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Abstract—Massively parallel transcriptome sequencing
(RNA-Seq) is becoming the method of choice for studying
functional effects of genetic variability and establishing causal
relationships between genetic variants and disease. However,
RNA-Seq poses new technical and computational challenges
compared to genome sequencing. In particular, mapping tran-
scriptome reads onto the genome is more challenging than
mapping genomic reads due to splicing. Furthermore, detection
and genotyping of single nucleotide variants (SNVs) requires
statistical models that are robust to variability in read coverage
due to unequal transcript expression levels. In this paper
we present a strategy to more reliably map transcriptome
reads by taking advantage of the availability of both the
genome reference sequence and transcript databases such as
CCDS. We also present a novel Bayesian model for SNV
discovery and genotyping based on quality scores, along with
experimental results on RNA-Seq data generated from blood
cell tissue of a Hapmap individual showing that our methods
yield increased accuracy compared to several widely used
methods. The open source code implementing our methods,
released under the GNU General Public License, is available
at http://dna.engr.uconn.edu/software/NGSTools/.
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I. I NTRODUCTION

Recent advances in sequencing technologies have en-
abled the completion of a growing number of individual
genomes, including several cancer genomes (see [22] for a
recent review). While whole-genome sequencing provides a
near-complete catalog of variants and individual genotypes,
sequencing of mRNA transcripts (RNA-Seq) is becoming
the method of choice for studying functional implications
of genetic variability [4], [15], [17], [23], [24], [26], [27].
In particular, RNA sequencing is an important source of
information for studying the effect of genetic variation on
transcription regulation and establishing causal relationships
between mutations and disease. For cancer research, com-
parison of RNA-Seq data generated from normal tissue
and tumor samples can provide the information needed to
discover driver mutations or to find new therapy targets [14].

Analysis of RNA-Seq data poses several challenging com-
putational problems [6]. First, eukaryotic mRNA transcripts
are typically the result of splicing, whereby non-coding
regions called introns are removed from the pre-mRNA
molecule. This makes the use of tools for mapping of DNA
reads to the reference genome like Maq [12] or Bowtie
[10] not suitable for finding the genomic location of reads
spanning splicing sites. Several methods based on spliced
alignment have been proposed to identify splicing sites and
assemble full transcripts [1], [9], [16], [18], [25], [26],
however these methods incur a high computational cost and
require very high sequencing depth, typically with paired
reads. Even when accurate read mapping is achieved, dif-
ferences in transcription levels result in unequal sequencing
depths of different transcripts, making it difficult to identify
variants in regions transcribed at low levels. Although it
is possible to overcome this difficulty by sequencing both
genomic DNA and mRNA and identifying variants from
the genomic DNA reads using standard methods, when the
interest is in expressed variants it is significantly more cost
effective to identify them directly from mRNA reads [3].

Our main contributions are an efficient strategy for ac-
curate mapping of mRNA reads and a new method for
single nucleotide variant (SNV) detection and genotyping.1

To improve the success rate and accuracy of read mapping,
we map mRNA reads against both the reference genome and
a transcript library such as the consensus coding sequences
(CCDS) database [20] and then combine mapping results
using a simple rule set. Our method for SNV detection and
genotyping is based on computing, for each locus, condi-
tional probabilities for each of the ten possible genotypes
given the reads, and then choosing the genotype with highest
posterior probability using Bayes’ rule. The underlying prob-

1We use the term SNV instead of the better known term SNP (Single
Nucleotide Polymorphism) because SNPs are normally definedrelative to
a population and imply a minimum minor allele frequency whereas we
are interested in finding and genotyping in an individual allsequence
variants that do not match the reference genome sequence, regardless of
their frequency in the population.



abilistic model assumes independence among reads and fully
exploits the information provided by base quality scores.
Unlike other widely used Bayesian methods [12], [13], we
keep calls for all four possible alleles and do not apply a
separate test of heterozygosity.

We validated our methods on a publicly available Illu-
mina RNA-Seq dataset generated from blood cell tissue of
an individual in the CEU population of the International
Hapmap project [5], using as gold standard more than three
million SNP genotypes available in the Hapmap database.
The results indicate that the combined mapping strategy
yields improved genotype calling accuracy compared to
performing genome or CCDS mapping alone and that our
SNV detection and genotyping method is more sensitive than
existing methods for equal levels of specificity.

II. MATERIALS AND METHODS

A. Mapping strategy for mRNA reads

Mapping mRNA reads against the reference genome using
standard mapping programs such as Bowtie [10] or Maq [12]
does not require gene annotations but leaves reads spanning
exon junctions unmapped. Spliced alignment methods such
as [1] could theoretically overcome this difficulty but in
practice they are computationally intensive and not well
suited for very short reads. On the other hand, mapping
against a reference transcript library like the Consensus
Coding Sequences Database (CCDS) [20] recovers reads
spanning known splicing junctions but fails to recover reads
coming from unannotated genes.

