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Abstract Auctions and exchanges are one of the most important market mecha-
nisms for price determination and allocation of goods. In this paper we
consider the case when each buyer has a limited budget and wishes to
buy at most one item in multi-item auctions. We show the limitations of
two known mechanisms { sequence of single-item auctions and recently
introduced XOR double auctions { and introduce a new mechanism,
so called XOR (double) auction with buyer preferences (XOR-(D)ABP),
which avoids these limitations.

In the proposed mechanism buyers specify preferences on the items
on which they bid. We seek allocations of the items to the buyers
which are stable with respect to buyer's preferences, i.e., items which
are preferable to the item allocated to a buyer are sold for a price higher
or equal to what she o�ered for them. In the case of double auctions, the
allocation should also ensure fairness to the sellers: if an item received
a bid with a higher value than the allocated price, then the buyer who
placed that bid gets a more or equally preferable item. We �rst show
that in an XOR auction with no ties in buyer preferences and bid values
both buyers and sellers are better o� than in an XOR auction. Second,
we show that �nding stable allocations with maximum revenue or buyer
satisfaction can be done eÆciently in an XOR-DABP without ties, and
is NP-hard when ties are allowed. We propose a practical heuristic for
�nding maximum stable allocations in the presence of ties, and report
promising experimental results. Finally, we give an eÆcient algorithm
for the special case when all bids for an item have the same value.
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1. Introduction

Auctions and exchanges are one of the most important market mech-

anisms for price determination and allocation of goods. They are be-

coming even more important as the Internet creates the opportunity

for an increasing number of consumers and businesses to participate.

Traditional auction and exchange formats (English and Dutch auctions,

stock exchanges, etc.) allow the participants to bid for a single item at

a time. Recent research on combinatorial auctions [1, 2, 7, 9, 10, 11, 12]

has attempted to extend traditional auction formats by allowing bids on

bundles of items. Another attractive feature of combinatorial auctions

is the possibility to place multiple mutually exclusive (XOR) bids which

more accurately express buyer's true valuations and lead to more eÆcient

item allocations compared to sequential auctions [9, 12]. Unfortunately,

in combinatorial auctions buyers cannot express any preferences induced

by their limited budget.

Consider for example a sealed-bid single-round auction in which one

or multiple builders o�er for sale several houses. Each buyer is interested

in buying a single house from a set of acceptable choices. Each buyer

b has its own private value, private(b; h), for each house h. A buyer

with unlimited budget will simply place mutually exclusive bids, one for

each acceptable house, with bid values chosen so as to equalize buyer

utility. The situation is drastically changed in presence of budget

constraints. Note that for real estate the budget limit may also depend

on the house appraisal value, i.e., a buyer b may have a di�erent budget

budget(b; h) for each house h. In this case the buyer can no longer

assign bid values that would make all choices equally acceptable. Indeed,

assume that b is interested in buying one of two houses, h1 and h2, such

that private(b; h1) � budget(b; h1) > private(b; h1) � budget(b; h1) > 0.

In a second price auction a rational buyer should bid the maximum

possible value for each house, i.e., budget(b; hi) for the house hi, i = 1; 2.

The utility derived by b, private(b; hi) � budget(b; hi), is larger when b

wins house h1 rather than h2. Therefore, it may be better to bid for h1
only, and do no bid for h2.

This implies that the limited budget forces a buyer to prefer one house

over another. If a buyer would place XOR bids on her choices, current

combinatorial auction mechanisms will probably force her to buy one

of the most expensive houses on her list, regardless of her surplus for

that house. In fact, she may end up with the least preferable house,

i.e., house that give her the least surplus. When this is the case, buyers

may be better o� by not bidding on all acceptable choices, see, e.g.,

Example 2. To encourage buyers to accurately express their wishes via
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XOR bids, the mechanism for determining the winning bids should take

into account buyer's preferences between XOR bids.

The revenue of the auction (for each item separately) would increase

if more bids are placed. Therefore it is in the auctioneer interests to let

each buyer to place bids in the order preferable by this buyer. Indeed,

if the order is changed then the rational buyer's behavior is not to bid

for items which will be sold before the item which gives the most gain

for the buyer.

