kGEM: An EM-based Algorithm for Local Reconstruction of Viral Quasispecies

Alexander Artymenko, Nicholas Mancuso and Alex Zelikovsky
Department of Computer Science
Georgia State University
Atlanta, Georgia 30302-3994,
email:{aartyomenko, nmancuso, alexz}@cs.gsu.edu

Pavel Skums
Centers for Disease Control and Prevention
Atlanta, Georgia 30333
email: kki8@cdc.gov

Ion Mândoiu
Department of Computer Science & Engineering
University of Connecticut
Storrs, CT 06269,
email:ion@enr.uconn.edu

Abstract—The main challenge in local viral quasispecies reconstruction is to eliminate sequencing errors while preserving the natural heterogeneity of the viral population. This paper presents a new approach to error correction via an expectation maximization (EM) method.

Keywords—Next-generation sequencing, local reconstruction, expectation maximization, error correction, viral quasispecies.

I. INTRODUCTION

Single amplicon NGS reads refer to reads covering a viral genome region that can be covered by a single NGS reads (e.g., 400bp for 454 technology). In this paper we are dealing with the following

Local Population Reconstruction (Error Correction) Problem. Given a set \(R \) emitted by haplotype population \(P \), find a set of haplotypes \(H \) maximizing \(\Pr(R|H) \).

II. METHODS

The proposed algorithm Population \(k \)-genotype EM (kGEM) initially selects candidate haplotype set \(H \) covering \(R \) with at most \(s \) mismatches (e.g., \(s = 4 \)) and then transforms haplotypes into fractional haplotypes where each nucleotide (allele) is replaced with 5 probabilities each for the allele to be \(A, C, T, G, \) or to be deleted setting probabilities of observed nucleotide to 96% and all other probabilities set to 1%. Then the following steps are repeated until convergence: (1) For each haplotype \(H_i \in H \) and read \(r \in R \) estimate \(h_{i,r} = \Pr(R = r|H = H_i) \). (2) Estimate haplotype frequencies via EM using \(h_{i,r} \)'s and observed read frequencies. (3) Compute the normalized frequency \(f_{i,m}(e) \) of each allele in the \(m \)th position of \(H_i \). (4) Set frequency of the most frequent allele to 96% and all others to 1%. Collapse duplicates and drop rare genotypes upon completion and output the resulted set of haplotypes \(H \).

III. RESULTS

Simulated Data. Using a sample of 44 HCV clones from [4], 20 simulated data sets were generated with Grinder version 0.5[1]. Each dataset consisted of 100,000 total reads from a random sample of 10 variants and was categorized by its error model and generated population distribution. All reads contained errors (substitutions and indels) uniformly distributed at a rate of 0.1 percent. In addition, 10 datasets contained reads with simulated homopolymer errors. The population distribution adhered to either a uniform or power-law model with parameter \(\alpha = 2.0 \).

kGEM was compared against QuasiRecomb [3] using sensitivity and positive predicted value (PPV) as a measure of the quality of the error-corrected data sets (Table I). Reads were aligned using the tool IndelFixer[2]. Results shown are the mean and standard error over 5 datasets. kGEM outperforms QuasiRecomb in sensitivity in all 5 datasets. Further, kGEM has comparable PPV for the datasets with homopolymer errors and higher PPV for the non-homopolymer datasets.

IV. CONCLUSION

In this paper we propose a new reliable and fast EM-based method for error correction of amplicon NGS reads. Our preliminary results show advantage over QuasiRecomb.

ACKNOWLEDGMENTS

This work has been partially supported by two Collaborative Research Grant from Life Technologies, awards IIS-0916401 and IIS-0916948 from NSF, and Agriculture and Food Research Initiative Competitive Grant no. 201167016-30331 from the USDA National Institute of Food and Agriculture.

REFERENCES

