).

Fig. 3. (a) Partitioned tre#'. Each vertex has a single outgoing arc denoting The theorem follows if, for each € D, we find a matching
its maximum incident edge, double arcs are roots and dashed edges are bricfgg?). in L~ such that

(b) Consecutive line graphs for the components. Vertices represent edge D

T and edges represent forks Bf “consecutive” edges are solid and “parity”
edges are dashed.

(b)

¢(D) —c(rp) + ¢(bp)
3

w(Xp) > (8)

The power-cost of a 3-restricted decompositiprp(Q), is the ) ) )

sum of power-costs of its elements, i.e., forks and individuiherec(D) is the total cost of the edges In, rp is the single
edges. Itis proved in [14] that, if there exists a 3-restricted dE20tinD, andbp is the single bridge i, if one exists. Indeed,
composition®) with P(Q) < pp(T), then the greedy algorithm

in Figure 2 has approximation ratio+ p/2 and there is PTAS (| @x») = Y (2¢(D) —w(Xp))
with approximation ratip + . Below we prove thap < 5/3 DeD DeD
improving the ratior /4 from [14]. 5 1 1
Theorem 1:For aréy tre€l’, there is a 3-restricted decompo- < > (gC(D) +3c(rp) - §c(bD)>
sition @ of T such thap(Q) < 2p(T). DeD
Proof: The proof proceeds in three steps. First we partition _ §c(T) n lc(R) _ lc(B)
the edges of " into disjoint components using structural infor- 3 3 3
mation derived from power requirements. Then we construct a < ) T
weighted subgraph of the line graph of each component, which = §p( )

we refer to as the “consecutive” line graph. Finally, we show . ,
that the consecutive line graph of each component has a mat¥fjére the last inequality comes from (7) and the fact that
ing exceeding a certain weight; the edges in these matchifigs) < P(T) (see, e.g., [14]). N
correspond to the forks in the desired 3-restricted decomposiBY Edmonds’ theorem [19] it is sufficient to construct a frac-
tion of T'. tional matchingX p satisfying (8). Afractional matchingof
To describe how we partition the edgelofsee Figure 3(a)) Lp iS an assignment of nonnegative fractiaris, , e2) to ev-
we need to introduce some additional notations. ruet:(u) €7 €d9&ei,e2) € Lp such that
be the maximum edge & incident to a vertex..> For each (i) the sum of fractions assigned to the edges incident to a

vertexu, we direct the edgenaz(u) away fromu. An edge ~ vertexeof Lpis at most 1, and _
uv is calledroot if it is directed both ways (i.esnaz(u) = (i) the sum of fractions assigned to all edges with both end-
maz(v) = uv), and calledbridgeif it remains undirected (i.e., points in a set ok + 1 vertices ofLp is at mostk.

maz(u) # uwv andmaz(v) # wv). In the power-cost of’, The weight of a fractional matchingp, is given by
roots are counted twice (for both endpoints), bridges are not

counted at all, and all other edges are counted exactly once. w(Xp) = Z z(e,e)w(e,e')
Thus, denoting by the set of roots and b# the set of bridges, (e,e’)EE(D)
we have:
p(T) = ¢(T) + ¢(R) — ¢(B) (7 We construct a fractional matching, by assigningl/3 to

. . ...each consecutive edge , e>) of L. This fractional matching
The edges of" are partitioned as' follows. First, we start W'thsatisfies (i) since eache D isincidentto at most 3 consecutive
the connected componentsBf- B; note that each such com-

ponent contains exactly one root. Then we add each btidfie edges ofL.p (if e is not the rootp, then it participates into

) one consecutive edge @fp ase;, and into up to two edges as
B 1o one of the two adjacent componentsio& B, such that . he root participates as the heaviest end in up to two edges).

each component gets at most one bridge. A bridge assignmg ¢
i omp 9 . 1age. a9 '9 éz%dition (i) follows from the fact that consecutive edges form
with this property is obtained by selecting an arbitrary Verte&(tree. Since every vertexof L, except the root participates

vp and assigning to each componentlof- B not containing . :
vo the unigue adjacent bridge on the pathigo We denote by we?gﬁf g%/)?ln?scggjaelcttglg/(el)f)o @e é&:;)))a/sg,el' we get that the
: - 5 .
D the resulting partition. If D has no bridge then (8) follows. Otherwise we modify
3W.L.o.g., we assume that no two edgegohave the same cost. Xp such that the weight increases &$p)/3 as follows. Let



P = (bp = e, fo, €1, f1, - €k, fr, €1 = rp) be the unique
path of consecutive edges &f, wheref; = (e;,e;41), 1 =
1,...,k are edges of.p corresponding to consecutive forks

in D. We add 1/3 tar(f;), 7 = 0,2,4, ..., and substract 1/3
from z(f;), i« = 1,3,.... Since bothbp, andrp participate

in at most two consecutive forks, the above change leads to a
feasible fractional matching (the sum of fractions assigned to
the edges incident to each intermediate verteR oémains the
same). Ifk is even then the total weight df p increases by at
leaste(bp)/3 sincew(fa—1) = clea—1) < clea) = w(far), et x2 X3 %

