Selecting Forwarding Neighbors in Wireless Ad Hoc Networks

Gruia Gilinescti lon |. Mandoid Peng-Jun Wan Alexander Z. Zelikovsky

Abstract

Broadcasting is a fundamental operation which is frequent in wireless ad hoc networks. A simple broadcasting
mechanism, known g#oding is to let every node retransmit the message to all its 1-hop neighbors when receiving
the first copy of the message. Despite its simplicity, flooding is very inefficient and can result in high redundancy,
contention, and collision. One approach to reducing the redundancy is to let each node forward the message only to a
small subset of 1-hop neighbors that cover all of the node’s 2-hop neighbors. In this paper we propose two practical
heuristics for selecting the minimum number of forwarding neighbors® @mlog n) time algorithm that selects at
most 6 times more forwarding neighbors than the optimum, an@ (anlog? n) time algorithm with an improved
approximation ratio of 3, where is the number of 1- and 2-hop neighbors. The best previously known algorithm,

due to Bronnimann and Goodrich [2], guarant€ég) approximation inO(n® log n) time.

Keywords: wireless ad hoc networks, broadcast, approximation algorithms, unit-disk graphs, disk cover.

1 Introduction

Wireless ad hoc networks can be flexibly and quickly deployed for many applications such as automated battlefield,
search and rescue, and disaster relief. Unlike wired networks or cellular networks, no wired backbone infrastructure
is installed in wireless ad hoc networks. A communication session is achieved either through a single-hop radio
transmission if the communication parties are close enough, or through relaying by intermediate nodes otherwise. In
this paper, we assume that all nodes in a wireless ad hoc network are distributed in a two-dimensional plane and have

an equal maximum transmission range of one unit.

*GC's research was partially performed while visiting the Department of Combinatorics and Optimization at University of Waterloo, where

supported by an NSERC research grant. The work of AZZ was partially supported by NSF Grant CCR-9988331, Award No. MM2-3018 of the
Moldovan Research and Development Association (MRDA) and the U.S. Civilian Research & Development Foundation for the Independent States

of the Former Soviet Union (CRDF), and by the State of Georgia’s Yamacraw Initiative.
tComputer Science Department, lllinois Institute of Technology, Chicago, IL 60616.
fDepartment of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093-0114
§Computer Science Department, lllinois Institute of Technology, Chicago, IL 60616
TDepartment of Computer Science, Georgia State University, University Plaza, Atlanta, Georgia 30303

Broadcasting is a fundamental networking operation in wireless ad hoc networks. It is widely and frequently
performed in many networking tasks such as paging a particular host, sending an alarm signal, and finding a route to
a particular host [1][9][17]. A simple broadcasting mechanism, knowfloasling is to let every node retransmit the
message to all its 1-hop neighbors when receiving the first copy of the message. Despite its simplicity, flooding has
a serious drawback, known as thmadcast stornj16]. First, because the radio propagation is omnidirectional and
a physical location may be covered by the transmission ranges of several nodes, many retransmissions are redundant.
Second, heavy contention could exist because retransmitting nodes are probably close to each other. Third, collisions
are more likely to occur because the RTS/CTS dialogue is inapplicable and the timing of retransmissions is highly
correlated.

The following simple technique was recently exploited in [13] (see also [12]) and [19] to reduce redundant re-
transmissions: By virtue of beaconing, each node maintains a local topology of its 2-hop neighborhood, and relays the
message only to a small subset of 1-hop neighbors which cover (in terms of radio range) all nodes that are two hops
away. The subset of 1-hop neighbors selected by each node is referrddiwarsiing sef19] or multipoint relaying
set[12][13]. In this paper we consider the problem of finding a forwarding set of minimum size.

Minimum Forwarding Set Problem: Given a sourcel, letD andP be the sets of 1- and 2-hop neighborsdofFind

a minimume-size subsef of D such that every node iR is within the coverage area of at least one node ffém

Figure 1: An instance for which the size of the solution computed by the greedy algofighm, . , giog « }. is larger

than the optimum solutioqopt,, opt2 }, by a logarithmic factor.

1.1 Previous work

Laouiti et al. [13] (see also Jacquet et al. [12]) and Sinha et al. [19] considered the Minimum Forwarding Set problem
assuming no knowledge of the geographic location of the nodes. In this case, the Minimum Forwarding Set problem
is essentially the well-studied Set Cover problem. Not surprisingly, the heuristic proposed in [13] is a translation of
Chvatal's greedy algorithm [4] for Set Cover, and thus guarantees an approximation factdogfn), wherem is

the maximum neighborhood size. The greedy algorithm iteratively selects a 1-hop neighbor covering the maximum
number of 2-hop neighbors not yet covered, and terminates when all 2-hop neighbors have been covered. The greedy
algorithm does not take into account the geometric properties of the Minimum Forwarding Set problem, and in fact
Figure 1 shows a family of instances for which the size of the solution found by the greedy algorithm is larger than
the optimum by a logarithmic factor.

Under the assumption that the nodes in the wireless network are distributed in a two-dimensional plane and each
node has unit transmission range, the topology of the network is modelathétsdisk graph5]. In this graph, there
is an edge between two nodes if and only if their distance is at most one. The Minimum Forwarding Set problem for
a given source node asks for a minimum size set of 1-hop neighbors @fominating2-hop neighbors of in the
unit-disk graph. The related Dominating Set problem in unit-disk graphs [5] asks for a subset of nhodes dominating
(i.e., adjacent to) all the other nodes. The Dominating Set problem in unit-disk graphs is NP-hard [5] but admits a
PTAS [11]. The Minimum Forwarding Set problem does not reduce to the Dominating Set problem in unit-disk graphs
since dominators are restricted to the set of 1-hop neighbors.

