Monte-Carlo Regression Algorithm for Isoform Frequency Estimation from RNA-Seq Data

Adrian Caciula, Alex Zelikovsky Department of Computer Science Georgia State University Atlanta, Georgia 30303 Email: {acaciula, alexz}@cs.gsu.edu Serghei Mangul Department of Computer Science University of California Los Angeles, CA 90095 Email: serghei@cs.ucla.edu James Lindsay and Ion Mandoiu Deptment of Computer Science & Engineering, University of Connecticut Storrs, CT 06269 Email: {james.lindsay, ion}@engr.uconn.edu

Abstract—We propose a Monte-Carlo Regression based method for isoform frequency estimation from RNA-Seq reads.

I. INTRODUCTION

Reducing isoform frequency estimation error rate is critical for detecting similar transcripts or unraveling gene functions and transcription regulation mechanisms, especially in those cases when one isoform is a subset of another. Figure 1 shows a gene with sub-transcripts from human genome (hg19).

Scale	2 kb) 1 hg19				
chr6:	44,324,000	44,325,000	44,326,000	44,327,000	44,328,000
			Gene ID:	200064_at	
uc003oxb.1			-		
ucoooxa.1 —		u	:003oxc.1		

Fig. 1. Screenshot from Genome browser [1]

The most accurate existing tools exploit the expectationmaximization method for the maximum likelihood approach (see e.g., IsoEM [2]), but such methods tend to skew the estimated frequency toward super-transcripts. In this paper we propose to apply a more accurate regression-based estimation.

II. MCREG ALGORITHM

A. Observed Read Distribution

The first step of MCReg is to map the paired-end reads onto the library of known isoforms using an ungapped aligner (e.g., Bowtie [3]). We assume that the fragment length distribution is normal $\mathcal{N}(\mu, \sigma^2)$ with the mean fragment length $\mu \in R$ and the standard deviation σ estimated from the read alignments.

We partition all reads into set of classes \hat{R} , where each class $\tilde{r} \in \tilde{R}$ consists of reads that can be emitted by the same subset of transcripts. The observed frequency of \tilde{r} is the sum of frequencies of all reads belonging to \tilde{r} .

B. MC-Based Estimation of Expected Read Distribution

Let R' be the set of all possible reads and let $\hat{R'}$ be the partition of R' into read classes. For each transcript $t \in T$ and $\tilde{r'} \in \tilde{R'}$, we estimate $d_{t,\tilde{r'}} = Pr(\tilde{R'} = \tilde{r'}|T = t)$ using Monte Carlo method – we simulate reads from t (|R'|) is proportional to the adjusted length of the transcript $t, l_t = |t| - \mu + 1$ and find the portion of them belonging to $\tilde{r'}$. Let f'_t be the portion of reads emitted by t, then the expected frequency of the class $\tilde{r'}$ is estimated as follows:

$$e_{\tilde{r}'} = \sum_{t \in T} f'_t d_{t,\tilde{r}'} \tag{1}$$

C. Regression-Based Estimation of Isoform Frequencies

Regression-based estimation of f'_t 's minimizes squared deviation between observed and expected read frequencies

minimize:
$$\sum (e_{\tilde{r}'} - o_{\tilde{r}})^2$$
 (2)

 $\sum (\sum f'_t d_{t,\tilde{r}'} - o_{\tilde{r}})^2$

Substituting (1) in (2) we obtain the following program

minimize:

subject to:
$$\sum_{t \in T} f'_t = 1$$
 and $f'_t \ge 0$, $\forall t = 1...|T|$ (3)

The least-square formulation (3) can be solved with any constrained quadratic programming solver. Finally, the isoform frequencies f_t 's can be obtained from f'_t 's using adjusted transcript lengths l_t 's

$$f'_t = f_t l_t / \sum_{k \in T} f_k l_k \Rightarrow f_t = (f'_t / l_t) / \sum_{k \in T} f'_k / l_k \qquad (4)$$

III. RESULTS

We validated MCReg on chr1 from hg19 which contains a total of 5509 transcripts (from 1990 genes). We have simulated 10M paired-end reads of length 100bp with the mean fragment length $\mu = 500$. Frequency estimation accuracy was assessed using the coefficient of determination r^2 . For $IsoEM r^2 = 0.92$, while for $MCReg r^2 = 0.97$. The results shows better correlation compared with IsoEM especially because of those cases of sub-transcripts where IsoEM skewed the estimated frequency toward super-transcripts.

ACKNOWLEDGMENTS

This work has been partially supported by two Collaborative Research Grant from Life Technologies, awards IIS-0916401 and IIS-0916948 from NSF, and Agriculture and Food Research Initiative Competitive Grant no. 201167016-30331 from the USDA National Institute of Food and Agriculture.

REFERENCES

- W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, Haussler, and D., "The Human Genome Browser at UCSC," *Genome Research*, vol. 12, no. 6, pp. 996–1006, Jun. 2002.
 M. Nicolae, S. Mangul, I. Mandoiu, and A. Zelikovsky, "Estimation of
- [2] M. Nicolae, S. Mangul, I. Mandoiu, and A. Zelikovsky, "Estimation of alternative splicing isoform frequencies from rna-seq data," *Algorithms for Molecular Biology*, vol. 6:9, 2011.
- [3] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome," *Genome Biology*, vol. 10, no. 3, p. R25, 2009.