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ABSTRACT
Broadcasting is a fundamental operation which is frequent
in wireless ad hoc networks. A simple broadcasting mecha-
nism, known as 
ooding, is to let every node retransmit the
message to all its 1-hop neighbors when receiving the �rst
copy of the message. Despite its simplicity, 
ooding is very
ineÆcient and can result in high redundancy, contention,
and collision. One approach to reducing the redundancy is
to let each node forward the message only to a small subset
of 1-hop neighbors that cover all of the node's 2-hop neigh-
bors. In this paper, we propose two practical heuristics for
selecting the minimum number of forwarding neighbors: an
O(n log n) time algorithm that selects at most 6 times more
forwarding neighbors than the optimum, and an O(n2) time
algorithm with an improved approximation ratio of 3, where
n is the number of 1- and 2-hop neighbors. The best previ-
ously known algorithm, due to Bronnimann and Goodrich
[2], guarantees O(1) approximation in O(n3 log n) time.

1. INTRODUCTION
Wireless ad hoc networks can be 
exibly and quickly de-
ployed for many applications such as automated battle�eld,
search and rescue, and disaster relief. Unlike wired net-
works or cellular networks, no wired backbone infrastructure
is installed in wireless ad hoc networks. A communication
session is achieved either through a single-hop radio trans-
mission if the communication parties are close enough, or
through relaying by intermediate nodes otherwise. In this
paper, we assume that all nodes in a wireless ad hoc net-
work are distributed in a two-dimensional plane and have
an equal maximum transmission range of one unit.

Broadcasting is a fundamental networking operation in wire-
less ad hoc networks. It is widely and frequently performed
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in many networking tasks such as paging a particular host,
sending an alarm signal, and �nding a route to a particular
host [1][6][13]. A simple broadcasting mechanism, known
as 
ooding, is to let every node retransmit the message to
all its 1-hop neighbors when receiving the �rst copy of the
message. Despite its simplicity, 
ooding has a serious draw-
back, known as the broadcast storm [12]. First, because the
radio propagation is omnidirectional and a physical location
may be covered by the transmission ranges of several nodes,
many retransmissions are redundant. Second, heavy con-
tention could exist because retransmitting nodes are prob-
ably close to each other. Third, collisions are more likely
to occur because the RTS/CTS dialogue is inapplicable and
the timing of retransmissions is highly correlated.

The following simple technique was recently exploited [9][14]
to reduce redundant retransmissions: By virtue of beacon-
ing, each node maintains a local topology of its 2-hop neigh-
borhood, and relays the message only to a small subset of
1-hop neighbors which cover (in terms of radio range) all
nodes that are two hops away. The subset of 1-hop neigh-
bors selected by each node is referred to as forwarding set
[14] or multipoint relaying set [9]. In this paper we consider
the problem of �nding a forwarding set of minimum size.

Minimum Forwarding Set Problem: Given a source A,
let D and P be the sets of 1- and 2-hop neighbors of A. Find
a minimum-size subset F of D such that every node in P is
within the coverage area of at least one node from F .

1.1 Previous work
Jacquet et al. [9] and Sinha et al. [14] considered the Min-
imum Forwarding Set problem assuming no knowledge of
the geographic location of the nodes. In this case, the Mini-
mum Forwarding Set problem is essentially the well-studied
Set Cover problem. Not surprisingly, the heuristic proposed
in [9] is a translation of Chv�atal's greedy algorithm [3] for
Set Cover, and thus guarantees an approximation factor of
O(logm), where m is the maximum neighborhood size. The
greedy algorithm iteratively selects a 1-hop neighbor cover-
ing the maximum number of 2-hop neighbors not yet cov-
ered, and terminates when all 2-hop neighbors have been
covered. The greedy algorithm does not take into account
the geometric properties of the Minimum Forwarding Set
problem, and in fact Figure 1 shows a family of instances
for which the size of the solution found by the greedy algo-
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Figure 1: Instance for which the size of the solution computed by the greedy algorithm, fg1; : : : ; glog kg, is
larger than the optimum solution, fopt1; opt2g, by a logarithmic factor.

rithm is larger than the optimum by a logarithmic factor.

Under the assumption that the nodes in the wireless network
are distributed in a two-dimensional plane and each node
has unit transmission range, the topology of the network
is modeled as a unit-disk graph [4]. In this graph, there is
an edge between two nodes if and only if their distance is
at most one. The Minimum Forwarding Set problem for
a given source node s asks for a minimum size set of 1-
hop neighbors of s dominating 2-hop neighbors of s in the
unit-disk graph. The related Dominating Set problem in
unit-disk graphs [4] asks for a subset of nodes dominating
(i.e., adjacent to) all the other nodes. The Dominating Set
problem in unit-disk graphs is NP-hard [4] but admits a
PTAS [8]. The Minimum Forwarding Set problem does not
reduce to the Dominating Set problem in unit-disk graphs
since dominators are restricted to the set of 1-hop neighbors.