The Minimum Forwarding Set problem is also related to the Unit-Disk Cover problem [10], which asks for the
minimum number of unit disks covering a given set of points in the plane. The Unit-Disk Cover problem is also
NP-hard [5] and admits a PTAS [10]. Since in the Unit-Disk Cover problem disk centers can be chosen arbitrarily in
the plane, the algorithms for this problem do not apply to the Minimum Forwarding Set problem where disks must be
centered at 1-hop neighbors only.

The Minimum Forwarding Set problem is a special case of the NP-Hard Disk Cover problem [2], which asks for a
minimum size subset of a given set of disks covering a given set of points. The complexity of Minimum Forwarding Set
problems is not known. A constant-ratio approximation algorithm for Disk Cover, and therefore also for Minimum
Forwarding Set, was given by Bronnimann and Goodrich [2] However, their algorithm — which is a special case
of a sophisticated algorithm for spaces with bounded VC-dimension — has impractical running-time and its proven

approximation ratio is a very large constant.

1.2 Our contributions

e An exactO(n log® n) time, and a 2-approximatiof(n log n) time algorithm for the special case of the Min-
imum Forwarding Set problem when all 2-hop neighbors are in the same quadrant with respect to the source

node.

e A 6-approximation algorithm for the Minimum Forwarding Set problem runnin@{n logn) time, wheren is

the total number of 1- and 2-hop neighbors.
¢ A 3-approximation algorithm for the Minimum Forwarding Set problem runnin@(n log® n) time.

e A constant-factor approximation for the Disk Cover problem with disks of the same radius, based on rounding

the optimal solution of a linear programming relaxation.

A preliminary version of this paper [3] presents the same results, except that the exact algorithm for the quadrant
case and the 3-approximation algorithm given in [3] ru@im?) time.

The paper is organized as follows. In next section we reformulate the Minimum Forwarding Set problem in
geometric terms, give a high-level algorithm based on decomposition into quadrants, and establish basic geometric
properties of the partitioned sets of 1- and 2-hop neighbors. The next three sections deal with covering 2-hop neighbors
in a quadrant: we first describe @{nlogn) 2-approximation algorithm (Section 3), then we give@fn?) exact
algorithm (Section 4) and finally describe details of data structures needed to obt@ifrthe” n) implementation
of the exact algorithm (Section 5). In Section 6 we give an extension of our techniques to the Disk Cover problem of

[2], and conclude in Section 7.

2 Partition based algorithm

Throughout this paperanit disk or justdiskfor short, refers to a closed disk of radius 1. The boundary of a region
of the Euclidean plane is denoted®#, e.g., the boundary circle of a digkis denoted by D. Under the assumption
that each network node has unit transmission range, we reformulate the Minimum Forwarding Set problem as follows.
1-Hop Disk Cover Problem: Given a unit-disk4, a setD of unit disks centered insidd, and a set of point®
outsideA such thatP C U{D € D}, find a minimum-size subsét of D such thatP C U{D € F}.

Our high-level algorithm (Algorithm 1) partitions the pointsBfaccording to the four quadrants defined by two
orthogonal lines through the center df and then independently solves the 1-Hop Disk Cover problem for each
guadrant. The union of these four disk covers is then a disk cover for all the poiRtsiie usual, the approximation

ratio of an algorithmA for a minimization problenil is the supremum, over all instanceslbfof the ratio between

Algorithm 1: 1-Hop Disk Cover

Input: Unit-disk A, set of unit disks D centered inside A, set of points P outside A such that P C U{D € D}

Output: Subset F C D suchthat P C U{D € F}

1. Partition the exterior of A into four quadrants QQ:—Q4 by two orthogonal lines, not containing points in P, through

the center of A (see Figure 2).
2. Forqg=1,...,4, compute a disk cover, F,, for the pointsin P N Q.

3. Output F = F1 U Fa UFs U Fy.

the output value ofd and the optimal value. The following theorem relates the approximation ratio of Algorithm 1 to

the approximation ratio that can be guaranteed for the 1-Hop Disk Cover restricted to points in a single quadrant.

Theorem 1 If disk coversF, computed in Step 2 are within a factor afof optimum, then Algorithm 1 has an

approximation ratio of at mosi« for the 1-Hop Disk Cover problem.

Proof. Let OPT be the optimal set of disks, and denote®@RT,, ¢ = 1,2, 3,4, the subset of disks iI®PT having
centers in thelth sector of disk4d. The key observation is that points in quadrgyjtcannot be covered by disks in

OPTq+2(mod 4 Therefore, points ifP N Q1 must be covered by disks @MPT,; U OPT, U OPT,, and thus, by the

assumption thaf,’s are within a factor ofx of the respective optimum solutions,
|71l < a(|OPTy| +|OPT;| + |OPT|).
Similarly,

| Fa|

IN

a(|OPTy| 4 |OPTy| + [OPT;]),
|.7:3| S Ot(|OPT2| + |OPT3| + |OPT4|),

|Fs] < a|OPT;| + |OPTy| + |OPTy|).

Thus, the output of the algorithm has size

|F1| + | Fa| + | F3| + | Fal

IN

3a(|OPT| + |OPT;| + |OPT;| + |OPTy|)

3a|OPT].

Figure 2: The four quadrants in Algorithm 1.

We will show thatax = 2 can be achieved i®(nlogn) time (see Section 3), and = 1 can be achieved
in O(nlog®n) time (see Section 4). Hence, Algorithm 1 achieves an approximation factor of 6, respectively 3,
within the same time bounds. It is natural to ask if these approximation ratios can be improved by partitioning
the set of points according tb < 4 equal sectors defined by half-lines starting at the centet.ofThe proof of
Theorem 1 can be generalized to show that partitioning/rgectors gives an approximation ratio(@% /2] + 1)«
for the 1-Hop Disk Cover problem if the disk cover for each sector is approximated within a factoius, using
decomposition into 3 equal sectors does not lead to an approximation ratio better than that obtained by decomposition
into quadrants. Improvements using decomposition into 2 equal sectors are possible provided that we can find an
algorithm for covering the points in B80° sector with an approximation ratio of less th#f2. The ideas used in
Section 4 to solve exactly the problem for a quadrant do not extetgbfosectors, since these lack the second of the

essential topological properties established for the quadrants in the following lemma.

