
CONTENTS

Algorithmic Issues in DNA Barcoding Problems (Bhaskar DasGupta,

Ming-Yang Kao, Ion Măndoiu) 1

3.1 Introduction 1

3.2 Test Set Problems: A General Framework for Several

Barcoding Problems 2

3.3 A Synopsis of Biological Applications of Barcoding 5

3.4 Survey of Algorithmic Techniques on Barcoding 6

3.5 Information Content Approach 7

3.6 Set Covering Approach 9

3.7 Experimental Results and Software Availability 11

3.8 Concluding Remarks 13

i

ii

CHAPTER 3

ALGORITHMIC ISSUES IN DNA
BARCODING PROBLEMS (BHASKAR
DASGUPTA, MING-YANG KAO, ION
MĂNDOIU)

3.1 INTRODUCTION

In the outbreak of an epidemic, possibly as a result of biological warfare,
there is an urgent need to identify the pathogen or the family it belongs to
as early as possible. Armed with the identity of the pathogen or its family,
and prior knowledge of how the pathogen is typically spread, decision mak-
ers can efficiently alert the general public and first responders on how best
to stave-off the invasion. Recent advances in genomic technologies, including
the availability of whole genome sequence for a large number of pathogens
and the improved sensitivity of a second generation of microarray-based hy-
bridization platforms, have opened the way for the development of highly
reliable genomic-based pathogen detection systems. However, the develop-
ment of such a detection system appropriate for use by first responders still
raises a number of challenging design issues. In addition to portability and
cost-effectiveness, widespread use of such systems requires rapid and reliable
identification from minute amounts of genetic material of mutated or artifi-
cially engineered unknown pathogens. At the same time, these systems should
provide comprehensive coverage of known or partially known pathogens, ro-

(String Processing and Application to Biological Sequences, draft). By Mourad Elloumi
and Albert Y. Zomaya (eds.)
Copyright c© 2009 John Wiley & Sons, Inc.

1

2 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

bustness of the detection algorithms against malicious adversaries and built-in
support for easy updates of the set of recognized pathogens.

As a motivation to study a basic version of barcoding problems of inter-
est in this chapter, consider the following scenario. Classical approaches to
pathogen detection are based on sequencing and direct microarray hybridiza-
tion [16, 24]. Although very reliable, sequencing based detection is practically
applicable only when the number of candidate pathogens is small, since it
requires the ability to isolate a very small number of pathogen-specific DNA
or RNA fragments. At the same time, direct microarray hybridization does
not scale well with the number of potential pathogens. Reliable detection
by this method requires as much as 10-20 arrayed probes per pathogen, each
70 nucleotides long [24], thus limiting the coverage of a single microarray to
at most a few thousand pathogens. To overcome some of these difficulties,
one employs rapid and robust computational procedures to compute barcodes

that produces short signatures and thereby both reduces database size and
optimizes cost of designing the hybridization array.

In this chapter, we survey several barcoding problems that have appli-
cations as mentioned above as well as in other areas, and survey some key
algorithmic techniques used in the existing literatures for these problems. We
assume that the reader is familiar with the basic concepts of exact and approx-
imation algorithms (e.g., see [6, 23]), basic computational complexity classes
such as P and NP [10, 13, 20] and basic notions of molecular biology such as
DNA sequences [12].

3.2 TEST SET PROBLEMS: A GENERAL FRAMEWORK FOR
SEVERAL BARCODING PROBLEMS

One of the test set problems was on the classic list of NP-complete problems
given by Garey and Johnson [10]; these problems arise naturally in many
other applications. One can define a general framework for test set problems
in the following manner. We are given an universe of objects, family of sub-
sets (“tests”) of the universe and a notion of “distinguishability” of pairs of
elements of the universe by a collection of these tests. Our goal is to select a
subset of these tests of minimum size that distinguishes every pair of elements
of the universe. To be precise, each of these problems is obtained by fixing
parameters in the general test set problem TSΓ(k) as described below (2X

denotes the power set of a set X).

Definition 3.1 (Problem TSΓ(k) with Γ ⊆ 2{0,1,2} and k being a positive
integer)

Instance: (n,S) where S ⊂ 2{0,1,2,...,n−1}.

Terminologies:

• A k-test is a union of at most k sets from S .