The Minimum Forwarding Set problem is also related to the
Unit-Disk Cover problem [7], which asks for the minimum
number of unit disks covering a given set of points in the
plane. The Unit-Disk Cover problem is also NP-hard [4]
and admits a PTAS [7]. Since in the Unit-Disk Cover prob-
lem disk centers can be chosen arbitrarily in the plane, the
algorithms for this problem do not apply to the Minimum
Forwarding Set problem where disks must be centered at
1-hop neighbors only.

The Minimum Forwarding Set problem is a special case
of the NP-Hard Disk Cover problem [2], which asks for
a minimum size subset of a given set of disks covering a

given set of points. The complexity of Minimum Forward-
ing Set problems is not known. A constant-ratio approx-
imation algorithm for Disk Cover, and therefore also for
Minimum Forwarding Set, was given by Bronnimann and
Goodrich [2] However, their algorithm { which is a special
case of a sophisticated algorithm for spaces with bounded
VC-dimension { has impractical running-time and its proven
approximation ratio is a very large constant.

1.2 Our contributions
� A 6-approximation algorithm for the Minimum For-
warding Set problem running in O(n log n) time, where
n is the total number of 1- and 2-hop neighbors.

� A 3-approximation algorithm for the Minimum For-
warding Set problem running in O(n2) time.

� An exactO(n2) time, and a 2-approximationO(n log n)
time algorithm for the special case of the Minimum
Forwarding Set problem when all 2-hop neighbors are
in the same quadrant with respect to the source node.

� A constant-factor approximation for the MinimumDisk
Cover problem with disks of the same radius, based on
rounding the optimal solution of a linear programming
relaxation.

� An experimental study of the proposed algorithms for
the Minimum Forwarding Set problem.

The paper is organized as follows. In next section we refor-
mulate the Minimum Forwarding Set problem in geometric



Algorithm 1: 1-Hop Disk Cover

Input: Unit-disk A, set of unit disks D centered inside A, set
of points P outside A such that P � [fD 2 Dg
Output: Subset F � D such that P � [fD 2 Fg

1. Partition the exterior of A into four quadrants Q1{Q4 by
two orthogonal lines, not containing points in P, through
the center of A (see Figure 2).

2. For q = 1; : : : ; 4, compute a disk cover, Fq , for the points
in P \Qq.

3. Output F = F1 [ F2 [ F3 [ F4.

terms, give a high-level algorithm based on decomposition
into quadrants, and establish basic geometric properties of
the partitioned sets of 1- and 2-hop neighbors. In Section
3 we describe a 2-approximation O(n log n) time algorithm
for covering 2-hop neighbors in a quadrant. An exact O(n2)
time algorithm for the same problem is described in Section
4. In Section 5 we give an extension of our techniques to the
Disk Cover problem of [2]. We present preliminary exper-
imental results comparing the proposed algorithms for the
Minimum Forwarding Set problem in Section 6 and conclude
in Section 7.

2. PARTITION BASED ALGORITHM
Throughout this paper a unit disk, or just disk for short,
refers to a closed disk of radius 1. The boundary of a re-
gion R of the Euclidean plane is denoted by @R, e.g., the
boundary circle of a disk D is denoted by @D. Under the
assumption that each network node has unit transmission
range, we reformulate the Minimum Forwarding Set prob-
lem as follows.

1-Hop Disk Cover Problem: Given a unit-disk A, a set
D of unit disks centered inside A, and a set of points P
outside A such that P � [fD 2 Dg, �nd a minimum-size
subset F of D such that P � [fD 2 Fg.

Our high-level algorithm (Algorithm 1) partitions the points
of P according to the four quadrants de�ned by two orthog-
onal lines through the center of A, and then independently
solves the 1-Hop Disk Cover problem for each quadrant. The
union of these four disk covers is then a disk cover for all
the points in P. As usual, the approximation ratio of an al-
gorithm A for a minimization problem � is the supremum,
over all instances of �, of the ratio between the output value
of A and the optimal value. The following theorem relates
the approximation ratio of Algorithm 1 to the approxima-
tion ratio that can be guaranteed for the 1-Hop Disk Cover
restricted to points in a single quadrant.

Theorem 1. If disk covers Fq computed in Step 2 are
within a factor of � of optimum, then Algorithm 1 has an

approximation ratio of at most 3� for the 1-Hop Disk Cover
problem.