Lemma 2 Let@ be an exterior quadrant of, J = 9@ be its border, an®d be a set of disks intersecting the interior
of Q. Then:

(a) For any diskD € D, |0D N J| = 2.

(b) For any two diskd, D' € D, |o0DNoD' N Q| < 1.

(c) No two disks irD are tangent iny).

Proof. Without loss of generality, we may assume that the unit-diskcentered at the origin and th@tis defined by
the positivez- andy-axes. Then, the boundary of quadrght/, consists of the two half-lines froiff), 1) to (0, co),

and from(1,0) to (1, c0), together with a quarter-circle &A. Leta, b, ¢ be the points with coordinatés, 0), (1,0),

Figure 3: The extreme configuration in the proof of Lemma 2(b).

and(0, 1), respectively. We will uséc to denote the quarter-circle af enclosed in/J.
(a) Since evenyD € D has non-empty intersection with the interior@f every circled D has at least two intersection
points with.J. The closed simple Jordan cur@® and the infinite simple Jordan curvemust intersect an even
number of times (unless they are tangent, but this cannot happen), and thus cannot intersect three times. To complete
the proof of par{a) we need to show thdtD does not intersect four or more times.

Let d denote the center of disk. Then0 < |da| < 1, sinced is insideA. Note thatdD can intersect the-axis
in at most two points, of which only one can haxoordinate bigger than 1. Similarlyp can intersect thg-axis
in at most two points, of which only one can hayeoordinate bigger than 1. Furthermolé,intersectsg;: at most
once. Indeed, when two unit-circles with centers within distance of at most 1 intersect, the two intersection points are
at leasr /3 apart on each of the circles, and hence a quarter-circle may contain only one of them.
(b) Assume, for a contradiction, that and D' are two distinct disks ifD that intersect at points andi, with bothh
andl in QU J. Letd andd’ be the centers dP andD’, respectively. We will change the configuration a bit, to obtain a
more extreme case. First, transldt@’, h, andl to the right untild or d’ hits 52, and assume, by symmetry, thiis on
be . We still haveh,l € RU.J. Assume also that is to the right ofl. Now start rotating the rhombus!'ld clockwise
aroundd until A hits either thec-axis ora:, whichever happens first (see Figure 3). This procedure also keessde
the unit-disk4 andl in). Letm be the point where the linkd intersects thg-axis. As|d’'h| = |dh| = 1, d' must lie
on the same side of linkm asa. As the angleh/a?n < %, m must be within the diameter of the unit-disk centered at
d that contains:. Thereforddm/| < 1. Thusl, which is in@Q, must be outside the triangié.m, and consequently
must be on the other side of lirken thana, which is a contradiction.
(c) Let D and D’ be two disks fromD. ThendD anddD’ cannot be tangent from the interior since they have the

same radius. |6 D anddD are tangent from the exterior, then the distance between their centers is 2, and the common

Figure 4: The skyline of a set of disks in a quadrant.

point can only be the origin, which is not in@). []

3 Fast geometric disk covering in a quadrant

In this section we give a fast 2-approximation algorithm for the 1-Hop Disk Cover problem with all poiRtsarfiing
from an exterior quadrarg) of the unit diskA.

The skylineS = (zo,z1,...,2;) of D is the upper envelope @ N (U{D € D} U A) (see Figure 4). The
skyline consists of arcs/i_—\lxi on the border of disk®; € DU {A},i = 1,...,k, such that, € 0Q N Dy,
x; €0D;_1NOD; (i =1,...,k—1),andzy € D N Q. The algorithm (Algorithm 2) starts by computing the
skyline S with z;'s numbered in counter-clockwise order, i.e., with polar coordingigs:;) of pointsz; satisfying
po < p1 < p2 <--- < pg. As established in Lemma 8 below, the skyline digkscovering a poinp € P form
an interval in the sequende,, ..., D,. The algorithm computes these intervals for each poir® pthen outputs
a minimum size sef of skyline diskshitting all intervals, i.e., containing at least one diBk from each interval.
Computing the minimum size hitting set (Step 3) is done using a simple greedy algorithm, similar, e.g., to the algorithm
in [18] for finding a minimum weight dominating set in an interval graph given. Clearly, the hitting setmputed

by Algorithm 2 is a disk cover for the points {R. Furthermore, we have:

Theorem 3 Algorithm 2 runs inO(nlogn) time, and has an approximation ratio of 2 for the 1-Hop Disk Cover

problem in a quadrant.

Theorems 1 and 3 immediately give:

Algorithm 2: Geometric 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant @ of A such that
P CU{D e D}

Output: A subset F C D such that P C U{D € F}

1. Find the skyline S = (zo, 1,2, ..., x) of D, where the polar coordinates of z; are (p;, ;) and po < p1 < p2 <

-+ < pg. Let D; be the disk containing arc z;_1x;.

2. For each p € P with polar coordinates (p,), find the interval [D ;.. 5¢(), Diast ()] Of Skyline disks D; that cover p,
via three binary searches:
(@) find i e {1,...,k}, such that p € [pi—1, pi]
(b) first(p) « min{j : 1 < j <i,p € D;}
(c) last(p) « max{j : i < j < k,p € D;}
3. Find the minimum set F of skyline disks hitting each interval [D¢;,.5¢(p), Diast(»)], P € P, using the following
Interval Hitting Algorithm:
(a) Sort the set of all intervals I = {[Df;s¢(p); Diast(p)], 2 € P} in ascending order of their right end, Dyg1(p)
by F«0
(c) While I # (do
Add to F the right end disk Dy, of the first interval

Remove from I all intervals hit by Dyq¢ ()

4. Output F

Corollary 4 Combined with Algorithm 2, Algorithm 1 runs ®(n logn) time and has an approximation ratio of 6

for the Minimum Forwarding Set problem.
The rest of the section is devoted to the proof of Theorem 3.