TEST SET PROBLEMS: A GENERAL FRAMEWORK FOR SEVERAL BARCODING PROBLEMS 3

• For a γ ∈ Γ and two distinct elements x, y ∈ {0, 1, 2, . . . , n−
1}, a k-test T γ-distinguishes x and y if |{x, y} ∩ T | ∈ γ.

Valid solutions: A collection T of k-tests such that
(∀x, y ∈ {0, 1, 2, . . . , n− 1} ∀γ ∈ Γ) x 6= y

=⇒ ∃T ∈ T such that T γ-distinguishes x and y.

Objective: minimize |T |.

This framework captures several “barcoding-type” problems in a few areas in
bioinformatics and biological modeling such as:

Minimum Test Collection Problem: This problem has applications in di-

agnostic testing [10]. Here a collection of tests distinguishes two objects
if a test from the collection contains exactly one of them. In our above
formalism, this is precisely TS{1}(1).

Condition Cover Problem: Karp et al. [15] considered a problem of veri-
fying a multi-output feedforward Boolean circuit as a model of biological
pathways. This problem can be phrased like the Minimum Test Collec-
tion Problem, except that two elements are distinguished by a collection
of tests if one tests contains exactly one of them, and another contains
both or none of them. Assuming that the allowed perturbations are
given as part of the input, this problem is identical to TS{1},{0,2}(1).

String Barcoding Problem (SBΣ(k)): In the “basic” version of this prob-
lem corresponding to k = 1, first discussed by Rash and Gusfield [21],
the universe U consists of sequences (strings) over an alphabet Σ and
any string v ∈ Σ∗ defines a test Tv consisting of a collection of strings
from U in which v appears1. Since this chapter is significantly con-
cerned with this basic version, we write the problem definition explic-
itly for the convenience of the reader. We are given a set S of sequences
over some alphabet Σ. For a fixed set of m “distinguisher” sequences
~t = (t0, . . . , tm−1), the barcode code(s,~t) for each s ∈ S is defined to
be the Boolean vector (c0, c1, cm−1) where ci is 1 if ti is a substring of
s. We say that the set of distinguishers ~t defines a valid barcode if for
any two distinct strings s, s′ ∈ S, code(s,~t) is different from code(s′,~t).
Then the basic version SBΣ(1) is defined as follows:

Instance: S ⊂ Σ∗.

Valid solutions: a set of distinguisher sequences ~t defining a valid bar-
code.

Objective: minimize |~t|.

1Σ∗ is the standard notation of denoting the set of all possible strings formed by concate-
nation of zero or more symbols of Σ.

4 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

As an example, let Σ = {A,C, T,G} and S = {AAC,ACC,GGGG,GTGTGG, TTTT }.
Then, the set of four distinguishers ~t = {A,CC, TTT,GT } defines the
set of valid barcodes for the input sequences in S as shown below.

A CC TTT GT
AAC 1 0 0 0
ACC 1 1 0 0
GGGG 0 0 0 0
GTGTGG 0 0 0 1
TTTT 0 0 1 0

The name “string barcoding” derives from the fact that the Boolean
vector indicating the occurrence (as a substring) of the tests from an
arbitrary collection of tests in a given input sequence is referred to as
the “barcode” of the given sequence with respect to this collection of
tests. Motivations for investigating these problems come from several
sources such as:

• Database compression and fast database search for DNA sequences.

• DNA microarray designs for efficient virus identification in which
the immobilized DNA sequences at an array element are from a set
of barcodes.

In general, for k > 1 a test can be defined by a set T of at most k strings
and u ∈ U passes test T is one of strings in T is a substring of u; such
tests may be feasible in practice as the one-string tests.

Minimum Cost Probe Set Problem with a Threshold r (MCPΣ(r)):
This problem is very similar to String Barcoding and was considered first
by Borneman et al. [3]. Denote by oc(x, y) the number of occurrences
of x in y as a substring, For a fixed set of m distinguisher sequences
~t = (t0, t1, . . . , tm−1), an r-barcode code(s,~t) for any sequence s is de-
fined to be the vector (c0, c1, . . . , cm−1) where ci = min{r, oc(ti, s)}.
Given a set S of sequences over some alphabet Σ, ~t defines a valid r-
barcode if for any two distinct strings s, s′ ∈ S, code(s,~t) is different
from code(s′,~t). MCPΣ(r) is now defined as follows:

Instance: (r,S,P) where S,P ⊂ Σ∗.

