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Abstract. The ability of high-throughput sequencing to generate large
quantities of reads has allowed virologists to study the structure of viral
populations from an infected host in detail. RNA-based viral popula-
tions, due to point mutations and recombination events, exist as het-
erogeneous �swarm� and are known as quasispecies. Discerning rare, i.e.,
low-frequency, variants within the population is made di�cult due to
errors introduced by the sequencing technology. In this paper we address
the problem of error correction for high-throughput sequencing reads
generated from a viral quasispecies sample. We propose an EM-based al-
gorithm that performs competitively with previously reported methods.

Keywords: Error correction. Viral quasispecies. High-throughput se-
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1 Introduction

Mutation and recombination during replication drive the heterogeneity
of RNA-based viral populations. The rapid rate of replication through-
out infection produces a highly diverse yet closely related viral variants
known as quasispecies. The variability of the quasispecies structure can
have e�ects in a host's immune escape response and cell tropism[4].
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Next-generation sequencing o�ers unprecedented level of sequencing depth
and coverage. By exploiting this massive availability of genetic data, the
quasispecies structure may be inspected directly. While the technology
is capable of generating large amounts of data, it is not without �aws.
Reads (i.e., examined sequence fragments) may contain base-call errors as
well as homopolymer errors. A base-call error is the result of a nucleotide
being miscalled by the machine. That is, instead of the actual nucleotide
being reported a substitute nucleotide was called. This includes the pos-
sibility of insertions and deletions. Homopolymer errors are the result
of the sequencing machine's inability to accurately interpret the signals
generated from nucleotide incorporation during synthesis. As longer iden-
tical nucleotide subsequences are synthesized by the machine, the signal
(typically either light or voltage-based) increases in a non-linear fashion.
This results in either over or under-estimating the abundance of a speci�c
nucleotide. A naive error correction method may drop all low frequency
reads as it may be suspected they are the end product of errors in the
sequencing technology. However, there exist low-frequency viral variants
in the population. Distinguishing rare variants from errors remains a dif-
�cult and challenging aspect of viral quasispecies reconstruction.

Several approaches for error correction already exist. KEC is k-mer (i.e.,
substrings of �xed length k) based error correction algorithm[5]. Its ap-
proach is based on analyzing frequencies and compositions of k-mers
for detecting regions with errors. ShoRAH uses a mixture method ap-
proach. A non-parametric Bayesian model is used to cluster reads[8].
QuasiRecomb is another approach utilizing a �jumping� Markov model
that incorporates the possibility for recombinant viral progeny[9].

The paper is organized as follows. Section 2 describes the proposed meth-
ods and model for correcting errors. Section 3 discusses the experimental
results and validation of the method. Finally in section 4 we conclude the
paper with possible future improvements and implementation details.

2 Methods

We refer to an extended reference as the �nal consensus from an itera-
tive sequence alignment. The extended reference may contain insertions
due to deletions in reads, which we denote as d. Let a genotype Gi be
a matrix where each column corresponds to a position on the extended
reference and each entry of the column stores frequency of the corre-
sponding nucleotide {a, c, t, g, d}.

Formally, given a set of reads R emitted by a population P and k ∈ N, a
k-genotype Gk = Gk(P ) of the population P is a set Gk = {G1, . . . , Gk}
of k distinct genotypes that most likely emitted R:

Gk = argmax
Hk,|Hk|≤k

Pr(R|Hk).

Note that if |P | = k, then �nding k-genotype is equivalent to reconstruc-
tion of the original haplotypes in P . Thus the problem of �nding correct



viral amplicons can be reduced to the following.

Population k-Genotype Reconstruction Problem. Given a set R of single
amplicon reads emitted by haplotype population P , �nd a k-genotype
Gk for the population P .

Population k-genotype EM (kGEM). We initialize the algorithm
by the following procedure. Let A = {a, c, g, t, d} and select uniformly
and independently at random n reads from R. For each sampled read
s denote its mth allele by sm and let fi,m(e) denote the frequency of
allele e in the mth position of Gi. We assume that enumeration of alleles
in s is the same as in the extended reference. Compute the initial allele
frequencies given by,

fi,m(e) =

{
1− 4ε if sm = e

ε otherwise,

where ε > 0 is the probability of error. We denote genotype Gi in iter-
ation t as G

(t)
i and similarly for some frequency fi. The algorithm then

performs the following four steps in each iteration:
1. Estimate Read Emission Probability.