Proof. Let OPT be the optimal set of disks, and denote
by OPTq , q = 1; 2; 3; 4, the subset of disks in OPT having
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Figure 2: The four quadrants in Algorithm 1.

centers in the qth sector of disk A. The key observation is
that points in the quadrant Qq cannot be covered by disks
in OPT

q+2(mod 4). Therefore, points in P \ Q1 must be

covered by disks in OPT4 [ OPT1 [ OPT2, and thus, by
the assumption that Fq's are within a factor of � of the
respective optimum solutions,

jF1j � �(jOPT4j+ jOPT1j+ jOPT2j):

Similarly,

jF2j � �(jOPT1j+ jOPT2j+ jOPT3j);

jF3j � �(jOPT2j+ jOPT3j+ jOPT4j);

jF4j � �(jOPT3j+ jOPT4j+ jOPT1j):

Thus, the output of the algorithm has size

jF1j+ jF2j+ jF3j+ jF4j

� 3�(jOPT1j+ jOPT2j+ jOPT3j+ jOPT4j)

= 3�jOPTj:

We will show that � = 2 can be achieved in O(n log n) time
(see Section 3), and � = 1 can be achieved in O(n2) time
(see Section 4). Hence, Algorithm 1 achieves an approx-
imation factor of 6, respectively 3, within the same time
bounds. It is natural to ask if these approximation ratios
can be improved by partitioning the set of points according
to k < 4 equal sectors de�ned by half-lines starting at the
center of A. The proof of Theorem 1 can be generalized to
show that partitioning into k sectors gives an approximation
ratio of (dk=2e+1)� for the 1-Hop Disk Cover problem if the
disk cover for each sector is approximated within a factor of
�. Thus, using decomposition into 3 equal sectors does not
lead to an approximation ratio better than that obtained
by decomposition into quadrants. Improvements using de-
composition into 2 equal sectors are possible provided that
we can �nd an algorithm for covering the points in a 180Æ

sector with an approximation ratio of less than 3=2. The
ideas used in Section 4 to solve exactly the problem for a
quadrant do not extend to 180Æ sectors, since these lack the
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Figure 3: The extreme con�guration in the proof of
Lemma 2(b).

second of the essential topological properties established for
the quadrants in the following lemma.

Lemma 2. Let Q be an exterior quadrant of A, J = @D

be its border, and D be a set of disks intersecting the interior
of Q. Then:
(a) For any disk D 2 D, j@D \ J j = 2.
(b) For any two disks D;D0 2 D, j@D \ @D

0 \Qj � 1.
(c) No two disks in D are tangent in Q.

Proof. Without loss of generality, we may assume that the
unit-disk A is centered at the origin and that Q is de�ned
by the positive x- and y-axes. Then, the boundary of the
quadrant Q, J , consists of the two half-lines from (0; 1) to
(0;1), and from (1; 0) to (1;1), together with a quarter-
circle of @A. Let a, b, c be the points with coordinates (0; 0),

(1; 0), and (0; 1), respectively. We will use
_
bc to denote the

quarter-circle of A enclosed in J .

(a) Since every D 2 D has non-empty intersection with the
interior of Q, every circle @D has at least two intersection
points with J . The closed simple Jordan curve @D and
the in�nite simple Jordan curve J must intersect an even
number of times (unless they are tangent, but this cannot
happen), and thus cannot intersect three times. Thus, to
complete the proof of part (a) we need to show that @D
does not intersect J four or more times.

Let d denote the center of disk D. Then 0 < jdaj � 1, since
d is inside A. Note that @D can intersect the x-axis in at
most two points, of which only one can have x-coordinate
bigger than 1. Similarly, D can intersect the y-axis in at
most two points, of which only one can have y-coordinate

bigger than 1. Furthermore, D intersects
_
bc at most once.

Indeed, when two unit-circles with centers within distance
of at most 1 intersect, the two intersection points are at least
2�=3 apart on each of the circles, and hence a quarter-circle
may contain only one of them.
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Figure 4: The skyline of a set of disks in a quadrant.

(b) Assume, for a contradiction, that D and D
0 are two

distinct disks in D that intersect at points h and l, with
both h and l in Q[ J . Let d and d

0 be the centers of D and
D
0, respectively. We will change the con�guration a bit, to

obtain a more extreme case. First, translate d, d0, h, and l

to the right until d or d0 hits
_
bc, and assume, by symmetry,

that d is on
_
bc . We still have h; l 2 R [ J . Assume also

that h is to the right of the point l. Now start rotating
the rhombus hd0ld clockwise around d until h hits either the
x-axis or

_
bc, whichever happens �rst (see Figure 3). This

procedure also keeps d0 inside the unit-disk A and l in Q.
Let m be the point where the line hd intersects the y-axis.
As jd0hj = jdhj = 1, d0 must lie in the same side of the

line hm as a. As the angle dham � �
2
, m must be within

the diameter of the unit-disk centered at d that contains h.
Therefore jdmj � 1. Thus l, which is in Q, must be outside
the triangle ahm, and consequently d0 must be on the other
side of the line hm than a, which is a contradiction.

(c) Let D and D
0 be two disks from D. Then @D and @D

0

cannot be tangent from the interior since they have the same
radius. If @D and @D are tangent from the exterior, then
the distance between their centers is 2, and the common
point can only be the origin a, which is not in Q.