Valid solutions: a set of distinguisher sequences~t ⊆ P defining a valid
r-barcode.

Objective: minimize |~t|.

This problem was used in [3] for minimizing the number of oligonu-
cleotide probes needed for analyzing populations of ribosomal RNA gene
(rDNA) clones by hybridization experiments on DNA microarrays; the
probes are selected from a prespecified set P . However, it can also
be used in the context of other string barcoding approaches where the
barcodes are integer-valued as opposed to being Boolean.

A SYNOPSIS OF BIOLOGICAL APPLICATIONS OF BARCODING 5

3.3 A SYNOPSIS OF BIOLOGICAL APPLICATIONS OF BARCODING

Applications of barcoding techniques range from rapid pathogen identification
in epidemic outbreaks to point-of-care medical diagnosis to monitoring of mi-
crobial communities in environmental studies (e.g., see [3, 21]). For example,
genomic-based identification of microorganisms such as viruses or bacteria
is performed by spotting or synthesizing on a microarray the Watson-Crick
complements of the distinguisher strings, and then hybridizing to the array
the fluorescently labeled DNA extracted from the unknown microorganism.
Under the assumption of perfect hybridization stringency, the hybridization
pattern can be viewed as a string of k zeros and ones, referred to as the barcode
of the microorganism. By construction, the barcodes corresponding to the n
microorganisms are distinct, and thus the barcode uniquely identifies any one
of them. To improve identification robustness, one may also require redun-

dant distinguishability (i.e., at least m different distinguishers for every pair
of microorganisms, where m > 1 is some fixed constant) and impose a lower
bound on the edit distance between any pair of selected distinguishers [21].

Multiple mixtures of

degenerate primers:

M1, M2, …, Mk

Selection of primers

Distinguishers

matched with antitagsSelection of

fingerprints

Selection of barcode

distinguishers

PCR Machine

Multiple multiplex PCR’s:

PCR1, PCR2,…,PCRk

Fingerprint

DNA array

Sample possibly

containing

several pathogens

Amplified DNA

sequences from sample

DNA array based

distinguisher/fingerprint

detection

Universal DNA

tag array

Pathogen

identification

Figure 3.1 A hypothetical architecture of FRPDS.

A hypothetical system implementing a high level architecture that meets
the design criteria for a First Responder Pathogen Detection System (FR-
PDS) using string barcoding is shown schematically in Figure 3.1. Such a
hypothetical system includes the following three major components:

(1) A component that provides rapid amplification of the collected genetic
material, e.g. degenerate oligonucleotide primer based multiplex PCR.

(2) A pathogen fingerprinting and/or barcoding component (say, built around
universal DNA tag arrays).

6 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

(3) Rapid and robust computational procedures to compute barcodes that
produces short signatures and thereby both reduces database size and
optimizes cost of designing the hybridization array.

3.4 SURVEY OF ALGORITHMIC TECHNIQUES ON BARCODING

In this section, we survey several algorithmic methods used to solve the bar-
coding problems. We will then discuss in more details in the next two sections
the set-covering and information content algorithmic approach.

3.4.1 Integer Programming

In [21], Rash and Gusfield discussed some experimental results for SBΣ(1) but
left open the exact complexity and approximability of this problem. Their
algorithmic approach is based on writing the problem as an integer program
and then solving it directly. Unfortunately, the run-time of this approach
does not scale well with the number of microorganisms and the length of
the genomic sequences; e.g., the largest instance sizes reported in [21] have a
total genomic sequence length of around 100, 000 bases. We will not discuss
the integer programming formulation in more details since we will discuss
heuristics based on set-covering methods in more details subsequently and an
integer programming formulation for set-covering problem is well-known (e.g.,
see [23]).

3.4.2 Lagrangian Relaxation and Simulated Annealing

Borneman et al. [3] noted that the MCPΣ(r) problem was NP-complete assum-

ing that the lengths of the sequences in the prespecified set were unrestricted,
and discussed some experimental results for a few heuristics that they im-
plemented. Their algorithmic approach is based on a Lagrangian relaxation
of the integer programming formulation of set cover and simulated annealing
approach.