In this paper we give winner determination algorithms which observe

buyer's preferences for some restricted types of combinatorial auctions.

In our setting each buyer wants to buy a single item. Together with bid

values buyers specify preferences (possibly including ties) on the items on

which they bid. We seek allocations of the items to the buyers that are

stable with respect to buyer's preferences in the sense that items which

are preferable to the item allocated to a buyer are sold for a price higher

or equal to what she o�ered for them. In the case of double auctions, the

allocation should also ensure fairness to the sellers: if an item received

a bid with a higher value than the allocated price then the buyer who

placed that bid gets a more or equally preferable item.

The stable item allocations can be chosen according to one of the

following objectives.

Maximum Revenue/Surplus: �nd a stable allocation maximizing

the sum of prices paid by the buyers, or the sum of prices paid by

the buyers minus the sum of reserve prices for the sold items.

Maximum Buyer Satisfaction: �nd, if it exists, the stable alloca-

tion in which each buyer gets the most preferable item among all

items that she can get in a stable allocation.

Finding stable allocations with either maximum total value/surplus or

maximum buyer satisfaction can be done eÆciently when there are no

ties in buyer preferences and bid values. As soon as buyers have ties in

their preferences, i.e., if they do not di�erentiate between two or more

items that they bid on, or if the bid values have ties, i.e., two buyers

happen to bid the same value on the same item, stable allocations with

maximum buyer preference may no longer exist, and �nding a stable

allocation with maximum value/surplus becomes NP-hard.

We further consider the important special case of XOR auctions with

buyer preferences in which all bids for an item have the same value. This

models, e.g., the situation in which the parties involved do not assign

bid values, but only express interest in starting bilateral negotiations.

For example, consider a government agency having a certain number of

projects. Various independent contractors bid on these projects, each
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giving her partial order of preferences for projects that she bids on.

The objective of the agency is to assign the maximum number of these

projects to various contractors with a constraint that a contractor is

assigned a project that is less preferable to her only when all projects

more preferable to her are assigned to someone else.

In this case the stability condition becomes weaker: buyers are guar-

anteed to get the most preferable item among those not taken by others.

We show that stable allocations form a greedoid when the seller does

not distinguish between items, e.g., when all items have the same re-

serve price. This implies that the maximum size stable allocation can

be computed eÆciently.

The paper is organized as follows. In next section we introduce the

maximum stable allocation (MSA) problem for XOR-DABP. In Section

3 we show the advantages of XOR-DABP without ties over XOR double

auctions. Then, in Section 4, we give practical exact and approximation

algorithms for the MSA problem, and report promising experimental

results. Finally, in Section 5 we study weakly stable allocations for

XOR-ABPs and give an eÆcient algorithm for �nding maximum size

weakly stable allocations.

2. XOR Double Auctions with Buyer
Preferences

In this section we introduce XOR double auctions with buyer prefer-

ences and de�ne stable allocations for them. Consider an XOR double

auction with a set B of buyers and a set I of items for sale. Each buyer

b is interested in buying a single item from a subset Ib of I. We assume

that buyer b places mutually exclusive bids on the items in Ib. The value

o�ered by b for item i 2 Ib is denoted by v(b; i).

In an XOR Double Auction with Buyer Preferences (XOR-DABP),

buyers have preferences for the items on which they bid. We write

i �b j when buyer b strictly prefers item i 2 Ib to item j 2 Ib, and i �b j

when b does not strictly prefer j to i. When �b is a total order on Ib we

say that b has strict preferences.

An item allocation L is a set of pairs (b; i), b 2 B, i 2 Ib, such that

each buyer b 2 B and item i 2 I appears in at most one pair of L. When

(b; i) 2 L we say that b and i are matched by L. We denote by B(L)

and I(L) the set of buyers, respectively items, that are matched by L.