3. FAST GEOMETRIC DISK COVERING IN
A QUADRANT

In this section we give a fast 2-approximation algorithm for
the 1-Hop Disk Cover problem with all points of P coming
from an exterior quadrant Q of unit disk A.

The skyline S = (x0; x1; : : : ; xk) of D is the upper envelope
of Q\([fD 2 Dg[A) (see Figure 4). The skyline consists of

arcs
_
xi�1xi on the border of disksDi 2 D[fAg, i = 1; : : : ; k,

such that x0 2 @Q\@D1, xi 2 @Di�1\@Di (i = 1; : : : ; k�1),
and xk 2 @Dk \ @Q. The algorithm (Algorithm 2) starts
by computing the skyline S with xi's numbered in counter-
clockwise order, i.e., with polar coordinates (�i; ri) of points
xi satisfying �0 � �1 � �2 � � � � � �k. As established in
Lemma 8 below, the skyline disks Di covering a point p 2 P



Algorithm 2: Geometric 1-Hop Disk Covering in
a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set
of points P in the exterior quadrant Q of A such that
P � [fD 2 Dg
Output: Subset F � D such that P � [fD 2 Fg

1. Find the skyline S = (x0; x1; x2; : : : ; xk) of D, where the
polar coordinates of xi are (�i; ri) and �0 � �1 � �2 � � � �

� �k. Let Di be the disk containing arc
_
xi�1xi.

2. For each p 2 P with polar coordinates (�; r), �nd the
interval [Dfirst(p);Dlast(p)] of skyline disks Di that cover
p, via three binary searches:

(a) �nd i 2 f1; : : : ; kg, such that � 2 [�i�1; �i]
(b) first(p) minfj : 1 � j � i; p 2 Djg

(c) last(p) maxfj : i � j � k; p 2 Djg

3. Using the greedy algorithm, �nd the minimum set F of
disks Di hitting each interval [Dfirst(p);Dlast(p)], p 2 P.

4. Output F

form an interval in the sequence D1; : : : ; Dk. The algorithm
computes these intervals for each point of P, them outputs a
minimum size set F of skyline disks Di hitting all intervals.
Clearly, the hitting set F computed by Algorithm 2 is a disk
cover for the points in P. Furthermore, we have:

Theorem 3. Algorithm 2 runs in O(n log n) time, and
has an approximation ratio of 2 for the 1-Hop Disk Cover
problem in a quadrant.

Theorems 1 and 3 immediately give:

Corollary 4. Combined with Algorithm 2, Algorithm 1
runs in O(n log n) time and has an approximation ratio of
6 for the Minimum Forwarding Set problem.

The rest of the section is devoted to the proof of Theorem
3.

Lemma 5. A point q 2 Q belongs to a disk D 2 D if and
only if the half-line L from the center a of A through a point
q intersects @D \Q at a point q0 such that q belongs to the
segment [a; q0].

Proof. Every disk D 2 D contains a. Thus, the segment
[a; q0] is fully contained in D, and every point of L outside
of this segment is in the exterior of D.

Lemma 6. If point p 2 P has polar coordinates (�; r) such
that � 2 [�i�1; �i], then p 2 Di.

Proof. Follows immediately from Lemma 5.

Lemma 7. Let D1; D2; D3 be three disks of D appearing
in this order in the skyline of fD1; D2; D3g. Then D1\D3\
Q � D2 \Q.
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Figure 5: The skyline of fD1; D2; D3g in Lemma 7.

Proof. Assume that D1 \ D3 \ Q 6= ;, and let S
0 =

(y0; y1; y2; y3) be the skyline of fD1; D2; D3g (see Figure 5).
Since y1 = @D1\@D2\Q, y2 = @D2\@D3\Q, and y1; y2 =2
D1\D3, Lemma 2(b) implies that @D2\@(D1\D3\Q) = ;.

To complete the proof, it suÆces to show that D2 contains
some point of D1\D2\Q. Let x = @D1\@D2\Q, and let L
be the half-line from a through x. Since a 2 D1, L intersects
@D1 exactly once, at x. Thus, L does not intersect the arc
_
y0y1 of the skyline. Similarly, L does not intersect

_
y2y3. It

follows that L intersects
_
y1y2, and, by Lemma 5, x 2 D2.

The following is a straightforward corollary of Lemma 7:

Lemma 8. For every p 2 P, the skyline disks Di cover-
ing p form an interval [Dfirst(p); Dlast(p)] in the sequence

D1; : : : ; Dk.

Lemma 9. The optimum cover of P with disks from the
set fD1; : : : ; Dkg of skyline disks contains at most 2 times

more disks than the optimum cover of P with disks from D.

Proof. It suÆces to prove that, for every D 2 D, D \ Q

is covered by at most two skyline disks. Furthermore, since
Lemma 5 implies that any set of disks covering @D\Q fully
covers D \Q, we only need to show that @D \Q is covered
by at most two skyline disks.