3.4.3 Provably Asymptotically Optimal Results

In [2] Berman, DasGupta and Kao were able to provide tight theoretical worst-
case approximability bounds for almost all of these problems. A summary of
the results in [2] is as follows (ℓ is the maximum length of any sequence in S,
L is the total length of all sequences in S, and ε and δ are constants):

• TS{1}(1) can be approximated to within a ratio of 1 + lnn in O(n2|S|)
time and cannot be approximated to within a ratio of (1 − ε) lnn as-
suming NP 6=DTIME(nlog log n).

INFORMATION CONTENT APPROACH 7

• TS{1},{0,2}(1) can be approximated to within a ratio of 1 + ln 2 + lnn
in O(n2|S|) time and cannot be approximated to within a ratio of (1−
ε) lnn assuming NP 6=DTIME(nlog log n).

• SBΣ(1) can be approximated to within a ratio of 1+lnn in O(n3ℓ2) time
and cannot be approximated to within a ratio of (1 − ε) lnn assuming
NP 6=DTIME(nlog logn).

• MCPΣ(r) can be approximated to within a ratio of [1 + o(1)] lnn in
O(n2|P|+ LP|) time and cannot be approximated to within a ratio of
(1− ε) lnn assuming NP 6=DTIME(nlog logn).

• TS{1}(nδ) cannot be approximated to within a ratio of nε assuming
NP 6=co-RP for any 0 < ε < δ < 1.

• SBΣ(nδ) cannot be approximated to within a ratio of nε assuming
NP 6=co-RP for any 0 < ε < δ < 1

2 .

The provably optimal algorithmic approach in [2] uses an entropy-based al-
gorithmic approach that they term as the “information content” approach.
Informally, this is a greedy technique based on information content of a par-
tial solution; the notion of information content is directly related to the Shan-
non information complexity [1, 22]. The greedy approach seeks to select an
augmenting step for a partial solutions that maximizes the new information
content of the augmented partial solution as compared to the partial solution.
A key non-trivial step for applicability of this technique is to define a suitable
easy-to-compute measure of the information content of a partial solution such
that the monotonicity of this measure is ensured with respect to any subset
of an optimal solution. The next section defines the approach more precisely.

3.5 INFORMATION CONTENT APPROACH

In this section we discuss the information content approach for TS{1} as de-
signed in [2] running in time O(n2|S|) time with an approximation ratio of
1+ lnn. Notice that the upper bound almost matches the lower bound stated
in Section 3.4.3 for SB{0,1}, a special case of TS{1}.

For simplicity, we illustrate the approach for the problem TS{1}. In the
definition below and throughout the rest of this section we use T +T to denote
T ∪ {T }.

Definition 3.1 A set of tests T ⊆ S defines the following:

• an equivalence relation
T
≡ on {0, 1, 2, . . . , n−1} given by i

T
≡ j if and only if ∀T ∈

T (i ∈ T ≡ j ∈ T),

• a set of permutations ΠT = {π ∈ (permutations of {0, 1, 2, . . . , n− 1}) :

∀i ∈ [0, n− 1] i
T
≡ π(i)},

8 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

• entropy HT = log2 |ΠT |.

• information content of a T ∈ S with respect to T , IC(T, T) = HT −

HT +T = log2
|ΠT |

|ΠT +T | .

As an example, consider T = {{1, 2, 3, 4}, {1, 5, 6}} with n = 8. Then, the

equivalence classes of
T
≡ are {1}, {2, 3, 4}, {5, 6}, {7, 8} andHT = log2((3!)(2!)(2!)) ≈

4.585. The above definition of entropy is somewhat similar (but not the same)

to the one suggested in [18]. Suppose that the equivalence relation
T
≡ on

{0, 1, 2, . . . , n− 1} produces q equivalence classes of size s1, s2, . . . , sq. Then,
the entropy suggested in [18] is 1

n
log2(Π

q
i=1s

si
i) whereas our entropy HT is

log2(Π
q
i=1si!).

The information content heuristic (ICH for short) is the following simple
greedy heuristic:

T = ∅
while HT 6= 0 do

select a T ∈ S − T that maximizes IC(T, T)
T = T + T

The correctness of ICH follows from the fact that HT = 0 implies the

equivalence classes of
T
≡ are n singleton sets {0}, {1}, . . . , {n− 1} and the fact

that if HT 6= 0 then there exists a T ∈ S \ T with IC(T, T) > 0 (otherwise
the problem instance has no feasible solution).