Lemma 5 A pointg € @ belongsto a distO € D if and only if the half-linel. from the centet of A through a point

q intersect) D N @ at a pointg’ such thaty belongs to the segmelat, ¢'].

Proof. Every diskD € D containsa. Thus, the segmeifi, ¢] is fully contained inD, and every point of. outside

this segment is in the exterior @f. []

Lemma 6 If pointp € P has polar coordinate$p, r) such thatp € [p;_1, p;], thenp € D;.

Figure 5: The skyline of Dy, D>, D3} in Lemma 7.
Proof. Follows immediately from Lemma 5.]

Lemma 7 Let Dy, D,, D3 be three disks 0P appearing in this order in the skyline ¢, D>, D3}. ThenD; N

D;n@Q CDNQ.

Proof. Assume thaD; N D3N Q # (), and letS’ = (yo,y1, y2,y3) be the skyline of Dy, Ds, D3} (see Figure 5).
Sincey; = 0D1NOD2NQ, ya = 0Dy NOD3 N Q, andyy, y» ¢ D1 N D3, Lemma 2(b) implies tha® D, N (D1 N
DsnQ)=0.

To complete the proof, it suffices to show tlia contains some pointdD; N D3N Q. Letz = 9D; N0DsNQ,
and letL be the half-line fromu throughz. Sincea € D, L intersects)D; exactly once, at. Thus,L does not
intersect the ar@ofy\l of the skyline. Similarly,L. does not interseq}gy\g. It follows that L intersect&@, and, by

Lemmab5z € Ds. [|

The following is a straightforward corollary of Lemma 7:

Lemma 8 For everyp € P, the skyline diskD; coveringp form an interval[D t;,.s:(,), Diast(p)] In the sequence

Di,...,Dy.

Lemma 9 The optimum cover dP with disks from the setDy, ..., D;} of skyline disks contains at most 2 times

more disks than the optimum cover@fwith disks fronD.

Proof. It suffices to prove that, for evel® € D, D N Q is covered by at most two skyline disks. Furthermore, since
Lemma 5 implies that any set of disks coveri® N @ fully coversD N @, we only need to show th&D N @ is

covered by at most two skyline disks.

10

Figure 6: A tight example for the approximation ratio of Algorithm 2.

Letd; andd, be the two points of intersection 6fD with the boundary of the central disk. By Lemma 2(b),
any skyline diskD; intersectingD N @) contains at least one of the poimtsandd,. The key observation is that, for
any two skyline diskd; andD; both containingt; (or both containingl,), the arcdD NOD; N Q is contained in the
arcoD N9dD; N Q or vice versa. Therefore the minimal set of skyline disks covesibg) has at most two disks.

Proof of Theorem 3. The approximation ratio of Algorithm 2 follows from Lemma 9. Step 1 of the algorithm can be
implemented ir0(n logn) time using, e.g., an adaptation of the divide-and-conquer algorithm in [15] for computing
the Manhattan skyline. The binary searches in Step 2 alsa&kéog n) time.

Finally, the Interval Hitting Algorithm can be implementeddi{n logn). Indeed, an interval is hit by the disk
Dyose(p) if its left covering disk is beforéD;, . (,,) in the skylineS. Therefore, by traversing all intervals sorted in

ascending order of their left end3;;,;;(,,), we can delete each hit interval in constant time per interval. []

Remark. The approximation ratio of 2 in Theorem 3 is tight: Figure 6 gives an instance when the optimum disk cover

consisting of skyline disks has size 2, while there is a single (non-skyline) disk covering the two pdmts of

4 Exact combinatorial disk covering in a quadrant

In this section we present &i(n?) exact algorithm for the 1-Hop Disk Cover problem with all pointsfotoming
from an exterior quadra® of the unit diskA. In the next section we describe a fast¥mn log® n) implementation

of this algorithm based on efficient data structures. In [3], a diffeténf) algorithm is presented for the 1-Hop Disk
Cover problem with all points dP coming from@. That algorithm is somehow easier to implement, but has a more

involved correctness proof. Furthermore, the algorithm in [3] does not appear to have an implementation faster than

11

O(n?).
The new exact algorithm (see Algorithm 3) starts by sorting and renumbering all Bisksth respect to the
intersection points a®D; with 0Q) (Step 1). The first and the last disk in this order covering each point are determined.

Finally, a modified version of the Interval Hitting Algorithm (see Step 3 of Algorithm 2) finds the minimum disk cover.

Algorithm 3: Combinatorial 1-Hop Disk Covering in a quadrant

Input: Unit-disk A, set of unit disks D centered inside A, set of points P in the exterior quadrant @ of A such that
P CU{D € D}

Output: Minimum size subset 7 C D such that ? C U{D € F}

1. Foreach D; € D find I; and r;, the two points of intersection between the boundaries 0D; with 0Q. We assume
that[; < r; in a fixed orientation of 0Q). Renumber the disks in D such that either I; < l;41 or l; = ;41 and

r; <r;+1 foreveryi=1,...,m — 1. Further, D < D' denotes that the disk D has smaller index than the disk D’
2. For every point p € P, compute D? and D}, the first and last disks containing p.
3. SetP+PandF + 0

4. While P # 0
a) Find p € P with the minimum last disk D = D?
b) While there exists p’ € P with DY < D andp’ ¢ D
Replace D by the the last disk before D containing p
c) Set F + FU{D}

d) Remove from P all the points p’ with fo’l <D

5. Output F

We start the proof of correctness of the Algorithm 3 with the following definition and a crucial topological lemma.
Fori < j < s, we say that diskd; and D, supercovedisk D; if there is a poinfp in P such thatp ¢ D; and

pE Dz N Ds-
Lemma 10 There is an optimum solution which uses no supercovered disk.