Let d1 and d2 be the two points of intersection of @D with
the boundary of the central disk A. By Lemma 2(b), any
skyline disk Di intersecting D \ Q contains at least one of
the points d1 and d2. The key observation is that, for any
two skyline disks Di and Dj both containing d1 (or both
containing d2), the arc @D\@Di \Q is contained in the arc
@D \ @Dj \ Q or vice versa. Therefore the minimal set of
skyline disks covering @D \Q has at most two disks.

Proof of Theorem 3. The approximation ratio of Algo-
rithm 2 follows from Lemma 9. Step 1 of the algorithm can
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of Algorithm 2.

be implemented in O(n log n) time using, e.g., an adaptation
of the divide-and-conquer algorithm in [11] for computing
the Manhattan skyline. The binary searches in Step 2 also
take O(n log n) time. Finally, the minimum set of points
hitting a set of intervals can be computed in linear in O(n)
time by the following simple greedy algorithm: sort (using
counting sort) the intervals according to the right endpoint,
and then repeatedly pick the rightmost point of the �rst
(in the sorted order described above) interval not yet hit.
The work is constant per interval: to check if an interval is
hit, we only have to compare the leftmost endpoint of the
interval with the rightmost selected element.

Remark. The approximation ratio of 2 in Theorem 3 is
tight: Figure 6 gives an instance when the optimum disk
cover consisting of skyline disks has size 2, while there is a
single disk covering the two points of P.

4. EXACT COMBINATORIAL DISK COV-
ERING IN A QUADRANT

In this section we give an O(n2) exact algorithm (Algorithm
3) for the 1-Hop Disk Cover problem with all points of P
coming from an exterior quadrant Q of unit disk A. The
algorithm is based on careful removal of disks combinatori-
ally covered by their neighbors. Below, we say that a disk
D 2 D is combinatorially covered (or just covered) by a set
of disks if each point in P \D belongs to the union of these
disks.

Algorithm 3 sorts all disks with respect to the positions of
the points of intersection with the boundary of the quadrant
Q. The main step of the algorithm, called 2-re�nement,
traverses the disks in sorted order recursively dropping disks
covered by their immediate neighbors on each side. For the
purpose of simplifying both the algorithm and the proof of
correctness, two dummy disks are added as the �rst and
last disks in the sorted sequence before 2-re�nement. Each
dummy disk covers one private (not covered by any other
disk) dummy point which ensures that the dummy disks are

always part of any disk cover.

Algorithm 3: Combinatorial Disk Covering

Input: The set of unit disks D, jDj = m, centered inside the
unit disk A, set of points P in the quadrant Q outside A such
that P � [fD 2 Dg
Output: Minimum size subset F � D such that
P � [fD 2 Fg

1. For each Di 2 D �nd li and ri, the two points of
intersection between the boundaries @Di with @Q. We
assume that lj < rj in a �xed orientation of @Q. Renumber
the disks in D such that either li < li+1 or li = li+1 and
ri < ri+1 for every i = 1; : : : ;m� 1.

2. Add at the beginning and at the end of D dummy disks D0

and Dm+1 each containing a private dummy point (i.e., a
point covered only by D0, respectively Dm+1) and not
covering any other point of P.

3. Combinatorial 2-re�nement:

Initialize a stack S with D0 and D1

For i = 2; : : : ;m+ 1 do
While top(S) is covered by the disk under top(S)

together with the disk Di, pop the stack S
Push Di on the stack S.

4. Remove the dummy disks D0 and Dm+1.

5. Output the set F of disks from the stack S.

Theorem 10. Algorithm 3 gives an optimal solution for

the 1-hop Disk Cover problem in a quadrant and can be im-
plemented in O(n2) time.

Theorems 1 and 10 imply:

Corollary 11. Combined with Algorithm 3, Algorithm
1 runs in O(n2) time and has an approximation ratio of 3
for the Minimum Forwarding Set problem.

In the rest of the section, we will prove Theorem 10. With-
out loss of generality, we assume that the dummy disks D0

and Dm+1 are part of the input. Under this assumption any
disk cover should contain D0 and Dm+1.

The proof is organized as follows. We �rst introduce the im-
portant topological notion of �-con�guration and discuss its
properties. Then we show that, with the possible exception
of the topmost disk, no disk in the stack covers any another
disk in the stack, and that the disks in the stack never form
�-con�gurations. Next we show that, in the maximum-area
optimum disk cover, every two consecutive optimum disks
combinatorially cover all disks between them. Finally, we
show that the set of disks remaining in the stack after 2-
re�nement and the maximum-area optimal disk cover are
interleaved, and hence have the same size.