To implement ICH, one iteratively maintains the equivalence classes of
T
≡ as

sorted lists. We also precompute and store log2(i!) for each i ∈ [1, n]. Given a
specific T ∈ S −T , it is easy to compute in O(n) time the equivalence classes

of
T +T
≡ from the equivalence classes of

T
≡ since an equivalence class E of

T
≡

is either an equivalence class of
T +T
≡ or it is partitioned into two equivalence

classes E1 = E∩T and E2 = E−E1 of
T +T
≡ ; the first case contributes nothing

to IC(T, T) while the second case adds log2
(|E|
|E1|

)

to IC(T, T).

The performance guarantee of the above approach is given by the following
theorem proved in [2] using a very careful amortized analysis.

Theorem 3.1 [2] The above approach yields:

• for TS{{1}} an approximation ratio of 1 + lnn;

• for TS{{1},]{0,2}} an approximation ratio of 1 + ln 2 + lnn;

• for MCPΣ(r) an approximation ratio of 1+ lnn+ ln log2(r
′ +1), where

r′ = min{r, n}.

SET COVERING APPROACH 9

3.6 SET COVERING APPROACH

Methods based on this approach enable distinguisher selection based on whole

genomic sequences of hundreds of microorganisms of up to bacterial size on
a well-equipped workstation, and can be easily parallelized to further extend
the applicability range to thousands of bacterial size genomes. Whole-genome
based selection is beneficial in at least two significant ways. First, it simpli-
fies assay design since the DNA of the unknown pathogen can be amplified
using inexpensive general-purpose whole-genome amplification methods such
as specialized forms of degenerate primer multiplex PCR [4] or multiple dis-
placement amplification [9]. Second, whole-genome based selection results in a
reduced number of distinguishers, often very close to the information theoretic
lower bound of ⌈log2 n⌉.

Set covering approaches are based on a simple greedy selection strategy –
in every iteration we pick a substring that distinguishes the largest number
of not-yet-distinguished pairs of genomic sequences. This selection strategy is
an embodiment of the greedy setcover algorithm (e.g., see [23]) for a problem
instance with O(n2) elements corresponding to the pairs of sequences. Hence,
by a classical result of [5, 14, 17], the algorithm guarantees an approximation
factor of 2 lnn for the barcoding problem. Experimental results provided in [7,
8] show that our setcover greedy algorithm produces solutions of virtually
identical quality to those obtained by the information content heuristic.

The setcover greedy algorithm is extremely versatile, and can be easily
extended to handle redundancy and minimum edit distance constraints, as
well as other biochemical constraints on individual distinguisher sequences.
Furthermore, the greedy setcover algorithm can also take into account genomic
sequence uncertainties expressed in the form of degenerate bases. Although
degenerate bases are ubiquitous in genomic databases, previous works have
not recognized the need to properly handle them.

3.6.1 Set Covering Implementation in More Details

In this section for simplicity we present the implementation of the setcover
greedy algorithm as provided in [7, 8] in the context of the basic version of
the string barcoding problem only. Implementation modifications needed to
handle the robust barcoding problem in its full generality are available in [8].

The implementation of the setcover greedy algorithm has two main phases:
a candidate generation phase and a candidate selection phase.

In the candidate generation phase a representative set of candidate distin-
guishers is generated from the given genomic sequences. Essentially they use
an incremental algorithm for quickly generating a representative set of candi-
date distinguishers and collecting all their occurrences in the given genomic
sequences. For each generated candidate, we also compute the list of sequences
with which the candidate has perfect matches; this information is needed in
the candidate selection phase. To reduce the number of candidates, we avoid