I=1,...,k/2and we are done. Fig. 4. Solid dots coorrespond to subsets and empty dots correspond to ele-
If % is odd we add back 1/3 tﬁ(fk) to guarantee INCreasiNg ments of the seX in the instance of the set cover problem. Each bididrected

of w(Xp) by at leasic(bp)/3. If e, has degree 2 il p then arc shows that an elemnt belongs to a subset.

we are done, since the sum of all fractions assigned to the edges

incident toey, equals to 1. Otherwisey, has degree 3 and weRemark. Theorem 2 relies on using non-Euclidean distances;

need to further modifyX p in order to make it a feasible frac-we leave open the aproximability status of\MMPOWER SYM -

tional matching. Lety be the common vertex of;, andrp. METRIC CONNECTIVITY with power requirements given by

Since fr, = (er,exr+1 = rp) is a consecutive forkgy is the (1).

most expensive non-root edge Bfincident tov. Lete be the

second most expensive non-root edgéahcident tov. Since I1l. EXPERIMENTAL STUDY

e ande;, form a consecutive forkl,, contains thee, e;,). Re-

call thatL p also contains a parity edge, p). We modify X p

as follows:

o If e,y #e(i.e.,e_1 is notadjacentto the root), then we
substract 1/3 from:(e, e;,) and sete(e,rp) to 1/3.
o If 6,1 = e (i.e., e,y is adjacent to the root), then we

substract 1/3 fromx(fy—1) and setz(e = ex—1,7p) tO
1/3.

In both cases, the resulting sums of fractions assigned to the

edges incident each ef andrp are equal to 1, and hencép,

satisfies (i). Condition (ii) is valid since edges with non-zero

weight in Xp continue to form a tree. ]

We have implemented the exact branch and cut algorithm de-
scribed in Section | (OPT), the greedy fork-contraction algo-
rithm of [14] (GFC), and three new heuristics:

« Asimple edge-switching (ES) heuristic that starts from the
MST, and repeatedly replaces a tree edge with a non-tree
edge re-establishing connectivity. At every step, the algo-
rithm chooses the pair of edges that results in the largest
reduction in power cost; the process is repeated as long as
improvement is still possible. We simulated a distributed
implementation of the algorithm in which only non-tree
edges that connect nodes within 10 tree-hops from each
other are considered for switching.

o A heuristic performing both edge and fork switching
(EFS). At every step the algorithm chooses the edge or the
fork whose addition to the tree leads to the largest reduc-
tion in power cost. Unlike GFC, forks are not contracted,
which means that an edge in an added fork can later be
removed from the tree by other edge or fork switches.
o A Kruskal-like heuristic (KR) that starts with isolated
nodes and iteratively adds an edge connecting two differ-

B. Hardness of Approximation for Asymmetric Requirements

The following theorem shows that handling asymmetric
power requirements is intrinsically more difficult than handling
symmetric requirements, e.g., under asymmetric power require-
ments the minimum total power cannot be approximated within
any constant.

Theorem 2:MIN-POWER SYMMETRIC CONNECTIVITY

WITH ASYMMETRIC POWER REQUIREMENTS cannot be ap-
proximated in polynomial time within factqi — €) In |V for
anye > 0 unlesP = NP.

Proof: We will prove the theorem by reduction from

the set cover problem which is known to be non-approximable

within factor(1 — €) In |V| for anye > 0 unlesP = N P [20].
For any instance of the set cover problem, we construct an
stance of the problem of M-POWER SYMMETRIC CONNEC-

ent components witiminimum increasén power cost. A
similar heuristic (called incremental search) was studied
by Chu and Nikolaidis for computing low-powers&m-
METRIC BROADCAST trees in a mobile environment [2].

We included in our comparison faster versions of OPT and
{aEC, OPT-D and GFC-D, which speed-up the computation by
working on the Delaunay graph defined by the nodes instead

TIVITY WITH ASYMMETRIC POWER REQUIREMENTS such of the complete graph. We also implemented a faster version

that approximating the second problem within a fadtoim-

of EFS, EFS-D, in which only forks consisting of Delaunay

plies approximating the first problem within the same factor. edges (but still all non-tree edges) are considered as switching

Let Sy,S5;,...,S, be subsets of a ground sef =
{1'1,.1’2,..
number of subsets covering the entire et We construct an

candidates.

