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Abstract—Massively parallel transcriptome sequencing Analysis of RNA-Seq data poses several challenging com-
(RNA-Seq) is becoming the method of choice for studying putational problems [6]. First, eukaryotic mRNA transtsip
functional effects of genetic variability and establishirg causal are typically the result of splicing, whereby non-coding
relationships between genetic variants and disease. Howay . led int d f th RNA
RNA-Seq poses new technical and computational challenges regions ca e_ introns are removed irom the -pre—m
compared to genome sequencing. In particular, mapping tran  molecule. This makes the use of tools for mapping of DNA
scriptome reads onto the genome is more challenging than reads to the reference genome like Maq [12] or Bowtie
mapping genomic reads due to splicing. Furthermore, dete@n  [10] not suitable for finding the genomic location of reads
and genotyping of single nucleotide variants (SNVs) requés  ghanning splicing sites. Several methods based on spliced

statistical models that are robust to variability in read coverage li th b d to identi lici it d
due to unequal transcript expression levels. In this paper alignment have been proposed to identify splicing sites an

we present a strategy to more reliably map transcriptome assemble full transcripts [1], [9], [16], [18], [25], [26],
reads by taking advantage of the availability of both the  however these methods incur a high computational cost and

genome reference sequence and transcript databases such as require very high sequencing depth, typically with paired
CCDS. We also present a novel Bayesian model for SNV 1a545 Even when accurate read mapping is achieved, dif-

discovery and genotyping based on quality scores, along wit f in t intion | | Iti | .
experimental results on RNA-Seq data generated from blood erences In transcription levels resuit In unequal sequgnc

cell tissue of a Hapmap individual showing that our methods ~ depths of different transcripts, making it difficult to idén
yield increased accuracy compared to several widely used variants in regions transcribed at low levels. Although it

methods. The open source code implementing our methods, is possible to overcome this difficulty by sequencing both
;?li?tsgﬁdlrjngd:r: the GNUdG?”efE\?J P‘;’t\’llgsl:l'_cersle’ is available  yanomic DNA and mRNA and identifying variants from
P -engr.uconn.eduisoftware 00s!. the genomic DNA reads using standard methods, when the
Keywords-High-throughput  sequencing; RNA-Seq; read interest is in expressed variants it is significantly morstco

mapping; variant detection; genotyping effective to identify them directly from mRNA reads [3].
Our main contributions are an efficient strategy for ac-
|. INTRODUCTION curate mapping of mMRNA reads and a new method for

single nucleotide variant (SNV) detection and genotyging.

Recent advances in sequencing technologies have effo improve the success rate and accuracy of read mapping,
abled the completion of a growing number of individual we map mRNA reads against both the reference genome and
genomes, including several cancer genomes (see [22] for @ transcript library such as the consensus coding sequences
recent review). While whole-genome sequencing provides §CCDS) database [20] and then combine mapping results
near-complete catalog of variants and individual genatype using a simple rule set. Our method for SNV detection and
sequencing of mRNA transcripts (RNA-Seq) is becominggenotyping is based on computing, for each locus, condi-
the method of choice for studying functional implications tional probabilities for each of the ten possible genotypes
of genetic variability [4], [15], [17], [23], [24], [26], [Z].  given the reads, and then choosing the genotype with highest
In particular, RNA sequencing is an important source ofposterior probability using Bayes’ rule. The underlyinglpr
information for studying the effect of genetic variation on
transcription regulation and establishing causal refetiips 1We use the term SNV instead of the better known term SNP (Singl
between mutations and disease. For cancer research, comucleotide Polymorphism) because SNPs are normally defieledive to
parison of RNA-Seq data generated from normal tissué population and imply a minimum minor allele frequency vezer we

are interested in finding and genotyping in an individual sdiguence

and tumor samples can prowde the information needed tQariants that do not match the reference genome sequerg@diess of

discover driver mutations or to find new therapy targets.[14] their frequency in the population.



abilistic model assumes independence among reads and fully

exploits the information provided by base quality scores.