Estimate the probability hi,r that the ith genotype Gi has emitted
aligned read r given by,

hi,r =

end(r)∏
m=start(r)

fi,m(rm)∑
e∈A f

2
i,m(e)

, (1)

where start(r) and end(r) refer to the beginning and ending positions
of read r in the extended reference.

2. Estimate k-Genotype Frequencies via EM[2].
We initialize frequencies of every Gi uniformly as 1

k
. Each iteration

τ of the EM algorithm consists of the following two steps:
(a) E-Step: Compute the expected number of reads ei,r emitted from

the ith genotype Gi that match read r given by,

ei,r = or · pi,r (2)

pi,r =
f
(τ)
i · hi,r∑k

i′=1 f
(τ)

i′ · hi′,r
, (3)

where fi is the frequency of Gi and or is the observed frequency
of r.

(b) M-Step: Estimate the frequency f
(τ+1)
i of each G

(t)
i as the por-

tion of all reads emitted by G
(t)
i as follows:

f
(τ+1)
i =

∑
r∈R ei,r∑k

i′=1

∑
r∈R ei′,r

(4)

Repeat steps (2)-(4) until the squared deviation

k∑
i=1

(f
(τ)
i − f (τ+1)

i )2

falls below the pre-speci�ed accuracy δ > 0 for each i = 1, . . . , k.



3. Estimate Allele Frequencies.
Compute the normalized frequency fi,m(e) of each allele e ∈ A in

the mth position of G
(t+1)
i as follows:

fi,m(e) =

∑
r∈R:rm=e pi,r∑

r∈R:begin(r)≤m≤end(r) pi,r
(5)

4. Round Allele Frequencies.
Round allele frequencies according to the following rules:

fi,m(e) =

{
1− 4ε if e = argmaxe′∈A fi,m(e′)

ε otherwise
(6)

Repeat steps (1)-(6) until the distance ||G(t)
i , G

(t+1)
i || falls below the

pre-speci�ed accuracy δ > 0 for each i = 1, . . . , k. Collapse duplicates
and drop rare genotypes (i.e., frequency fi below speci�ed threshold)
upon completion. If the total number of genotypes in the population has
changed repeat the entire procedure; otherwise, report the current set
Gk.

3 Results

Using a sample of 44 HCV clones from [7], 20 simulated data sets were
generated with Grinder version 0.5[1]. Each dataset consisted of 100,000
total reads from a random sample of 10 variants and was categorized
by its error model and generated population distribution. All datasets
contained mutation-based errors (i.e., substitution, insertion, and dele-
tion) which were distributed uniformly throughout a given read at a rate
of 0.1 percent. In addition, 10 datasets contained homopolymer errors
distributed according to the model of Balzer et al[3]. The population
distribution adhered to either a uniform or power-law model with pa-
rameter α = 2.0. kGEM was compared against KEC and QuasiRecomb
using sensitivity and positive predicted value (PPV) as a measure of the
quality of the error-corrected data sets (Figure 1).4 Reads were aligned
using the tool InDelFixer[6]. Results shown are the mean and standard
error over 5 datasets of the same �con�guration�. kGEM outperforms
QuasiRecomb in sensitivity in all 5 datasets. Further, kGEM has com-
parable PPV for the homopolymer-inclusive datasets, and higher PPV
for the non-homopolymer datasets. KEC was excluded since its clustering
stage would not �nish in a reasonable amount of time given the parame-
ters. When re-run without clustering, KEC resulted in 100% sensitivity
but extremely low PPV (e.g., 0.07%) and was dropped from considera-
tion.

4 Parameters for methods:
indel�xer -i data_set -g consensus -re�ne 3
kec -k 25 -i 5 data_set
quasirecomb -K 1:7 -global -i data_set
quasirecomb -K 7 -global -i data_set -re�ne
kgem -k 50 -tr 5 data_set
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Fig. 1. Sensitivity and PPV for the results on simulated data sets

4 Conclusion

In this paper we propose a new expectation maximization-based method
for error correction of amplicon NGS reads that performs reliably and
quickly. We compared our method with existing analogs such as KEC
and QuasiRecomb. Test results show kGEM is better in sensitivity and
positive predicted value than QuasiRecomb. Possible future work could
incorporate read quality scores.
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