Proof. Assume, for a contradiction, th@PT is an optimum solution such that the areagf_op(@ N D) is
maximum, and that there is a digk; € OPTwhich is supercovered, by sdy; andD,, wherei < j < s. This means
that there is a point € PND; N D, whichis notinD;. Thereis adiskD;, € OPTsuch thap € D;,. In the following

we consider only the case whén> j, the other case being symmetric.

12

Figure 7: The existence of a nonempty regioiiim ((D; U Dy) \ D;) implies that(D; N Q) C (D; N D).

Lemma 2 implies thatD; N Q) C (D; U Dy). See Figure 7 for an illustration.

Consider the walk o0 D; starting froml; towardsr;. Let p; be the last point in this walkp{ might not be inP)
which is inside a diskD, with ¢ < ¢ andD, € OPT. Let p» be the first point in this walkg, might not be inP)
which is inside a diskD,. with i < r andD,. € OPT. We have two cases.

If p. comes beforg, on the walk oroD;, thenOPT\ {D;} U {D;} is a solution of the same size @®T, but of
bigger total area, as it includes the arcddd; in betweerp; andp,. This contradicts the assumption ti@aPT is an
optimum solution with maximum area.

Now assumey, comes no later thap; on the walk ordD;. Let D, < D; andD, > D; be the disks irOPT
such thaip; = 0D; N 0D, andp, = 0D; N 0D,. The fact that there is a point i) N D; N Dy,) \ D; and Lemma
2 imply thatoD; N 0D;, comes beforé&D; N dD; on the walk, and therefore# j. As9D; N 0D, comes no later
thandD; N 0D,, Lemma 2 implies thatD; N Q) C (D, U D,.). Then(D; N Q) C (D, U D, U Dy), implying that
OPT\ {D;,} is a solution. This contradicts the fact tf@PTis an optimum solution, and completes the proof. &

From now on, we assume thaPTis a fixed optimum solution which contains no supercovered disk.

Based on the previous lemma,@n*) exact algorithm for disk cover is immediate: eliminate all the supercovered
disks. After that, for every point € P, the set of disks which coverforms an interval. Then the Interval Hitting
Algorithm finds the optimum solution.

To prove that the runtime of the Algorithm 3d%(n?) we need to show that the total time spent in the irwleite

loop (Step 4.b) i$)(n). This fact follows from the following lemma.
Lemma 11 A disk cannot appear aB inside the innewhile loop (Step 4.b) for two different points.
Proof. Assume, for a contradiction, that two points,andp,, selected in this order in Step 4.a, use thén Step

13

4.b. Sincep, is not removed fron while processing,, we haveD}* < D%*. Thereis a diskD which is not
supercovered and contains We haveD < D, since otherwis® would be selected by, in Step 4.c, and would
not be processed . ThusDY' < D}* < D < D < DPt, and sinceD is not supercovered, we deduce tfat
containgp; .

Let D, be the disk selected in Step 4.c while procesgingWe cannot havéd, < D, since otherwise, while
processing;, D would have been considered BsbeforeD,, and sinceD is not supercovered) would be selected
by p; in Step 4.c. So we ha\@ﬁ2 <D<D <D< DF>. As D, is selected while processing, the check in théf

statement ensures thA containg,. Sop, is eliminated fronf? in Step 4.d while processing, a contradiction.m

Lemma 12 The runtime of Algorithm 3 i®(n?).

Proof. Using straightforwardor loops, every inner step, except for the inmdrile loop (Step 4.b), of the algorithm
takes timeO(n). The replacement of a disk by a previous disk (inside the imrfle loop) takes timeD(n) for a
given pointp. Checking the condition in the innaile loop (Step 4.b) take®(n) time, and Lemma 11 ensures that

such a check is done at most once per disk.]

Before proving the correctness of Algorithm 3, we give the intuition which motivates its $beigghe current set
of uncovered points. In each iteration of the owtdiile loop in Step 4, as in the Interval Hitting Algorithm, we pick
the point with the first last-covering disk. Then we select a disk which includes this point, as close as possible to the
last-covering disk (in order to include a larger number of points) subject to excluding supercovered disks. Note that

the innemwhile loop in Step 4.b simply jumps over disks which are supercovered.
Theorem 13 Algorithm 3 gives an optimal solution for the 1-hop Disk Cover problem in a quadrant.

Proof. First we show that every point is covered. We look at the current situation at the beginning of each execution
of the outemwhile loop in Step 4. By the time Step 4.b (the inmehile loop) is finishedp is removed fronP. Indeed,

in OPT, thereisa disIDf,’pt which is not supercovered and which coqurandDg < Df,’pt < DP. Every disk ignored

by the algorithm in Step 4.b is supercovered, since by the choipéroStep 4.a, we hav@?r <D'<DP <L Dg'.
Therefore the innewhile loop will stop atD? ,, if not earlier.

To prove optimality, let,, po, . . ., ps be the set of points selected by the algorithm in Step 4.a. We claim that no
disk.D of OPT can includep; andp;, wherei < j. Let D; be the disk selected to coverin Step 4.c. Note that while
processing;, the algorithm cannot ignor® in Step 4.b, a® is not supercovered, and therefd?e< D;. Assuming
by contradiction thaD containgp;, we obtain thaD?' < D. But thenD? < D;, andp; should have been removed

from P in Step 4.d.

14

It follows that|OPT| > s, and the theorem follows from the fact that the algorithm also sededtitsks. [|

Theorems 1, 13, and Lemma 12 imply:

Theorem 14 Combined with Algorithm 3, Algorithm 1 runs {(n?) time and has an approximation ratio of 3 for

the Minimum Forwarding Set problem.

