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1 Introduction

Immunotherapy is a promising cancer treatment approach that relies on awaken-
ing the immune system to the presence of antigens associated with tumor cells.
The success of this approach depends on the ability to reliably detect immuno-
genic cancer mutations, the vast majority of which are expected to be tumor-
specific [6]. In this poster we present a bioinformatics pipeline for detecting
immunogenic cancer mutations from high throughput mRNA sequencing data.
Immunogenic mutations predicted by our pipeline from Illumina mRNA reads
generated from a mouse cancer tumor cell line are currently under experimental
validation.

2 Analysis pipeline

A schematic representation of our analysis pipeline is given in Figure 1. The
pipeline consists of four main stages. First, sequencing reads are mapped sepa-
rately against a reference transcript library (CCDS) and the reference genome
using Maq [4]. Second, reads mapped by the two methods are merged as ex-
plained below. Third, merged reads are used to call SNPs, which in this con-
text correspond to positions with enough evidence of the existence of an allele
different than the reference. In the last stage, predicted SNPs and tested for
immunogenic response using the SYFPEITHI database [5].

The goal of the first step is to map as accurately as possible reads obtained by
sequencing mRNA. Mapping mRNA reads against the reference genome using
standard mapping programs such as Maq does not require gene annotations
but leaves reads spanning exon junctions unmapped. Since spliced alignment
methods such as [1] are computationally intensive, we maximize the number of

? Work supported in part by NSF awards IIS-0546457 and DBI-0543365.



mRNA reads 

Consensus
coding

sequences

Genome 
sequence

CCDS
Mapping

Genome 
Mapping

CCDS
mapped 

reads

Read
merging 

SNP
calling

Epitope
Prediction 

Genome 
mapped 

reads

Merged
mapped 

reads

Expressed
SNPs

Immunogenic
mutations

Known SNPs 

Fig. 1. Analysis pipeline to identify antigenic mutations from mRNA sequencing reads

accurately mapped reads by using Maq to map them both against the reference
genome and CCDS transcripts.

For combining read mapping results we implemented two approaches called
hard merging and soft merging. Hard merging throws away reads that are
mapped uniquely by one procedure and to multiple places by the other while soft
merging keeps the unique alignment for these reads. Both merging methods keep
reads mapped uniquely to the same place by both mapping procedures and reads
mapped by one procedure and not mapped by the other. Both methods throw
away reads mapped uniquely to different places by both mapping procedures
and reads mapped multiple times by both procedures.

To identify SNPs present in the sample we experimented with the SNP calling
method implemented by Maq but found it to be too stringent and implemented
two alternative methods. The first method, proposed in [3, 7] for calling SNPs
from genomic DNA, uses a binomial test on the two highest allele counts under
the null hypothesis that the genotype is heterozygous. The second method starts
by calculating the conditional probability of observing the read data given each
possible genotype. This probability is computed as a product of read contribu-
tions assuming independence between reads. Given a homozygous genotype xx,
and a certain position, each base b mapped to this position contributes a term of
1−eb if x = b and eb

3
otherwise. Here, eb = 10−qb/10 is the probability of of error

while sequencing base b, where qb is its quality score. For a heterozygous geno-
type xy, each mapped base b contributes a term of 1−eb

2
+ eb

6
if x = b or y = b and

eb

3
otherwise. Maq mapping probabilities are taken into account by raising the

corresponding term to the probability that the read is mapped correctly at this
location. The posterior probability of each genotype is then evaluated assuming
uniform priors. A variant is called in this approach if the genotype with highest
posterior probability is different than homozygous reference and exceeds a user
specified threshold.



Mapping Mapped Prob Prob Prob Prob Prob
Method Reads ≥ 0.1 ≥ 0.9 ≥ 0.95 ≥ 0.99 ≥ 0.999

Transcripts 3423706 103065 29719 20067 4165 2818

Genome 4365304 93760 25407 16762 2951 1894

Hard Merge 4557300 100487 28628 19113 3432 2240

Soft Merge 5309877 102781 29660 19949 3896 2627
Table 1. Mapped reads and SNPs called at different posterior probability thresholds
from mouse tumor cell line mRNA reads.

For each identified non-synonymous SNP, reference and alternative aminoacid
sequences are generated using CCDS transcript annotations. Both peptides are
then tested by querying the SYFPEITHI database [5]. The final result of the
analysis is the list of SNPs for which the mutated peptide exceeds a binding
affinity threshold while the wild-type peptide does not.

3 Results

We tested the performance of implemented methods on publicly available Il-
lumina mRNA reads generated from blood cell tissue of Hapmap individual
NA12878 [2] (NCBI SRA database accession number SRX000566). We included
in evaluation Hapmap SNPs in known exons for which there was at least one
mapped read by any method. A total of 22, 364 homozygous reference SNPs
and 7, 888 heterozygous or homozygous non reference SNPs were considered.
We defined as true positive a correctly called heterozygous or non-reference ho-
mozygous SNP. Conversely, we defined as false positive a called SNP for which
NA12878 is homozygous reference according to Hapmap genotypes. Figure 2
gives the number of true positives against false positives for the implemented
read mapping and SNP calling methods. SNP calling based on posterior probabil-
ities dominates the other methods except at very low false positive rates. Among
the mapping strategies, the two approaches that merge genome and transcript
mapping results performed slightly better. The number of detected SNPs mono-
tonically increases with the number of reads within the tested sequencing depth
range, showing no signs of saturation up to 22 million mapped mRNA reads.

We also ran our analysis pipeline on a set of 6.75 million Illumina reads from
mRNA isolated from a mouse cancer tumor cell line. The number of mapped
reads and identified SNPs at different posterior probability thresholds are given
in Table 1. A total of 15 identified SNPs are currently under experimental vali-
dation.
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Fig. 2. True positives against false positives for three different SNP calling methods
(top), four different read mapping strategies (middle), and varying mRNA sequencing
depth (bottom).
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