Table |

DECISIONTABLE FORMERGING OFREAD ALIGNMENTS

Unlike other widely used Bayesian methods [12], [13], we laeno,me MCCD,S Agree? ,\'A*afd MSOﬁ
. appin appin erge erge

keep calls for all four possible alleles and do not apply a pping pping g g
f heterozvaosit Unique Unique Yes Keep Keep

separate _teSt or he y9 Y. ) ) Unique Unique No Throw | Throw
We validated our methods on a publicly available Illu- Unique Multiple No Throw | Keep
mina RNA-Seq dataset generated from blood cell tissue of ’\;J”I'tqule NOLtJ’V_'aPPed mo TKheep Eeep
) . . . . . ultiple nique (o] row eep

an |nd|V|dua! in the C!EU population of the International Muftiple Muftiple No— T Thiow T Throw
Hapmap project [5], using as gold standard more than three Muftiple Not Mapped| No Throw | Throw
million SNP genotypes available in the Hapmap database. Not Mapped |  Unique No Keep | Keep
The results indicate that the combined mapping strategy | Not Mapped| Multiple No | Throw | Throw
Not Mapped | Not Mapped No Throw | Throw

yields improved genotype calling accuracy compared to
performing genome or CCDS mapping alone and that our

SNV detection and genotyping method is more sensitive than . . . . . .
existing methods for equal levels of specificity genomic location. If that is the case, just one alignment is
' kept as unique.

Il MATERIALS AND METHODS B. SNV detection and genotyping

A. Mapping strategy for mRNA reads To discover expressed SNVs in the sample we exper-

Mapping mRNA reads against the reference genome usingnented with SOAPsnp [13] and Maq [12], which are
standard mapping programs such as Bowtie [10] or Maq [12jwo widely used Bayesian methods implemented in the
does not require gene annotations but leaves reads spanniSgMtools package [11]. We also tried the SNV detection
exon junctions unmapped. Spliced alignment methods sucmethod for mRNA reads called PMA [2], which is based
as [1] could theoretically overcome this difficulty but in in careful filtering of aligned reads and a binomial test
practice they are computationally intensive and not wellequivalent to setting up a minimum coverage threshold to
suited for very short reads. On the other hand, mappingnake a variant call relative to the total locus coverage.
against a reference transcript library like the Consensu$he trade-off between sensitivity and specificity of this
Coding Sequences Database (CCDS) [20] recovers readsethod is controlled by the maximupmvalue required to
spanning known splicing junctions but fails to recover ead discard the null hypothesis of absence of a variant allele.
coming from unannotated genes. In terms of outcome, both SOAPsnp and Maq have the a-

We decided to map reads both against the referencpriori advantage of not just pointing out the loci with varia
genome and the reference transcript library and to implémeralleles but also inferring the most likely genotype at each
a custom rule set for merging the two resulting datasets. Wiocus. The Bayesian methods also provide for each locus
implemented two approaches that we called hard mergingosterior probabilities of having an allele different thizue
and soft merging. For hard merging, we require unigugeference and of the genotype itself.
alignments against both references and agreement betweenOur new Bayesian method, nam&NVQ computes for
them while in soft merging we relaxed the uniquenesseach locus the posterior probability of each of the ten possi
constraint by requiring a unique alignment to at least onéble genotypes given the reads. For a lotus let R; denote
reference and keeping that alignment. For both approachdbe set of mapped reads spanning this locus. In all Bayesian
we keep reads that map uniquely to one reference and do notethods, the posterior probability of a genotype is catedla
map to the other one. Table | summarizes the decision ruleisom its prior and conditional probabilities by using the
applied to each read by each approach, depending on hoBayes rule P(G;|R;) = %. The main difference
the read mapped on each reference and on the concordanmetween models lies in the Wag/ conditional probabilities ar
between the two alignments. One important issue is hovealculated [7]. Both Mag and SOAPsnp use a different model
to deal with reads aligned to genes with multiple isoforms.to calculate probabilities of homozygous and heterozygous
After mapping onto the reference transcriptome, multiplegenotypes. Maqg uses a binomial distribution on the alleles
alignments can be reported for some reads not becausmving the two highest counts while SOAPsnp uses a rank
there exist different genomic locations where the readctoul test to determine heterozygosity. SOAPsnp also assumes as
come from but because the same genomic location is shargatior information that the homozygous reference genotgpe i
by several different transcripts. After mapping againg th the most likely one and calculates conditional probakditi
transcripts database, our module transfers each alignmehbaised on lllumina specific knowledge about the reads [13].
to absolute genomic coordinates, splicing accordinghpéf t We decided instead to use a uniform set of assumptions for
alignment spans multiple exons, and then checks for eactalculating conditional probabilities of all genotypess-A
read with multiple alignments if all of them fall into the sam suming independence between reads, the conditional prob-