For each b 2 B(L) (i 2 I(L)) we denote by L(b) (L(i)) the unique item

(buyer) to which b (resp. i) is matched by L. The allocation value of

item i 2 I(L) is VL(i) = v(L(i); i).
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1 For each i 2 I, L(i) b, where b is the buyer that bids the largest value on i

2 While there exist items i; i0 2 I s.t. L(i) = L(i0) = b do
If i0 �b i, then swap i and i0

L(i0) b0, where b0 is the buyer that bids the next largest value on i0

3 Output allocation L

Figure 1. Seller-optimal Gale-Shapley allocation algorithm for strict preferences
�b, b 2 B, and no ties in bid values.

De�nition 1 An item allocation L is stable if, for each buyer b 2 B

and item i 2 Ib, (b; i) =2 L implies that L(b) �b i or v(b; i) � v(L(i); i).

Stable allocations are simultaneously fair to buyers and sellers in the

following sense:

(1) A buyer cannot complain that she got a less preferable item (or

no item at all) since more preferable items were sold for a price

higher or equal to what she o�ered for them, and

(2) A seller cannot complain that she got less money for an item (or

that the item has not been sold) since every buyer that bids a

larger (resp. any) price for such an item gets a more or equally

preferable item.

Theorem 2 Stable item allocations always exist.

Proof: A stable allocation can be found by arbitrarily breaking ties

in buyer preferences and bid prices, and then running the Gale-Shapley

algorithm [3] extended to handle incomplete lists ([4], see Figure 1).

Since the allocation computed by the Gale-Shapley algorithm is stable

under the strict preferences obtained after breaking ties, it will also be

stable under the original (non-strict) preferences.

In general, an XOR-DABP admits more than one stable allocation.

In this paper we focus on the problem of �nding stable allocations with

maximum revenue, formally de�ned as follows:

Maximum Stable Allocation (MSA) Problem. Given an instance

of XOR-DABP, �nd a stable allocation L with maximum
P

i2I(L)

VL(i).

An alternative objective is to �nd, if it exists, the stable allocation

with maximum buyer satisfaction, i.e., the stable allocation in which

each buyer gets the most preferable item among all items that she

can get in a stable allocation When items have reserve prices, another

objective is �nding a stable allocation with maximum total surplus,
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P

i2I(L)

(VL(i)� r(i)), where r(i) denotes the reserve price of item i. Note

that the problem of maximizing total surplus is not identical to MSA,

since XOR-DABPs may admit stable item allocations of di�erent cardi-

nalities [8]. (This contrasts the classical result for the Stable Marriage

and Hospitals/Residents problems that all stable matchings have the

same cardinality and the sets of matched men/women are the same over

all stable matchings).

Theorem 3 The MSA problem is NP-hard under either one of the max-

imum value or maximum surplus objectives. The problem remains NP-

hard even when all buyers have strict preferences, or when all bid values

are distinct.

Proof: The proof follows by a reduction from the problem of �nding

a maximum cardinality stable marriage with incomplete preference lists

and ties (Max-Cardinality SMTI), which was recently proved to be NP-

hard by Manlove et al. [8]. Given an instance of Max-Cardinality SMTI,

we construct an MSA instance as follows: items correspond to men,

buyers correspond to women with the same preference lists, and the

value of the bid placed by buyer w on item m is set to 1+k", where k is

the rank of w in m's preference list. For small enough " any maximum

stable allocation for the MSA instance gives a maximum cardinality

stable marriage.

The NP-hardness of the restricted cases of MSA follows in the same

way from the NP-hardness of correspondingly restricted versions of Max-

Cardinality SMTI [8].

In the next section we will show that the MSA problem is polynomial-

time solvable in the case when there are no ties in bid values and buyers

have strict preferences. In Section 5 we will give an eÆcient algorithm

for the important special of the MSA problem when all bids the same

value, i.e., �nding a maximum cardinality stable allocation. Another

case known to be polynomial-time solvable is when buyers have no pref-

erences, i.e., XOR double auctions. In this case �nding the MSA reduces

to computing the maximum-weight matching in a bipartite graph rep-

resenting all bids.