We say that (i; j; k), 0 � i < j < k � m = 1, form a �-

con�guration if the three arcs @Di\Q, @Dj\Q and @Dk\Q
intersect pairwise, and the walk along @Dj\Q starting from
lj towards rj meets @Dk\Q no later than @Di\Q (see Figure
7). A simple topological argument shows that if (i; j; k)



form a �-con�guration, then Dj \ Q � (Di [Dk). Also,
if (Di \ Dk) n Dj is nonempty, either (i; j; k) form a �-
con�guration, or Di covers Dj , or Dk covers Dj .

We start with a simple property of the algorithm.

Lemma 12. At any moment, in the stack, no disk is cov-
ered by another, with the possible exception that the topmost
disk. If the topmost disk is covered by another disk, then it
covered by the disk right under it in the stack.

Proof. Consider the �rst moment a disk Di covers a disk
Dj , with Dj not the topmost element of the stack. Then Di

is the topmost element of the stack.

If Dj is right under Di, then Dj should have been popped
from S before Di is pushed. Otherwise, let Dq 6= Dj be the
disk right under Di in the stack. If walking on @Dq \ Q

starting at lq towards rq, we do not meet @Dj \ Q, then
Dq � Dj � Di, and Dq should have been popped from S

before Di is pushed. If walking on @Dq \ Q starting at lq
towards rq, we meet @Dj \ Q after meeting @Di \ Q, then
Dq nDi � Dj nDi and therefore Dq � Di, a contradiction as
before. If walking on @Dq \Q starting at lq towards rq, we
meet @Dj\Q no later than @Di\Q, then Dj � (Di\Dj) �
Dq , contradicting the fact that this is the �rst moment the
lemma does not hold.

Now let Dj be the topmost element of the stack, and assume
Di coversDj . LetDq be the disk right underDj in the stack.
If Dq = Di, we are done.

If Dq � Di, by induction we can assume that Dt, the disk
right under Dq in the stack, also covers Dq . Then Dq should
have been popped from S before Di is pushed,

If Dq 6� Di, then the walk on @Dq \Q starting at lq towards
rq meets @Di\Q no later than meeting @Dj \Q. Indeed. if
the walk on @Dq\Q starting at lq towards rq meets @Dj\Q
before @Di \Q, then Dq nDi � Dj nDi = ;, contradicting
Dq 6� Di. But then Dj � Di \ Dj � Dq , and we are done.

Lemma 13. The stack S never contains a �-con�guration.

Proof. Assume for a contradiction that there is a �-
con�guration on the stack S. Let (i; j; k) be a �-con�guration
with the smallest k, and, among these, choose the one with
the largest i. We will show that Dj is right under Dk in the
stack, and Di is right under Dj in the stack, but in this case
Dj should have been popped from S before Dk is pushed, a
contradiction.

Assume �rst that Dj is right under Dk in the stack, and let
Dq , q 6= i, be the disk under Dj in the stack. By Lemma 12,
Dq 6� Di and @Dq \Q must intersect @Di \Q. If the walk
on @Dq \Q starting at lq towards rq meets @Di \Q before
@Dj\Q, then Dq and Dk cover Dj , and therefore Dj should
have been popped from S before Dk is pushed. If the walk
on @Dq \Q starting at lq towards rq meets @Dj \Q no later

D

k
D

D
j

i

Figure 7: The �-con�guration.

than @Di \Q, then (i; q; j) form an earlier �-con�guration,
a contradiction.

Now assume Dq, q 6= j, is right under Dk in the stack. If
Dq is covered by either Di or Dj , then by Lemma 12 Dq is
covered by the disk under it in the stack, and therefore Dq

should have been popped from S before Dk is pushed. So
@Dq \Q intersects both @Di \Q and @Dj \Q. If the walk
on @Dq \Q starting at lq towards rq meets @Dj \Q before
@Di \ Q, then (i; j; q) form an earlier �-con�guration, a
contradiction. If the walk on @Dq \Q starting at lq towards
rq meets @Di \ Q before @Dj \ Q, then it must also meet
@Dk \ Q before @Dj \ Q, and therefore (j; q; k) form a �-
con�guration, contradicting the fact that (i; j; k) is the �-
con�guration with k � i minimum.

So in all cases we obtain a contradiction.

Lemma 14. Let OPT = fDt1 ; Dt2 ; : : : ; Dtoptg be the max-
imum-area optimum disk cover, where 0 = t1 < t2 < : : : <

topt. Then, for every ti < q < ti+1, i = 0; : : : ; opt � 1, Dq

is combinatorially covered by Dti [Dti+1 .

