
T-Cell

In [3], putative pairs of α and β sequences were generated using a simple 
binomial model. In this work, we model αβ pairing as a perfect b-matching 
problem in a bipartite graph. An identical experiental design as in [3] is used.  
 For each α and β sequence we compute the set of wells it appears in. The 
resulting well sets are used as nodes in a bipartite graph, with additional 
“dummy” nodes added to allow for unmatched sequences. Well sets A and B 
corresponding to a pair of α and β sequences are connected by an arc whose 
weight is equal to the hamming distance between them. 
 To keep this approach computationally feasible, only a small subset of all 
possible arcs can be included in the graph. The most e�ective method of 
sparsi�cation investigated thus far was relative radius sparsi�cation. Given 
a parameter r (namely, the radius), arcs are only added the �nal graph if the 
following equation holds:

This criterion will substantially reduce the size of the graph, but an e�cient 
approach is still needed to identify these arcs and avoid searching the entire 
space. These arcs are generated using an efficient algorithm based on 
multi-index hashing [4]. The ensuing perfect b-matching problem was solved 
using the cost-scaling min-cost max-flow algorithm implemented in the 
LEMON library [5] (Fig. 4). The results of this matching are discussed in the 
next section.
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Pairing T Cell Receptor α and β Sequences 
using Pooling and Min-cost Flows
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The T-cell receptor (TCR) is a protein heterodimer composed of an α (alpha) 
chain and a β (beta) chain, both of which contribute to the receptor’s ability 
to recognize specific antigens (Fig. 1). The α and β chains are encoded by 
genes that undergo somatic DNA recombination during T-cell development, 
a process that can potentially yield over 10   distinct αβ combinations (Fig. 2). 
This staggering diversity of the TCR repertoire is critical for T-cell di�erentia-
tion between self and foreign antigens and mounting e�ective adaptive 
immune responses against infectious agents and cancer neoepitopes. 

Whereas independently sequencing the recombined α and β sequences has 
become routine, comprehensive characterization of the paired αβ repertoire 
remains challenging. De novo assembly of α and β sequences from single 
T-cell RNA-Seq has been demonstrated [1] but has low throughput and high 
cost. Emulsion-based sequencing of molecularly linked α and β amplicons 
generated in parallel from single T-cells promises much higher throughput 
[2], but protocols are still under active development. A cost-e�ective alterna-
tive relying on standard single-chain TCR sequencing is the pairSEQ protocol 
proposed in [3]. In this protocol millions of T-cells are distributed randomly 
across 96 wells. Barcoded PCR amplicons spanning the hyper-variable CDR3 
regions of the α and β genes are then generated from each well and pooled 
for highthroughput sequencing (Fig. 3).
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As shown in Fig. 6, the overall accuracy of our ap-
proach undergoes a phase transition. The reason 
for this is currently unknown, but it is reminiscent 
of the phase transitions observed in the well 
known Erdos-Renyi graphs. The value r at which 
this phase transition seems to vary with the simu-
lated recovery rate, but once exceeding this crtical 
radius, the e�ectiveness of the method plateaus 
and no substantial improvement is observed. 
Although not included here, experiment 1 also 
experienced this behavior.
 The e�ectiveness of the relative radius sparsi�-
cation method is evident from Fig. 6(c). At r=0.8, 
we see a 99.75% reduction in the number of arcs in 
the graph and a 99.5% reduction at r=0.9. As ex-
pected, both the recall and precision of our pair 
identi�cation method depends largely on the 
recovery rate, but at r=0.9, this method is still maxi-
mally e�ective. These results are promising, but 
more work is still required to better understand the 
behavior of this method.

FUTURE WORK
 
 1. Analyze remaining experimental datasets
 2. 
 3. Optimize sparsi�cation using threading 
 4. Investigate the nature of this phase transition
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Experiments were conducted on simulated datasets 
generated by randomly pairing 1,495,345 α sequences 
with 1,566,719 β sequences extracted from pairSEQ 
experiment 1 in [3]. We simulated uniform sequencing 
recovery rates between 10−100% to reflect the fact 
that some receptor sequences are lost during PCR 
amplification and sequencing.
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