3. XOR-DABP without Ties

In this section we consider the case when there are no ties in bid values

and buyer preferences. Note that we can always break ties in an XOR-

DABP by giving preference to bids placed earlier. In this case, stable

allocations for XOR-DABP correspond to stable matchings in a stable
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marriage instance with incomplete lists. Therefore, all stable allocations

assign the same set of items to the same set of buyers. Furthermore,

the lattice structure of stable matchings [4] implies the following two

properties of maximum stable allocations:

(1) There exists a unique stable allocation, called the seller-optimal

allocation, which simultaneously maximizes the total value and

the total surplus. Every item receives under this allocation the

maximum price over all stable allocations.

(2) There exists a unique stable allocation, called the buyer-optimal

allocation, with maximum buyer satisfaction. Under this alloca-

tion each buyer gets the most preferable item among all items that

she can get in a stable allocation.

The stable allocation with maximum value/surplus can be computed

eÆciently using the seller-optimal version of the Gale-Shapley algorithm

with incomplete preferences ([4], see Figure 1). The stable allocation

with maximum buyer satisfaction can also be computed eÆciently using

a buyer-optimal version of the algorithm. Thus we have:

Theorem 4 When there are no ties in bid values and buyers have strict

preferences, the MSA problem for XOR-DABP is polynomial time solv-

able under either one of the maximum value/surplus or maximum buyer

satisfaction objectives.

XOR auctions have the attractive property that revenues increase with

increasing number of buyers. Unfortunately, as shown by the following

example, when a new buyer joins an XOR double auction, any individual

seller may be worse o� (either may get a smaller price for her item, or

may not sell the item at all).

Example 1: Consider an XOR double auction in which two items, i1
and i2, are sold by di�erent sellers. A buyer b1 bids 2x � " monetary

units on item i1 and x monetary units on i2. In the absence of any other

bids, item i1 is allocated to b1, for a price of 2x� ". If another buyer b2
joins the auction and bids x monetary units on i1, the maximum value

allocation would assign i1 to b2 for a price of x and i2 to b1 also for a

price of x. Thus, the value of i1 goes down from 2x� " to x when b2 is

added to the auction.

We next prove that revenue monotonicity still holds for XOR-DABP.

The following lemma, which holds for either one of the three MSA ob-

jectives, follows from Theorem 1.4.3 in [4]:

Lemma 5 Let L be the maximum stable allocation for an XOR-DABP,

and let L0 be the maximum stable allocation after buyer b adds a new

item i to Ib such that j �b i for j 2 Ib, j 6= i. Then
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(1) For every item i, vL0(i) � vL(i).

(2) L0(b) �b L(b)

Corollary 6 Adding new buyers to an XOR-DABP cannot decrease the

price of any allocated item.

The following example shows that any individual buyer may be better

o� by not revealing all her acceptable alternatives in an XOR auction.

Example 2: Consider an XOR auction with two items for sale, i1 and

i2. Buyer b1 considers both i1 and i2 acceptable choices, and assigns

them a value of 2x � ", respectively x. However, b1 prefers i1 to i2.

Buyer b2 has only one acceptable choice, i1, and bids a value of x on

it. Assume that there are no other bids on i1 and i2. If b1 bids only

on item i1 then she gets it for a price of 2x � ", while b2 doesn't get

anything. On the other hand, if b1 places the bids on both i1 and i2,

the maximum value allocation would assign i1 to b2 and i2 to b1, for a

price of x each. By bidding on all her acceptable choices, bidder b1 has

worsened her outcome: she ends up getting her last preference although

her �rst choice is sold for half the price that she o�ered.

The next corollary of Lemma 5 shows that buyers are always better

o� by revealing their complete lists of preferences in an XOR-DABP.

Corollary 7 Regardless of the bids of the other buyers, the best strategy

for each buyer in an XOR-DABP is to reveal truthfully (i.e., in the true

order of preference) all her acceptable choices.

4. Allocation Algorithms for XOR-DABP

4.1 Integer Linear Program Formulation

Figure 2 gives an integer linear program formulation for the MSA

problem. This formulation can be used with available commercial MIP

solvers (e.g., Cplex 6.5) to compute optimum solutions for MSA in-

stances of moderate size. The integer program sets the variable xbi to

1 if item i is allocated to buyer b, and to 0 otherwise. The constraints

enforce that every item is allocated to at most one buyer (c1), that ev-

ery buyer gets at most one item (c2), and that the resulting allocation

is stable (c3).