10 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

generating any substring that appears in all genomic sequences, which typ-
ically eliminates very short candidates. For each genomic sequence, we also
make sure to generate only one of the substrings that appear exclusively in
that sequence; this optimization eliminates from consideration most candidate
distinguishers above a certain length. Unlike the suffix tree method proposed
by Rash and Gusfield [21], this approach may generate multiple candidates
that appear in the same set of k genomic sequences (for 1 < k < n). How-
ever, the penalty of having to evaluate redundant candidates in the candidate
selection phase is offset in practice by the faster candidate generation time.
Efficient implementation of the above candidate elimination rules is achieved
by generating candidates in increasing order of length and using exact match
positions for candidates of length l−1 when generating candidates of length l.
For each position p in the input genomic sequences, we also maintain a flag to
indicate whether or not the algorithm should evaluate candidate substrings
starting at p. The possible values for the flag are TRUE (the substring of
current length starting at p is a possible candidate), FALSE (we have already
saved the substring of current length starting at p as a candidate), or DONE
(all candidates containing as prefix the substring of current length starting at
p are redundant, i.e., the position can be skipped for all remaining candidate
lengths). Initially all flags are set to TRUE. The FALSE flags are reset to
TRUE whenever we increment the candidate length, however, we never reset
DONE flags.

For every candidate length l, candidate evaluation proceeds sequentially
over all positions of the genomic sequences. Whenever we reach a position
p whose flag is set to TRUE, we use the list of matches for the substring of
length l−1 starting at p (or a linear time string matching algorithm if l is the
minimum candidate length) to determine the list of matches for the substring
of length l starting at p, and set the flag to FALSE for all positions where
these matches occur. If the substring of length l starting at p has matches
only within the source sequence, and we have already generated a “unique”
candidate for this sequence, we discard the candidate and set the flag of p to
DONE.

A further speed-up technique is to generate candidate distinguishers from
a strict subset of the input sequences. Although this speed-up can potentially
affect solution quality, experimental results show that the solution quality loss
for whole-genome barcoding is minimal, even when we generate candidates
based on a single input sequence, which corresponds to pre-assigning a barcode
of all 1’s to this sequence.

After the set of candidates is generated we select the final set of distin-
guishers in the greedy phase of the algorithm (Figure 3.2). We start with an
empty set of distinguishers D. While there are pairs of sequences that are
not yet distinguished by D, we loop over all candidates and compute for each
candidate c the number ∆(c,D) of pairs of sequences that are distinguished
by c but not by D, then add the candidate c with largest ∆ value to D.

EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY 11

Input: Set C of candidate distinguishers
Output: Set D of selected distinguishers

D ← ∅; For every c ∈ C, ∆old(c)←∞
Repeat

∆∗ ← 0
For every c ∈ C with ∆old(c) > ∆∗ do // Since ∆(c,D) ≤ ∆old(c), c can be

ignored if ∆old(c) ≤ ∆∗

∆old(c)← ∆(c,D)
If ∆(c, D) > ∆∗ then ∆∗ ← ∆(c,D); c∗ ← c

If ∆∗ > 0 then D← D ∪ {c∗}

While ∆∗ > 0
Return D

Figure 3.2 The greedy candidate selection algorithm

Two sequences s and s′ are distinguished by a candidate c if and only
if exactly one of s and s′ appears in the list Pc of perfect matches of c,
which is available from the candidate generation phase. A simple method
for computing ∆ values is to maintain an n× n symmetric matrix indicating
which of the pairs of sequences are already distinguished, and then to probe
the |Pc| · (n − |Pc|) entries in this matrix corresponding to pairs (s, s′) with
s ∈ Pc and s′ /∈ Pc when computing ∆(c,D). A more efficient method is
based on maintaining the partition defined on the set of sequences by D. If
the partition defined by D consists of sets S1, . . . , Sk, then we can compute
∆(c,D) in O(k + |Pc|) = O(n) time using the observation that

∆(c,D) =
k

∑

i=1

|Si ∩ Pc| · |Si \ Pc| (3.1)

In addition to the fast partition based computation, the implementation
of the greedy selection phase uses a lazy strategy for updating the ∆ values,
based on the observation that they are monotonically non-increasing during
the algorithm (see Figure 3.2). Thus, the efficient implementation of the
greedy selection phase of the algorithm combines a partition based method
for computing the coverage gain of candidate distinguishers (this method was
first proposed in the context of the information content heuristic in [2]) with
a “lazy” strategy for updating coverage gains.