5 An O(nlog®n) implementation of the combinatorial disk covering algo-
rithm

In this section we describe an enhanced data structure based on Voronoi diagrams which allows to implement Algo-
rithm 3 in time O (n log® n)

Step 1 can obviously be executeddrn logn). Next we describe the data structure which we use for Step
2. Construct a balanced binary search tfeawith the centers of the individual disks as leaves, in the sorted order
obtained in Step 1. For a nodec T', denote byA, the set of the centers in the subtree rooted. &or every node
v in T, construct the Voronoi diagram of,,, and preprocess the diagram for membership queries. A membership
guery returns, for a give poimpt the face of the Voronoi diagram wherdies. The preprocessing time for constructing
the Voronoi diagrams i€ (n logn) per level inT (see, for example, Chapter 20.2 of [8]), for a total(n log® n).

The space requirement 3(n) per level of T, for a total of O(nlogn). Preprocessing a nodefor membership
queries also takes tim@(|A,|log|A,|) and spac®(|A4,|), and a query can be answered in tiMdog |A,|) (see,
for example, Chapter 30.3 of [8]). The total timed$n log”), and the total space (nlogn).

With this data structure, given any noden 7', and a point, one can find whether a disk in the subtree rooted
atv coversp in time O(log n), by finding out in which cell of the Voronoi diagram df, p lies, and computing the
distance fronp to the center of that cell. Using this observation, a binary sear@hdan find for a poinp the disks
DY andD? in time O(log? n).

Before proceeding to Step 3, in tind&(n logn), sort the points of with respect toD? and put them in a list
L. To represenP, we only use the position if; of the first point ofP; this is enough since the points removed
from P in Step 4.d are consecutive Inn, and include the first uncovered pointbf. This representation allows the
implementation of Step 4.d in total tim@(n): to remove points fronP, simply move forward in;, checking at
every step ifD?l < D.

Also, intimeO(n logn), sort the points of with respect taD? and put them in a separate list. This allows us
to implement Step 4.a to run in total tini¥n), by keeping track of where poiptis in L,, and moving only forward

in L, ignoring the points which are not in the curréht

15

In the following, we describe how to use the data strucfute implement oneeplacestatement inside the inner
while loop (Step 4.b) in timee?(log2 n). Start at the leaf of" which has the center dP. Letv be the current node
andp(v) be its parentirf'. If v is a left child, then replace by its parent, and repeat. Assume now tha a right
child, and let’ be its sibling. In time)(log n), we can check whether there is a centeAin whose disk includes.

If yes, starting fromv’, find the last center inl,» whose disk coverg (this is the same binary search procedure used
to computeD?). If no, then replace by its parent, and repeat. Theorem 13 implies that there always exists a disk
beforeD which containg, and thus the above procedure is correct.

The condition of thewhile loop in Step 4.b is checked by using a data strucfifrevhich we describe below.

T" is a balanced binary tree, whose leaves are the poiris sbrted as irl; (the smallerD; is first). For a node

v € T, denote byA! the set of points in the subtree rootedvat For every node in T', construct the furthest-

site Voronoi diagram ofd! , and preprocess the diagram for membership queries. A cell of the furthest-site Voronoi
diagram contains points which have the same furthest si#é ifT he furthest-site Voronoi diagram can be constructed

in O(JAL|log|AL]) and usegD(|A!|) space (see, for example, Chapter 20.3 in [8], and with the same time and
space bounds, it can be preprocessed for membership queries (Chapter 30.3 of [8]). The total preprocessing time is
O(nlog® n) and the total space @(n log n). Given the center of a disk, and a node € 7", finding if all the points

of A! are contained ith can be done in timé&(log n) by a membership query in the furthest-site Voronoi diagram of

Al

Now we describe how exactly to check if there is a pgine P with D?I < D andp' ¢ D. GivenD, the set
of points of P with D?I < D are consecutive ifh,;. We denote by, andp, the first, respectively last such point.
Note thatp, is the first point in the remaining part &f;, and thap, can be found by binary search@logn) time.
Checking the condition fop; andp- takes constant time. 1@ (logn) we can also locatg; andp, in the leaves,
andv. of T' (by binary search), and find the least common ancestéw; andv, in 7". Letv' bewv;, andp(v') be its
parentinT”. As long asp(v’) # v, do the following: ifv’ is a left child, and ifo” is its sibling, check ifD contains

AI

vl

Then letv” bep(v').

Similarly, letv’ bew,. As long agp(v') # v, do the following: ifv’ is a right child, and i is its sibling, check if
D contains4!,,. Then letv’ bep(v'). If any of the checks above fails, then there is a ppirg¢ 7 with with D?I <D
andp’ ¢ D; otherwise there is no such point. The total time for one disis O(log” n), as there are at mogiog n
queries of the type: check whether all the pointsigfare contained itD.

Finally, Lemma 11 implies that each digR will need at most once such processing. Thus Step 4.b takes

O(nlog® n) time overall. Based on the discussion above, we have:

Theorem 15 Algorithm 3 can be implemented to run in tifén log® n).

16

6 The general minimum disk cover problem

In this section we describe a constant-factor approximation algorithm for the following
Minimum Disk Cover Problem. Given a set of unit disk® and a set of point® in the Euclidean plane, find a
minimum-size subsef C D, such that? C U{D € F}.

This problem is NP-Hard since it contains as a special case Dominating Set in unit-disk graphs, a problem shown
to be NP-Hard in [5]. A polynomial-time algorithm with constant approximation ratio for Minimum Disk Cover was
first provided by [2].

If we can obtain a constant ratio for covering an unit-side equilateral triangle, we can obtain a constant ratio for
the whole plane, by tiling the plane into triangles and separately covering all the triangles, and using the fact that one
disk in the optimum can only cover points in a constant number of triangles.