Remark: It is known that the constraints xbi 2 f0; 1g become un-

necessary in case when there are no ties, i.e., the MSA is given by the

solution to a linear, not integer, program. This gives another proof that

the problem is polynomial time solvable in this case.
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max
P

b2B

P

i2IB

xbiv(b; i)

s.t.
P

b2B:i2Ib

xbi � 1; i 2 I (c1)

P

i2Ib

xbi � 1; b 2 B (c2)

P

b02B:i2I
b0

xb0iv(b
0; i) � v(b; i)(1 �

P

j:j�bi

xbj); b 2 B; i 2 Ib (c3)

xbi 2 f0; 1g b 2 B; i 2 Ib

Figure 2. Integer linear program formulation for the MSA problem.

4.2 A Greedy Tie-Breaking MSA Heuristic

In this section we suggest a practical heuristic for the MSA problem.

The heuristic breaks the ties in buyer preferences in non-increasing order

of bid values (see Figure 3). As shown by Manlove et al. [8], the ratio

between the maximum and minimum cardinality of a stable allocation

is at most two. This immediately gives the following upper-bound on

the approximation factor of the greedy tie-breaking heuristic:

Theorem 8 The greedy tie-breaking heuristic has an approximation fac-

tor of 2�, where � is the ratio between the largest and the smallest bid

values.

The following example shows that the approximation guarantee es-

tablished in Theorem 8 is tight up to a constant factor.

Example 3: Consider an XOR-DABP instance with:

B = fb1; b2g

I = fi1; i2; i3g

Bid values: v(b1; i1) = L, v(b1; i2) = v(b2; i2) = ", v(b2; i3) = 2"

Preferences: i2 �b1 i1; b2 has no preference between i2 and i3.

Then the maximum value stable allocation is f(b1; i1); (b2; i2)g, with total
value L+ ". The greedy tie-breaking heuristic breaks the tie such that

i3 �b2 i2, and returns the stable allocation f(b1; i2); (b2; i3)g, with total

value 3".

4.3 Experimental Study of MSA Algorithms

In this section we report preliminary experimental results comparing

the greedy tie-breaking heuristic for the MSA problem with optimum
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1 Break ties in non-increasing order of bid values (e.g., among bids in a tie, the
bid with largest value becomes most preferable)

2 Break remaining ties arbitrarily

3 Find the seller-optimal stable matching using the Gale-Shapley algorithm (see
Figure 1)

Figure 3. The Greedy Tie-Breaking Heuristic for the MSA Problem

results computed using the MIP Solver from the Cplex 6.5 commercial

optimization package and the integer linear program formulation given

in Section 4.1. Our experiments were run on randomly generated XOR-

DABP instances modeling the real estate application in Section 1.

The generator further allows the user to select the distribution of the

number of bids per buyer and the method used to generate ties in buyer

preferences. More importantly, the generator has provisions for gener-

ating XOR-DABP instances with a structure likely to be encountered

in practical applications. Buyers and items are partitioned into a user

speci�ed number of classes, and the user may control what classes of

buyers can bid on what classes of items, as well as control reserve and

bid value distributions at class granularity. These parameters can be

used to model, e.g., di�erences in item popularity or buyer wealth.

Table 1 gives results for the greedy tie-breaking heuristic and the

Cplex MIP solver on XOR-DABP instances with 200{2000 items divided

into 3 classes, 200{8000 buyers divided into 2 classes, and 800{64000

bids. All reserve prices and bid surplus values were generated from

normal distributions.

5. Weakly Stable Allocations

In this section we introduce weakly stable allocations for XOR-ABPs,

give an eÆcient algorithm for �nding the maximum value weakly stable

allocation, and establish connections with greedoid theory.