Proof. Assume by contradiction that there is a disk Dq 62
OPT , with ti < q < ti+1 such that Dq is not covered by
Dti and Dti+1 (see Figure 8). Let p 2 Dq n (Dti [ Dti+1).
W.l.o.g., assume that p 2 Dtj for j < i. Then (tj ; ti; q) form
a �-con�guration, and Dti � Dtj [ Dq. Hence, OPT 0 =
(OPT n Dti) [ Dq geometrically covers [fD 2 OPTg and
is itself an optimum disk cover. The contradiction follows
from the fact that [fD 2 OPTg is a strict subset of [fD 2
OPT

0g. Indeed, Dq is not combinatorially covered by the
other disks in OPT

0 and hence participates in the skyline
of OPT 0. Let s be the skyline arc of Dq . The interior of
s has no points in common with the disks in OPT

0 n Dq =
OPT nDti . Furthermore, since Dti is fully covered byOPT

0,
the interior of s has no points in common with Dti . Thus,
the interior of s is in ([fD 2 OPT

0g) n ([fD 2 OPTg).
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Figure 8: Replacing Dti with Dq increases the area
of the optimum disk cover.

Lemma 15. jF \ fDti ; Dti+1; : : : ; Dti+1�1gj � 1 for any
i = 0; : : : ; opt.

Proof. Assume that just after ti+1 is pushed on the stack,
F \ fDti ; Dti+1; : : : ; Dti+1�1g � fDx; Dyg, with x < y and
y � x maximum possible.

We �rst show that Dy is covered by Dx and Dti+1 . Indeed,
Lemma 14 implies that Dy is covered by Dti and Dti+1 . If
x = ti, we are done. Otherwise, Dti is covered by Dx and
Dv , where Dv is the disk under Dx in the stack, therefore,
Dy is covered by Dv; Dx and Dti+1 . If Dy has a point in
Dv nDx, then (v; x; y) is a �-con�guration, a contradiction
to Lemma 13. Thus Dy is covered by Dx and Dti+1 .

Let Dz be the disk under Dy in the stack. We will show
that Dy is covered by Dz and Dti+1 and thus Dy should
have been removed from the stack before Dti+1 is pushed
on the stack. Indeed, Dy is covered by Dx and Dti+1 and if
Dy has a point in DxnDz , then (x; z; y) is a �-con�guration,
a contradiction to Lemma 13.

Proof of Theorem 10. The approximation factor follows
from Lemma 15. Algorithm 3 can be implemented to run
in O(n2) time, where n = m + p is the number of cen-
ters, m, plus the number of points, p. Indeed, Step 1 needs
O(m logm) time, and each of the m iterations in combi-
natorial 2-re�nement can be implemented in O(p) time by
traversing all points in P.

5. THE GENERAL MINIMUM DISK COVER
PROBLEM

In this section we describe a constant-factor approximation
algorithm for the following

Minimum Disk Cover Problem. Given a set of unit

disks D and a set of points P in the Euclidean plane, �nd a
minimum-size subset F � D, such that P � [fD 2 Fg.

This problem is NP-Hard since it contains as a special case
Dominating Set in unit-disk graphs, a problem shown to be
NP-Hard in [4]. A polynomial-time algorithm with constant
approximation ratio for Minimum Disk Cover was �rst pro-
vided by [2].

If we can obtain a constant ratio for covering an equilateral
triangle with sizes equal to 1, we can obtain a constant ratio
for the whole plane, by tiling the plane into triangles and
separately covering all the triangles, and using the fact that
one disk in the optimum can only cover points in a constant
number of triangles.

Let ABC be such a triangle. If no point of P is in the
triangle, there is nothing to be done. Also, if there is a disk
D 2 D whose center is in the triangle, then D covers all the
triangle. So, in the following, we assume all the points are
in the triangle, and all the centers of disks in D are outside
the triangle.

The algorithm has four phases:

1. After removing those disks that do not intersect the
triangle, partition the remaining disks into three sets
D1, D2, and D3, such that all the centers of the disks
in D1 are on the other side of the line AB than C, all
the centers of the disks in D2 are on the other side of
the line BC than A, and all the centers of the disks
in D3 are on the other side of the line AC than B.
If a disk could be put in more than one Di, pick one
arbitrarily.

2. For i = 1; : : : ; 3, let Qi = B be the triangle and let
Ji be the line which separates the centers of the disks
of Di from the interior of the triangle. Find the sky-
line as in Section 3, and compute Fi, the set of disks
containing some arc of the skyline.

3. Write the natural Integer Programming formulation
involving only the disks in F1 [ F2 [ F3. Solve the
Linear Programming relaxation.

4. Round the linear programming optimum to an integer
solution, as described in Subsection 5.1.

Later we prove Theorem 16, which claims that the algorithm
described above has approximation ratio at most 6 for the
problem of covering the points inside the triangle.

First, we note that Lemma 2 holds easily when Ji is a
straight line. For each Fi, Lemma 8 also holds. Let F =
F1 [ F2 [ F3, and assume F is sorted with F1 (which is
sorted) followed by the sorted F2, and followed by the sorted
F3. Lemma 9 also holds, and therefore F contains a solution
at most twice opt, the size of an optimum solution.