Table I

ability of genotypeG,; can be expressed as a product of MAPPING STATISTICS(MILLION READS)
read contributions, i.e.P(R;|G;) = [[,cg, P(r|G:i). For
a mapped read € R; let r(i) be the base spanning Sample Raw  Transcripts Genome  Hard  Soff
locusi ande, ;) be the probability of error sequencing the SRRI(?OZOSZ Rlezags szg'”g Mjpap'”g '\:esrge ':'e;ge
baser(i), Wh|c_h We_est|mated fr(_)m the quality scogéi) SRR002054| 12.9 39 57 59 6.2
calculated during primary analysis using the Phred formula] srro02060| 25.7 4.4 6.7 7.0 7.3
eriy) = 10790)/10 [8]. We discarded allele calls with quality | SRR002055) 11.4 3.7 55 5.6 5.9
scores zero and one. Lé&f; and ! be the two real alleles SRR002063|  23.0 35 5.6 58 6.0
Y : i SRR005091| 13.9 3.3 4.9 5.0 5.2
at locusi, or in other words, letz; = H,; H]. The observed SRR005096| 14.4 0.6 1.0 1.1 1.1
baser(i) could be read from eithef; or H]. If there is an Total 113.9 22.4 33.8 349 364

error in this read, we assume that the error can produce any
of the other three possible bases with the same probability.
Thus, the probability of observing a basé) given than few additional utilities in a single jar file. The open source
the real base is different is.(;)/3 while the probability of ~ code, released under the GNU General Public License, is
observingr(i) without error is1 — e,.(;). available at http://dna.engr.uconn.edu/software/N@&ro

If G, is a heterozygous genotype (i.¢4; # H}) and In order to enable integration with other analysis tools
the observed allele(i) is equal toH; (H]) this outcome we use the SAM format [11] for both the input and the
could be due to two possible events. Eithér) was sampled output of mapped read merging. We also sort alignments
without error from the haplotype containirdg; (H) or r(i) by chromosome and absolute position to enable efficient
was sampled from the haplotype containifig (H;) but an  processing in subsequent modules and fast merging of sesult
error turned it to be equal t8; (respectivelyH!). Assuming from different lanes if available. SAM files produced by
that both haplotypes are sampled with equal probability, th the merging module can be used directly as input for the
first event happens with probability — ¢,(;))/2 while the ~ SAMtools package [11] to produce run statistics, pileup
second happens with probability ;) /6. Using the fact that information, and for variants detection. We recommend to
for homozygous genotypes the probability of observing eacliun the merging process lane by lane because it needs to
possible base does not depend on the haplotype from whidbad all unique alignments in memory in order to sort them
the reads are sampled, we obtain the following formulaat the end of the process. We used space efficient data
for computing the probability of observing readfor each  structures that allow us to process more than ten million
possible genotype: reads in a few minutes, using up to 16Gb of memory.
The code implementing SNVQ is able to receive as input
either alignments in SAM format or pileup information in

e i H, = H = (i
L=ery o THi=Hy=r()) 0 format described in the SAMtools package. The pileup

Er(i) i . ; . . .
P(r|G; = H;H]) = 3 , i Hi # (i) format is recommended because it enables faster processing
' A Hi#1(i) and reduces the memory requirements. Our experiments
% — Eréﬂ , otherwise indicate that SNVQ is able to process a whole transcriptome

pileup file in about 20 minutes using a single processor and

Note that no matter which is the genotypk, the sum of up to 4Gb of memory.

the probabilitiesP(r|G;) over the four possible values of

r; is equal to one. We complete the model by setting prior lIl. RESULTS
probabilities based on the expected heterozygosity/rate

follows (in all our experiments, we assumed a heterozygositA. Methods comparison

rate i = 0.001): We tested the performance of the combined mapping

strategies and SNV detection methods on publicly available
1-h if H; = H! 33 bp long lllumina MRNA reads generated from blood cell
P(G; = H;H;) = {f ’ ‘ tissue of the Hapmap individual NA12878 [5] (NCBI SRA
6 database accession numbers SRX000565 and SRX000566).
Finally, a variant is called if the genotype with highest We used Bowtie [10] to map the reads against both the
posterior probability is different than homozygous refex@  human reference genome (NCBI Build 37.1, downloaded
In the next section we show a comparison of results amon§om the UCSC hgl19 genome browser database [21]) and
these methods by reanalyzing a publicly available datasetthe CCDS transcript library [20]. Table Il shows results
in terms of reads uniquely mapped using each considered
method. Accuracy was determined using as gold standard
We implemented mapped read merging strategies ang, 371,552 Hapmap SNP genotype calls for NA12878, in-
SNVQ in Java 1.6 and we packed both programs with aluding 2,008,415 that are homozygous for the reference