Throughout this section we consider that there is a single seller, and

hence fairness to sellers reduces to maximizing the total value of sold

items. An allocation is said to be weakly stable if, for any buyer b, there

is no unallocated item that b prefers to the item she is allocated (in

particular, if b does not get any item, then all items which she bids for

must be allocated to other buyers). With the notations in Section 2,

allocation L is weakly stable if

(1) For any b 2 B(L) and k 2 I � I(L) \ Ib, L(b) �b k, and

(2) For any b 2 B �B(L), Ib � I(L).
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#items #buyers #bids Greed val. CPU sec. Cplex MIP val. CPU sec. Gap

200 200 800 75128257 0.03 78576249 2.46 4.39%
200 200 1600 74325339 0.06 84054224 285.45 11.57%
200 400 1600 88942384 0.08 89066527 0.93 0.14%
200 400 3200 89499018 0.17 89589954 4.21 0.10%
200 800 3200 90892284 0.27 90916681 1.83 0.03%
200 800 6400 91123664 0.55 91140024 11.86 0.02%

500 500 2000 182720456 0.15 200382640 20 8.81%
500 500 4000 188462442 0.3 213948423 1568.62 11.91%
500 1000 4000 221822991 0.48 223916856 5.61 0.94%
500 1000 8000 224921119 0.91 225496946 19.89 0.26%
500 2000 8000 223311871 1.68 223415781 11.47 0.05%
500 2000 16000 223996927 3.42 224104530 21.1 0.05%

1000 1000 4000 377607773 0.6 411979940 84.85 8.34%
1000 1000 8000 383358512 1.2 N.A. N.A. N.A.
1000 2000 8000 436211164 1.95 442829836 16.41 1.49%
1000 2000 16000 445455065 3.94 446120926 76.57 0.15%
1000 4000 16000 450705268 6.67 450921237 28.81 0.05%
1000 4000 32000 452143070 13.45 452334922 108.5 0.04%

2000 2000 8000 750054567 2.61 N.A. N.A. N.A.
2000 2000 16000 778591088 5.21 N.A. N.A. N.A.
2000 4000 16000 885838136 7.92 N.A. N.A. N.A.
2000 4000 32000 897567709 15.92 N.A. N.A. N.A.
2000 8000 32000 891690542 26.13 N.A. N.A. N.A.
2000 8000 64000 894947694 52.63 N.A. N.A. N.A.

Table 1. Results for the greedy tie-breaking heuristic and the Cplex MIP solver on
XOR-DABP instances with normal distributed reserve prices and bid values.

Maximum Weakly Stable Allocation (MWSA) Problem. Given

an instance of XOR-ABP, �nd a weakly stable allocation L with maxi-

mum total value.

The complexity of MWSA problem is open: we do not know if it is NP-

hard, and we are not aware of a polynomial time algorithm either. Note

that the maximummatching does not produce a weakly stable allocation

and the greedy tie-breaking heuristic may result in an unbounded error

(see Example 3). However, there is a non-trivial case of the MWSA

problem for which we give an exact solution. If all the the bid values

are the same, the the MWSA problems asks to maximize the number of

allocated items. This problem can be solved eÆciently by modifying a

maximum unweighted matching between buyers and items (see Figure

4). In the next subsection we will show that weakly stable allocations

form a greedoid, this yields another algorithm for �nding a weakly stable

allocation with maximum size.
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1 Find the maximum unweighted matching M between buyers and items

2 While there is b 2 B and i 2 I �M(I) such that M(b) �b i do
Find an item j which is the most preferable item for b in I �M(I)
Swap allocation of b, i.e., M  M � (b;M(b)) [ (b; j)

3 Output M

Figure 4. The Swapping Algorithm for the MWSA problem.

Theorem 9 The Swapping Algorithm (Figure 4) �nds a maximum size

weakly stable allocation for XOR-ABP.

Proof: We need to show that the number of iterations in loop 2 is

polynomially bounded. Indeed, after performing each such iteration,

buyer b improves the preference of the allocated item. Therefore, in

total, the number of iterations cannot exceed the number of bids.

Theorem 9 implies that we can use the Swapping Algorithm to ap-

proximately solve the MWSA problem for weakly stable allocations.

Theorem 10 The Swapping Algorithm has an approximation factor of

�, where � is the ratio between the largest and the smallest bid values.