Let ABC be such a triangle. If no point @ is in the triangle, there is nothing to be done. Also, if there is a disk
D € D whose center is in the triangle, théhcovers all the triangle. So, in the following, we assume all the points
are in the triangle, and all the centers of disk®imre outside the triangle.

The algorithm has four phases:

1. After removing those disks that do not intersect the triangle, partition the remaining disks into thieg $&ts
andDs, such that all the centers of the disksIm are on the other side of the linéB thanC, all the centers
of the disks inD, are on the other side of the lim@C than 4, and all the centers of the disks»; are on the

other side of the linelC' thanB. If a disk could be put in more than o, pick one arbitrarily.

2. Fori = 1,2,3, letQ; be the triangleA BC' and let.J; be a line which separates the centers of the diskB;of
from the interior of the triangle. Find the skyline as in Section 3, and compytthe set of disks containing

some arc of the skyline.

3. Write the natural Integer Programming formulation involving only the diskg, it 7, U F3. Solve the Linear

Programming relaxation.
4. Round the linear programming optimum to an integer solution, as described in Subsection 6.1.

Later we prove Theorem 16, which claims that the algorithm described above has approximation ratio at most 6
for the problem of covering the points inside the triangle.
First, we note that Lemma 2 holds easily whénis a straight line. For eaclt;, Lemma 8 also holds. Let

F = F1 U F U Fs, and assumé is sorted withF; (which is sorted) followed by the sortelh, and followed by

17

the sorted?s;. Lemma 9 also holds, and therefaFecontains a solution at most twiet, the size of an optimum

solution.

6.1 Rounding

We use the natural IP, with variableg, for D € F:

minimize Z D

DeF

subjectto » zp>1 VPEP (1)
D : PeD

zp € {0,1} VD e D. 2

Let LP be the linear programming relaxation of IP, obtain by replacing the constraints 2 by
tp >0 VDeD. ()

Let Z7 the value of the IP optimum. As argued above, we hzjg < 2 opt.

Let y be a (fractional) solution to LP. For a poift € P, the set of disks covering it consists of at most three
intervals, sayi{’, I}, andI3 . For one of the three intervals, which we call simpfy, we have:)" . ;» yp > 1/3.

We introduce a second integer program, which we are able to solve in polynomial time exactly (see details below),
and which approximates well LP, the linear programming relaxation described above. Precisely, consider the integer

program IP’, with variables p, for D € F:

minimize Z D

DeF
subjecttoY " zp >1 VPeP (4)
DeIP
zp € {0,1} VD e D. (5)

Let LP’ be the linear programming relaxation of IP’. The matrix of IP’ is totally unimodular (see [6], Theorem
6.28, page 223, and Example 3 on the next page)3ars a solution to LP’. Therefore IP’ has a solution of size at
most3) .- yp, and an optimum for IP’ can be found easily by the greedy algorithm, as described at the end of
the proof of Theorem 3. Now, i§ is an optimum solution to LP, they ,, -yp < Z7p < 2 opt, and therefore the
solution found by the greedy algorithm has size at iogt.

Rounding consists of finding for each poidte B the intervall”’, and then using the greedy algorithm to hit each

I with elements ofF. In conclusion, we proved:

18

Theorem 16 The algorithm described in this section has approximation ratio at most 6 for covering points inside a

unit-size equilateral triangle with sizes equal to 1 with unit-disks from a fixe@®set
Since a single disk from the optimum solution can cover points in at most 17 triangles of the tiling we conclude

Corollary 17 There is a 102-approximation algorithm for the Minimum Disk Cover problem.

7 Conclusions

In this paper we presented a geometditn logn) 6-approximation algorithm and a combinatoria(rn log®) 3-
approximation algorithm for selecting forwarding neighbors in wireless ad-hoc networks, significantly improving both
the running time and the approximation ratio of the best previously known algorithm. An extension of our method can
be used to obtain an alternative constant-ratio polynomial-time algorithm for the Minimum Disk Cover problem.

We mention that Theorem 13 is true in the following more general settingl hetan infinite simple Jordan curve
which separates the plane into exactly two regions, ané Ieé one of these two regions. Let all poifitsbe in B,
and eachD; be a region bordered by a simple closed Jordan cf¥ge Assume that eachD; intersects the infinite
curveJ in exactly two points, and, for any two regiofs andDy,, 0D; N 0Dy, N B has at most one point. Moreover,
assume that, whenever two of the cur@d3; intersect, they cross each other. Then Lemma 10 holds, and therefore a
polynomial-time exact disk covering algorithm exists.

On the other side, if the disks have arbitrary radii, the boundaries of two disks in the i@desdefined in the
paragraph above) can cross in two distinct points. Our arguments rely implicitly on the assumption that boundaries
intersect in at most one point inside of the regi®mvhere all the points lie, and all the presented algorithms fail when
applied to arbitrary disks.

WhenP and the centers dP are separated by a straight line, we can apply the techniques from this paper to
obtain a rounding procedure with ratio of 2 to the natural linear program LP. Then, as in Section 6, it follows that the
linear program LP has constant integrality ratio for the general Disk Cover problem. However, when the Bisks in
weighted, we do not know the integrality ratio of the corresponding integer and linear programs. The linear program
is given below:

minimize Z WpTp

DeD
subjectto » zp>1 VPEP (6)
D : PeD
zp >0 VDeD (7)

19

This research work assumed that the wireless nodes are not able to adjust the range of transmission. When nodes
are able to adjust the range of transmission, it is possible that congestion can be further reduced. We leave for further
research the design of forwarding algorithms in the variable transmission range setting.

We also leave for further research the formulation of the overall broadcast problem, even if the algorithms one
obtains after doing it are centralized, and thus not practical. A comparison with the classical broadcasting problems in
the telephone and post office models would then be beneficial.