otherwise

3

C. Software and performance issues
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Figure 1. Genotype calling accuracy for reads aligned weljqwo the Figure 2.  Accuracy comparison among four different SNV dite
reference genome, reads aligned uniquely to the CCDS tiptsschard methods on the Hard Merged reads. A total of 3,371,552 Hap&ips
merged alignments, and soft merged alignments (41,961 Hp@NPs in  with known genotypes for the individual NA12878 were used gatd
CCDS exons using SNVQ for genotype calling) standard for comparison. The tradeoff between sensitiitgi specificity
is controlled in the Bayesian Methods (SNVQ, SOAPsnp, and))Mzy
varying the minimum probability of having a genotype diéfat than the
reference, while in PMA it is controlled by varying the maxim p-value
allele, 802,472 that are heterozygous as@0, 665 that are  required to discard the null hypothesis of absence of verian

homozygous for the non-reference allele.

To measure accuracy of genotype calling, we defined as
true positive a correctly called heterozygous or homozggou
non reference SNP and as false positive an incorrectly
called homozygous SNP. We did not consider as error a In order to compare Bayesian methods with PMA, we
heterozygous SNP called homozygous or not called becausan all methods on the set of reads aligned by the hard
this can be due to lack of read coverage for one or bothmerge method. Since PMA only performs SNV detection,
alleles. We consider that one method is more accurate thaor this comparison we define as true positive a detected
another when it is able to detect more true positives for théeterozygous or homozygous non reference SNP, no matter
same number of false positives, or conversely if it detectshich is the actual genotype call, and as false positive a
the same number of true positives with fewer false positiveshomozygous reference SNP marked as having a variant.

To assess the accuracy of various mapping strategies, wiehus, calling as heterozygous a homozygous not-reference
ran SNVQ on datasets consisting of reads mapped unique§NP is considered a true positive for SNV detection, because
onto the CCDS transcript library and onto the referencehe variant was detected, but a false positive for genotype
genome, respectively reads mapped by the hard and softlling because an inexistent reference allele is beirlgaal
merging strategies presented in the methods section. Sinéégure 2 shows that all Bayesian methods have significantly
for reads mapped on transcripts it is only possible to detedbetter SNV detection accuracy than PMA and SNVQ is
SNVs in transcripts included in the CCDS database, weslightly more sensitive than SOAPsnp and Magq at different
excluded from this comparison all Hapmap SNPs locatedpecificity levels obtained by varying the threshold on the
outside of annotated CCDS exons. Figure 1 shows thajenotype probability reported by each method. Figure 3
our merging strategies produce more accurate results thahows that the accuracy gain of SNVQ over SOAPsnp
just genome or transcripts mapping for the NA12878 dataand Maq is more pronounced for genotyping accuracy. We
Although in this comparison suggests that genome mappingonfirmed this behavior by running the Bayesian methods on
could be more sensitive than the merging strategies for sonthe set of reads mapped uniquely onto the genome reference
specificity levels, we confirmed by repeating the comparisor{data not shown). Our results indicate that the binomiastes
on the full set of Hapmap SNPs that merging methodof heterozygosity employed by Maq and SOAPsnp result
dominate for all levels of specificity (data not shown). ®nc in under-calling true heterozygous loci. These heteromggo
the performance of the hard and soft merging strategies ici are found by SNVQ thanks to its unified model based
very similar, further results are presented only for thefer on computing conditional probabilities for every possible
method. genotype.
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Figure 3. Accuracy comparison among three different Bayesiethods
for genotyping on the Hard Merged reads. A total of 3,371,B6&pmap
SNPs with known genotypes for the individual NA12878 wereduas gold
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B. Accuracy for different expression levels

and to extend our model by incorporating allele specific

expression of isoforms [27]. We also plan to integrate

additional transcript annotation sources such as dbEST and
UCSC, and to integrate our methods in a bioinformatics

pipeline enabling personalized cancer immunotherapydase

on tumor transcriptome sequencing.
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