3.7 EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY

The authors in [7, 8] performed experiments on both randomly generated in-
stances and whole microbial genomes extracted from the NCBI databases.
Random testcases were generated from the uniform distribution induced by

12 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS (BHASKAR DASGUPTA, MING-YANG KAO, IONMĂNDOIU)

assigning equal probabilities to each of the four nucleotide; these testcases
do not contain any nucleotides with degeneracy greater than 1. The NCBI
testcase represents a selection of 29 complete microbial sequences, varying in
length between 490, 000 and 4, 750, 000 bases (over 76 million bases in total).
All experiments were run on a PowerEdge 2600 Linux server with 4 Gb of
RAM and dual 2.8 GHz Intel Xeon CPUs – only one of which is used by the
sequential algorithms.

3.7.1 Randomly Generated Instances

As described in Section 3.6.1, there are two main phases in the algorithm:
candidate distinguisher generation, and greedy candidate selection. Results
were reported about the average candidate selection CPU time for n random
sequences of length 10, 000 and redundancy 1, averaged over 10 instances of
each size. Combining the two speed-up techniques for this phase (partition
based coverage gain computation and lazy update of candidate gains) results
in over two orders of magnitude reductions in runtime.

A further speed-up technique is to generate candidate distinguishers from
a select subset of the input sequences. Although this speed-up can poten-
tially affect solution quality, the results showed that on large instances the
solution quality loss is minimal even when we generate candidates based on a
single input sequence, this corresponds to pre-assigning a barcode of all 1’s to
this sequence. The technique reduces significantly both the memory require-
ment (which is proportional to the number of candidates and the number of
times they match input sequences) and the runtime required for candidate
generation and greedy selection.

The quality of the solution in the simulations were as follows. The num-
ber of distinguishers returned by the setcover greedy algorithm were reported
for redundancy varying between 1 and 20 on between 10 and 1, 000 random
sequences of length 10, 000. These results were compared with the results
obtained by the information content heuristic results of [2], as well as the
information theoretic lower bound of ⌈log2 n⌉ for the case when the redun-
dancy requirement is 1. The number of distinguishers returned by the setcover
greedy algorithm was virtually identical to that returned by the information
content heuristic, despite the latter one having a better approximation guar-
antee. Furthermore, the results for redundancy one were within 50% of the
information theoretic lower bound for the range of instance sizes considered
in this experiment. The gap between the solutions returned by the algorithms
and the lower bound does increase with the number of sequences; however it is
not clear how much of this increase is caused by degrading algorithm solution
quality, and how much by degrading lower bound quality.

CONCLUDING REMARKS 13

3.7.2 Real Data

The algorithm was run on a set of 29 complete microbial genomic sequences
extracted from NCBI databases [19]. Sequence lengths in the set vary between
490 Kbases and 4.75 Mbases, with an average length of 2.6 Mbases (over 76
Mbases total). In these experiments we varied the redundancy requirement
from 1 to 20. To see the effect of length and edit distance requirements on the
number of distinguishers, for each redundancy requirement they computed
both an unconstrained solution, and a solution in which distinguishers must
have length between 15 and 40, and there should be a minimum edit distance
of 6 between every two selected distinguishers (these values are similar to
those used in [21]. In all experiments, they generated candidates based only
on the shortest sequence of 490 Kbases.

Naturally, meeting higher redundancy constraints requires more distin-
guishers to be selected. Additional length and edit distance constraints further
increase the number of distinguishers, but the latter is still within reason-
able limits. The length constraints reduce the number of candidates (from
1,775,471 to 122,478), which, for low redundancy values has the effect of re-
ducing greedy selection time. However, for high redundancy requirements the
reduction in number of candidates is offset by the increase in solution size, and
greedy selection becomes more time consuming with length and edit distance
than without (selection time grows roughly linearly with solution size).

3.7.3 Software Availability

The implementation of the set-covering approach, which was named DNA-
BAR, can be used online through the web interface provided at http://dna.
engr.uconn.edu/~software/DNA-BAR/. The open source C code, released
under the GNU General Public License, is also available at the above address.

3.8 CONCLUDING REMARKS

In many practical pathogen identification applications collected biological
samples may contain the DNA of multiple pathogens. This issue is considered
to be particularly significant in medical diagnosis applications (e.g., see [11]
for studies in detecting more than one HPV (human papilomavirus) genotype
with varying rate of multiple HPV infections carried by the same HPV car-
rier). A significant future research direction could be to develop extensions
of the barcoding technique that can reliably detect multiple pathogens for a
given bound on the number of pathogens present.