.,T,. The set cover problem asks for the minimum All algorithms were implemented in C++, including the
branch and bound algorithm whose implementation is built on

instance of Min-Power Symmetric Connectivity in which eacRCIL [21]. The heuristics were compiled usiggp with -O2

point cooresponds to either a s&f or an element:; € X

optimization, and run on an AMD Duron 600MHz PC. The ex-

or is an auxiliary pointY (see Figure 4). We set the poweP€riments were run on randomly generated testcases. For each

regirements as follows: it; € S;, thenp(z;,S;) = 0 and

instance sizes between 10 and 100, in increments of 5, 50 dif-

p(Si,z;) = 1. Alsop(S;, X) = p(X, S;) = 0. All other power ferent instances were generated by chosimpgints uniformly
requirements are infinity. It is easy to see that the minimum t8t random from a grid of siz&0, 000 x 10, 000.

tal power equals the minimum number of sStscovering X .

In Table | and Figure 5 we report thpercent improvement
m over MSTi.e., 100 x W for the compared algo-

T)



n| OPT[OPT-D| ES|EFS[EFS-D] KR [ GFC[ GFC-D n| OPT[OPT-D| ES| EFS|EFS-D] KR [ GFC[ GFC-D
10| 401 3.66]|3.81[4.00] 3.94|049] 1.39] 1.19 10| 0.67] 0.10]0.00] 0.00] 0.00]0.00] 0.00] 0.00
15| 4.77| 4.26|4.48|4.70| 451|1.72| 156| 0.48 15| 5.68| 0.43|0.00| 0.02| 0.00|0.00| 0.00| 0.00
20| 5.84| 5.17|546|575 547|254| 201| 1.40 20| 22.2| 1.19]0.00| 0.10| 0.00|0.00| 0.00| 0.00
25| 5.63| 4.72|4.78|553| 5.12|219| 1.56| 0.72 25| 58.9| 3.46|0.00| 0.26| 0.00|0.00| 0.00| 0.00
30| 546| 4.90|4.87|536| b5.03|177| 165 0.24 30| 201| 6.49]/0.00| 0.61| 0.00|0.00| 0.00| 0.00
35| 5.68| 5.11|5.04|560| 540/213| 1.93| 096 35| 712| 11.2/0.00| 1.16| 0.02|0.01| 0.00| 0.00
40| 5413 | 482|5.01|551| 5.25/182| 1.37| 0.26 40| 4728 | 52.1]0.00| 2.13| 0.03]0.01| 0.00| 0.00
45| —| 537|5.13|577| 5.47|217|222| 067 45| —| 109|0.00| 3.71| 0.05|0.00| 0.03| 0.03
50| —| 5.36|555|590| b5.62|245| 203 033 50| —| 181]0.02| 550| 0.05|0.00| 0.02| 0.02
55| —| 6.09|5.61|654| 6.21|265| 260 1.19 55| —| 653]/0.05| 9.03| 0.05|000|0.03| 0.03
60| — | 5.46'|5.25|6.06| 5.73|231| 215 050 60| —| 573'|0.05|12.48| 0.06]0.00| 0.05| 0.05
65| — —|5.01|5.80| 556|230| 1.65| 0.38 65| — —|005| 17.9| 0.09|0.04| 0.03| 0.03
70 — —|5.12|6.01| 560|241| 1.94| 0.24 70| — —1003| 255| 0.10{0.04|0.01| 0.01
75| — —|5.10|578| 550|246| 1.69| 0.48 75| — —|0.02| 334| 0.09]002|000| 0.00
80| — —|5.14|6.03| 5.77|288| 200 064 80| — —|005| 449| 0.12{000|0.00| 0.00
85| — — | 473|569 5.37|252| 1.82| 0.39 85| — —|006| 550/ 0.16{0.00| 0.00| 0.00
| — — | 542|630 6.01]|284| 218 0.38 | — —|0.09| 755| 0.21]{0.00| 0.00| 0.00
95| — —|5.29|6.08| 581|235| 173 0.19 95| — —|011| 101| 0.26]/0.00| 0.05| 0.05
100 — —|5.45/6.25| 6.09]|256| 2.30] 0.99 100 — —|014| 123] 0.32]0.00] 0.05| 0.05
TABLE | TABLE I

PERCENT IMPROVEMENT OVER THEMST (AVERAGES OVER50
INSTANCES OF EACH SIZB.

(3]

(6]

(7]

(8]

9]

(20]

(11]

nodes

Fig. 5. Average percent improvement over MST for the implemented algbL2]

rithms.

rithms. Running times are reported in Table Il. The results
show that OPT has practical running time up to 35 nodes, §4§%
produces an average improvement over MST of 5-6%. The &
launay version of OPT has practical runtime up to 60 nodes, but
gives slightly worse solutions. 15]
The provably good GFC algorithm, its faster Delaunay veL-
sion, GFC-D, as well as the natural Kruskal-like heuristic KR
are all very fast, but give less than half of the optimum inf?
provement. In contrast, EFS, EFS-D, and even the distributge
ES heuristic, come on the average within a fraction of a percent
of the optimal improvement with very well scaling runtime. [18]
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