Student Yuchen Wu, whom we wish to thank, implemented the geometric 1-hop covering algorithm in a quadrant
(Algorithm 2), and the exaa®(n?) combinatorial algorithm for the quadrant given in [3]. On random instances, the
much simpler geometric algorithm finds solutions which are on the average only 17-44% larger than the optimum

found by the exact combinatorial algorithm.

20

References

[1] J.Broch, D. B. Johnson, and D. A. Maltz, The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks, IETF Internet

Draft, draft-ietf-manet-dsr-05.txt, March 2001.

[2] H. Bronnimann and M.T. Goodrich, Almost Optimal Set Covers in Finite VC-Dimengtooc. 10th ACM Symp. on Compu-

tational Geometry (SCG1994, 293-302.

[3] G.Calinescu, I. Mandoiu, P-J. Wan, and A. Zelikovsky, Selecting Forwarding Neighbors in Wireless Ad Hoc NeRwocks,

5" International Workshop on Discrete Algorithms and Methods for Mobi#if01, 34-43.
[4] V. Chvatal. A greedy heuristic for the set-covering problétathematics of Operation Reseaye{3):233-235, 1979.
[5] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit Disk Grajyiscrete Mathematic$86:165-177, 1990.
[6] W.J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijgembinatorial OptimizationWiley-Interscience, 1998.
[7] T.H. Cormen, C. E. Leiserson, and R. L. Rivégtroduction to AlgorithmsMcGrow Hill, 1990.
[8] J. E. Goodman and J. O’'Rourke (editodgndbook of Discrete and Computational Geome@RC Press, 1997.

[9] Z.J.Haas, M. R. Pearlman, and P. Samar. The Interzone Routing Protocol (IERP) for Ad Hoc Networks, IETF Internet Draft,

draft-ietf-manet-zone-ierp-00.txt, January 2001.

[10] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems in imageprocessing and VLSI,

Journal of the ACM32(1): 130-136, 1985.

[11] H. B. Hunt lll, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns, NC-Approximation

schemes for NP- and PSPACE-hard problems for geometric grapinsal of Algorithms26(2):238-274, 1998.

[12] P.Jacquet, P. Muhlethaler, A. Qayyum, A. Laouiti, L. Viennot, and T. Clausen, Optimized Link State Routing Protocol, IETF

Internet Draft, draft-ietf-manet-olsr-04.txt, March 2001.

[13] A. Qayyum, L. Viennot, and A. Laouiti, Multipoint Relaying: An Efficient Technique for Flooding in Mobile Wireless

Networks,Proc. 35th Annual Hawaii International Conference on System Sciences (HICSS 2002)

[14] M. V. Marathe, H. Breu, H. B. Hunt lll, S. S. Ravi and D. J. Rosenkrantz, Simple Heuristics for Unit Disk GNegfagorks

Vol. 25, 1995, pp. 59-68.
[15] B.M.E. Moret and H.D. ShapirdAlgorithms from P to NP, Volume I: Design and EfficienBgnjamin/Cummings, 1991.

[16] S.-Y. Ni, Y.-C. Tseng, Yuh-Shyan Chen, and J.-P. Sheu, The Broadcast Storm Problem in a Mobile Ad Hoc Netarork,

ceedings of the fifth annual ACM/IEEE international conference on Mobile computing and netwd®@8g Pages 151-162.

[17] C.E. Perkins, E. M. Royer, and S. Das, Ad Hoc On Demand Distance Vector (AODV) Routing, IETF Internet Draft, draft-

ietf-manet-aodv-08.txt, March 2001.

[18] G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems in intervallgfapistion Processing

Letters27 (1988), pp. 271-274.

21

[19] P. Sinha, R. Sivakumar, and B. Vaduvur, Enhancing Ad Hoc Routing with Dynamic Virtual InfrastrucRrces,|[EEE
INFOCOM 2001, pp. 1763-1772.

22

Author biographies

Gruia Calinescuis an Assistant Professor of Computer Science at the lllinois Institute of Technology. He has a
Diploma from University of Bucharest and a PhD from Georgia Institute of Technology. His research interests are in
the area of algorithms.
E-mail: calinesc@cs.iit.edu

lon I. M andoiu received the M.S. degree from Bucharest University in 1992 and the Ph.D. degree from Georgia
Institute of Technology in 2000, both in Computer Science. He worked as a Research Assistant at Bucharest University
(1992-1995), Instructor at Georgia Institute of Technology (2000-2001), and Postgraduate Researcher at University
of California, Los Angeles (2000-2001). Since 2001 he has been a Research Scientist at University of California,
San Diego. His research interests include approximation algorithms, VLSI physical layout design, and combinatorial
optimization.
E-mail: mandoiu@cs.ucsd.edu

Peng-Jun Wanhas been an Assistant Professor in Computer Science at lllinois Institute of Technology since
1997. He received his PhD in Computer Science from University of Minnesota in 1997, MS in Operations Research
and Control Theory from Chinese Academy of Science in 1993, and BS in Applied Mathematics from Qsinghua
University in 1990. His research interests include optical networks and wireless networks.
E-mail: wan@cs.iit.edu

Alexander Zelikovsky received the Ph.D. degree in Computer Science from the Institute of Mathematics of the
Belorussian Academy of Sciences in Minsk, Belarus, in 1989. He worked at the Institute of Mathematics in Kishinev
as a senior research scholar from 1989 to 1995. Between 1992 and 1995 he visited Bonn University and the Institut
fur Informatik in Saarbrueken (Germany). Dr. Zelikovsky was a Research Scientist at Virginia University (1995—
1997) and a Postdoctoral Scholar at UCLA (1997-1998). Since 1999 he has been an Assistant Professor at the
Computer Science Department of Georgia State University. He is the author of more than 60 refereed publications.
Dr. Zelikovsky's research interests include VLSI physical layout design, discrete and approximation algorithms,
combinatorial optimization, and ad-hoc wireless networks.

E-mail: alexz@cs.gsu.edu

23