Acknowledgments

Bhaskar DasGupta was supported in part by NSF grants IIS-0346973, IIS-
0612044 and DBI-0543365. Ion Măndoiu was supported in part by NSF grant
DBI-0543365. The authors would also like to thank all their collaborators in
these research topics.

15

References

1. Y. S. Abu-Mostafa (editor). Complexity in Information Theory, Springer Verlag,
1986.

2. P. Berman, B. DasGupta and M.-Y. Kao. Tight Approximability Results for

Test Set Problems in Bioinformatics, Journal of Computer & System Sciences,
71 (2), 145-162, 2005.

3. J. Borneman, M. Chrobak, G. D. Vedova, A. Figueora and T. Jiang. Probe Se-

lection Algorithms with Applications in the Analysis of Microbial Communities,
Bioinformatics, 1, 1-9, 2001.

4. V.G. Cheung and S.F. Nelson. Whole genome amplification using a degenerate

oligonucleotide primer allows hundreds of genotypes to be performed on less than

one nanogram of genomic dna, PNAS, 93, 14676-14679, 1996.

5. V. Chvátal. A greedy heuristic for the set covering problem, Mathematics of
Operations Research, 4, 233-235, 1979.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to

Algorithms, The MIT Press, 2001.

7. B. DasGupta, K. Konwar, I. Mandoiu and A. Shvartsman. DNA-BAR: Distin-

guisher Selection for DNA Barcoding, Bioinformatics, 21 (16), 3424-2426, 2005.

8. B. DasGupta, K. Konwar, I. Mandoiu and A. Shvartsman. Highly Scalable

Algorithms for Robust String Barcoding, International Journal of Bioinformatics
Research & Applications, 1 (2), 145-161, 2005.

(String Processing and Application to Biological Sequences, draft). By Mourad Elloumi
and Albert Y. Zomaya (eds.)
Copyright c© 2009 John Wiley & Sons, Inc.

17

18 REFERENCES

9. F.B. Dean, S. Hosono, et al. Comprehensive human genome amplification using

multiple displacement amplification, PNAS, 99, 5261-5266, 2002.

10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness, W. H. Freeman, 1979.

11. B. Gharizadeh, M. Käller, P. Nyrén, A. Andersson, M. Uhlén, J. Lundeberg,
and A. Ahmadian. Viral and microbial genotyping by a combination of multi-

plex competitive hybridization and specific extension followed by hybridization to

generic tag arrays, Nucleic Acids Research, 31 (22), 2003.

12. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology, Cambridge Univ Press, 1997.

13. D. Hochbaum. Approximation Algorithms for NP-hard Problems, PWS pub-
lishers, 1996.

14. D.S. Johnson. Approximation algorithms for combinatorial problems Journal of
Computer & System Sciences, 9, 256-278, 1974.

15. R. M. Karp, R. Stoughton and K. Y. Yeung. Algorithms for Choosing Differ-

ential Gene Expression Experiments, Proc. Third Annual International Confer-
ence On Computational Molecular Biology, 208-217, 1999.

16. T. G. Ksiazek, D. Erdman, et al. A novel coronavirus associated with severe

acute respiratory syndrome, N. Engl. J. Med. 348, 1953-1966, 2003.

17. L. Lovász. On the ratio of optimal integral and fractional covers, Discrete Math-
ematics, 13, 383-390, 1975.

18. B. M. E. Moret and H. D. Shapiro. On minimizing a set of tests, SIAM Journal
on Scientific and Statistical Computing, 6, 983-1003, 1985.

19. NCBI Completed Microbial Genomes, http://www.ncbi.nlm.nih.gov/genomes/
microbes/complete.html, Oct. 2004.

20. C. H. Papadimitriou. Computational Complexity, Addison-Wesley; reading,
MA, 1994.

21. S. Rash and D. Gusfield. String Barcoding: Uncovering Optimal Virus Signa-

tures, Sixth Annual International Conference on Computational Biology, 54-261,
2002.

22. C. E. Shannon. Mathematical Theory of Communication, Bell Systems Techni-
cal Journal, 379-423, 1948.

23. V. Vazirani. Approximation Algorithms, Springer-Verlag, July 2001.

24. D. Wang, L. Coscoy, et al. Microarray-based detection and genotyping of viral

pathogens, PNAS, 99, 15687-15692, 2002.