5.1 Rounding
We use the natural IP, with variables xD, for D 2 F :



minimize
X

D2F

xD

subject to
X

D : P2D

xD � 1 8P 2 P (1)

xD 2 f0; 1g 8D 2 D: (2)

Let LP be the linear programming relaxation of IP, obtain
by replacing the constraints 2 by

xD � 0 8D 2 D: (3)

Let Z�IP the value of the IP optimum. As argued above, we
have Z�IP � 2 opt.

Let y be a (fractional) solution to LP. For a point P 2 B,
the set of disks covering it consists of at most three intervals,
say I

P
1 , I

P
2 , and I

P
3 . For one of the three intervals, which

we call simply I
P , we have:

P
D2IP

yD � 1=3.

Consider the following integer program, which we call IP',
with variables xD, for D 2 F :

minimize
X

D2F

xD

subject to
X

D2IP

xD � 1 8P 2 P (4)

xD 2 f0; 1g 8D 2 D: (5)

Let LP' be the linear programming relaxation of IP'. The
matrix of IP' is totally unimodular (see [5], page 200), and
3y is a solution to LP'. Therefore IP' has a solution of size
at most 3

P
D2F

yD, and an optimum for IP' can be found
easily by the greedy algorithm, as described at the end of the
proof of Theorem 3. Now, if y is an optimum solution to LP,
then
P

D2F
yD � Z

�
IP � 2 opt, and therefore the solution

found by the greedy algorithm has size at most 6opt.

Rounding consists of �nding for each point P 2 B the inter-
val IP , and then using the greedy algorithm to hit each I

P

with elements of F . In conclusion, we proved:

Theorem 16. The algorithm described in this section has
approximation ratio at most 6 for the covering points inside
an equilateral triangle with sizes equal to 1 with unit-disks

from a �xed set D.

Since a single disk from the optimum solution can cover
points in at most 17 triangles of the tiling we conclude

Corollary 17. There is a 102-approximation algorithm
for the Minimum Disk Cover problem.

6. EXPERIMENTAL RESULTS
We compared the two algorithms proposed for the Minimum
Forwarding Set problem on random instances generated as
follows. The polar coordinates for the speci�ed number of
1- and 2-hop neighbors of a source node placed at the origin
were generated by choosing for each point the angle uni-
formly between [0; 2�) and the radius uniformly from the
interval (0; 1] for 1-hop neighbors and uniformly from the
interval (1; 2] for 2-hop neighbors. The two algorithms were
then applied to the instance obtained by deleting all 2-hop
neighbors not covered by any 1-hop neighbor. The algo-
rithms were implemented as Java applets. As expected, the
geometric algorithm is much faster than combinatorial one,
by up to two orders of magnitude in our experiments, which
were run on a Pentium II 300MHz PC.

Table 1 reports the average results over 100 instances gen-
erated for each instance size. We remark that, although
the geometric disk covering has a worst case approxima-
tion guarantee twice larger than that of the combinatorial
disk covering algorithm, on the random instances used in
our experiments its solution is larger on the average by only
17{44%.

7. CONCLUSIONS
In this paper we presented a geometric O(n log n) factor-6
approximation algorithm and a combinatorial O(n2) factor-
3 approximation algorithm for selecting forwarding neigh-
bors in wireless ad-hoc networks, signi�cantly improving
both the running time and the approximation ratio of the
best previously known algorithm. An extension of our method
can be used to obtain an alternative constant-ratio polynomial-
time algorithm for the Minimum Disk Cover problem.

We mention that Theorem 10 is true in the following more
general setting. Let J be an in�nite simple Jordan curve
which separates the plane into exactly two regions, and let
Bi one of these two regions. Let all points P be in Bi, and
each Dj be a region bordered by a simple closed Jordan
curve @Dj . Also, each @Dj intersects the in�nite curve J

in exactly two points, and, for any two disks Dj and Dk,
@Dj \ @Dk \Bi has at most one point. Moreover, whenever
two of the curves above intersect, they cross each other.
Then the combinatorial disk covering algorithm 3 solves the
covering problem exactly.

Re�nement techniques can also be applied to a fractional
solution to the natural linear program LP to obtain a round-
ing procedure with a ratio of 2 when P and the centers of
D are separated by a straight line. Then, as in Section 5,
it follows that the linear program LP has constant integral-
ity ratio for the general problem. However, when the disks
in D are weighted, we do not know the integrality ratio of
the corresponding integer and linear programs. The linear
program is given below:

minimize
X

D2D

wDxD

subject to
X

D : P2D

xD � 1 8P 2 P (6)

xD � 0 8D 2 D (7)



Instance Size Geometric Algorithm Combinatorial Algorithm Relative
# 1-Hop # 2-Hop Skyline Solution 1-Re�ned Solution Error
6000 2000 44 36 197 29 24%
3000 1000 40 28 141 24 17%
2000 1000 38 27 137 22 23%
1000 5000 29 23 93 16 44%

Table 1: Comparison of the 1-Hop Disk Covers produced by the geometric and combinatorial algorithms.
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