5.1 Greedoids and Weakly Stable Allocations

In this subsection we show that the set weakly stable allocations form

a greedoid, which gives a more eÆcient algorithm for �nding a maximum

size stable allocation. We also show that the corresponding greedoids, so

called ABP greedoids, do not have the exchange property. This implies

[6] that the maximum weight stable allocation cannot be found with a

greedy algorithm.

De�nition 11 A transversal of a �nite family B = fI1; : : : Ing of sub-

sets of a �nite set I is a set T � I for which a bijection f : T !
f1; : : : ; ng exists such that i 2 If(i) for all i 2 T . A partial transversal

is a subfamily of B.

Assume now that each Ii = (Ii;�i) has a partial order on its elements

(e.g., preferences). A stable transversal of B, is a partial transversal T

of B such that for any i 2 T , if x �f(i) i, then x 2 T .

The following remark establishes the connection between weakly sta-

ble allocations and stable transversals.

Remark: Let I be the set of items and Ii be the set of items for which

buyer i place a bid. Then the bijection f of a stable transversal is a

weakly stable allocation and vice versa.
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De�nition 12 A greedoid on the ground set I is a pair (I; J(I)) where

J is a family of subsets of I satisfying the following two properties:

1. For every non-empty I 2 J , there is an element i 2 I such that

I � fig 2 J

2. For I;K 2 J with j I j<j K j, there is an element k 2 K � I such

that I [ fkg 2 J

Theorem 13 The set of all stable transversals T (I) forms a greedoid

with ground set I.

Proof: To show that (I; T (I)) is a greedoid we need to show that

(i) For any A 2 T (I), there exists a 2 A such that A� fag 2 T (I).

(ii) For any A;B 2 T (I) and jBj > jAj, there is an element b 2 B �A

such that A [ fbg 2 T (I).

Proof of (i). Consider arbitrary element a0 2 A. If A� a0 is not stable,

then there is y1 2 M(A) such that a1 = M(y1) �y1 a0. Inductively, if

A�ai�1 is not stable, then there is yi 2M(A) such that ai =M(yi) �yi

ai�1, for i = 1; 2; : : :. Since the set A is �nite, there should be i such

that either A� ai is stable or ai = aj for some j < i.

Assume that M is a preferred stable matching for A. Consider the

matching M 0 coinciding with M on all elements of A except ak, k =

j; : : : ; i, for which M 0(ak) = M(ak+1), k = j + 1; : : : ; i, and M 0(aj) =

M(ai). The matching M 0 is more preferable than M , therefore, M is

not preferred.

Proof of (ii). Let A;B 2 T (I) and jBj > jAj, and let M 0 be a stable

matching for B and letM be a stable matching for A with the minimum

jM 0 �M j. Since jBj > jAj, there exists y 2 M 0(B) �M(A). We �rst

prove that there exists b 2 B �A such that b �y M
0(y).

Indeed, let us assume that on the contrary, for any b 2 B � A, b �y

M 0(y). Then M 0(y) 2 B \A and the matching M 00 =M [ (M 0(y); y)�
(M 0(y);M(M 0(y))) is stable. Indeed, for any x 2 E�A, either x 2 B�A
and M 0(y) �y x or x 2 E � B and M 0(y) �y x since B is stable. Since

jM 0 �M 00j = jM 0 �M j � 1, we have a contradiction with the choice of

M .

Now assume that b 2 B�A is the best w.r.t. y among all elements in

B �A. We will show that A [ fbg is stable since M [ f(b; y)g is stable.
Indeed, for any x 2 E�A�b, either x 2 B�A and b �y x by the choice

of b, or x 2 E �B and b �y M
0(y) �y x since B is stable.

Let us refer to greedoids (I; T (I)) as greedoids for XOR auctions with

buyer preferences (ABP greedoids). The greedy algorithm for �nding
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a maximum size feasible set in a greedoid starts with an empty set

and then iteratively adds new elements keeping the set feasible until no

more elements can be added. If we apply the greedy algorithm to the

ABP greedoid then we will �nd a maximum size stable transversal, and,

as remarked above, this corresponds to a maximum size weakly stable

allocation.

Theorem 14 The greedy algorithm for the ABP greedoid �nds a maxi-

mum size weakly stable allocation for the corresponding XOR-ABP.
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