We decided to map reads both against the reference
genome and the reference transcript library and to implement
a custom rule set for merging the two resulting datasets. We
implemented two approaches that we called hard merging
and soft merging. For hard merging, we require unique
alignments against both references and agreement between
them while in soft merging we relaxed the uniqueness
constraint by requiring a unique alignment to at least one
reference and keeping that alignment. For both approaches
we keep reads that map uniquely to one reference and do not
map to the other one. Table I summarizes the decision rules
applied to each read by each approach, depending on how
the read mapped on each reference and on the concordance
between the two alignments. One important issue is how
to deal with reads aligned to genes with multiple isoforms.
After mapping onto the reference transcriptome, multiple
alignments can be reported for some reads not because
there exist different genomic locations where the read could
come from but because the same genomic location is shared
by several different transcripts. After mapping against the
transcripts database, our module transfers each alignment
to absolute genomic coordinates, splicing accordingly if the
alignment spans multiple exons, and then checks for each
read with multiple alignments if all of them fall into the same

Table I
DECISIONTABLE FOR MERGING OFREAD ALIGNMENTS

Genome CCDS Agree? Hard Soft
Mapping Mapping Merge Merge

Unique Unique Yes Keep Keep
Unique Unique No Throw Throw
Unique Multiple No Throw Keep
Unique Not Mapped No Keep Keep
Multiple Unique No Throw Keep
Multiple Multiple No Throw Throw
Multiple Not Mapped No Throw Throw

Not Mapped Unique No Keep Keep
Not Mapped Multiple No Throw Throw
Not Mapped Not Mapped No Throw Throw

genomic location. If that is the case, just one alignment is
kept as unique.

B. SNV detection and genotyping

To discover expressed SNVs in the sample we exper-
imented with SOAPsnp [13] and Maq [12], which are
two widely used Bayesian methods implemented in the
SAMtools package [11]. We also tried the SNV detection
method for mRNA reads called PMA [2], which is based
in careful filtering of aligned reads and a binomial test
equivalent to setting up a minimum coverage threshold to
make a variant call relative to the total locus coverage.
The trade-off between sensitivity and specificity of this
method is controlled by the maximump-value required to
discard the null hypothesis of absence of a variant allele.
In terms of outcome, both SOAPsnp and Maq have the a-
priori advantage of not just pointing out the loci with variant
alleles but also inferring the most likely genotype at each
locus. The Bayesian methods also provide for each locus
posterior probabilities of having an allele different thanthe
reference and of the genotype itself.

Our new Bayesian method, namedSNVQ, computes for
each locus the posterior probability of each of the ten possi-
ble genotypes given the reads. For a locusi we letRi denote
the set of mapped reads spanning this locus. In all Bayesian
methods, the posterior probability of a genotype is calculated
from its prior and conditional probabilities by using the
Bayes rule,P (Gi|Ri) =

P (Ri|Gi)P (Gi)
P (Ri)

. The main difference
between models lies in the way conditional probabilities are
calculated [7]. Both Maq and SOAPsnp use a different model
to calculate probabilities of homozygous and heterozygous
genotypes. Maq uses a binomial distribution on the alleles
having the two highest counts while SOAPsnp uses a rank
test to determine heterozygosity. SOAPsnp also assumes as
prior information that the homozygous reference genotype is
the most likely one and calculates conditional probabilities
based on Illumina specific knowledge about the reads [13].
We decided instead to use a uniform set of assumptions for
calculating conditional probabilities of all genotypes. As-
suming independence between reads, the conditional prob-



ability of genotypeGi can be expressed as a product of
read contributions, i.e.,P (Ri|Gi) =

∏

r∈Ri
P (r|Gi). For

a mapped readr ∈ Ri let r(i) be the base spanning
locus i andεr(i) be the probability of error sequencing the
baser(i), which we estimated from the quality scoreq(i)
calculated during primary analysis using the Phred formula
εr(i) = 10−q(i)/10 [8]. We discarded allele calls with quality
scores zero and one. LetHi andH ′

i be the two real alleles
at locusi, or in other words, letGi = HiH

′
i. The observed

baser(i) could be read from eitherHi or H ′
i. If there is an

error in this read, we assume that the error can produce any
of the other three possible bases with the same probability.
Thus, the probability of observing a baser(i) given than
the real base is different isεr(i)/3 while the probability of
observingr(i) without error is1− εr(i).

If Gi is a heterozygous genotype (i.e.,Hi 6= H ′
i) and

the observed alleler(i) is equal toHi (H ′
i) this outcome

could be due to two possible events. Eitherr(i) was sampled
without error from the haplotype containingHi (H ′

i) or r(i)
was sampled from the haplotype containingH ′

i (Hi) but an
error turned it to be equal toHi (respectivelyH ′

i). Assuming
that both haplotypes are sampled with equal probability, the
first event happens with probability(1− εr(i))/2 while the
second happens with probabilityεr(i)/6. Using the fact that
for homozygous genotypes the probability of observing each
possible base does not depend on the haplotype from which
the reads are sampled, we obtain the following formula
for computing the probability of observing readr for each
possible genotype:

P (r|Gi = HiH
′
i) =



















1− εr(i) , if Hi = H ′
i = r(i)

εr(i)
3 , if Hi 6= r(i)

∧ H ′
i 6= r(i)

1
2 −

εr(i)
3 , otherwise

Note that no matter which is the genotypeGi, the sum of
the probabilitiesP (r|Gi) over the four possible values of
ri is equal to one. We complete the model by setting prior
probabilities based on the expected heterozygosity rateh as
follows (in all our experiments, we assumed a heterozygosity
rateh = 0.001):

P (Gi = HiH
′
i) =

{

1−h
4 , if Hi = H ′

i
h
6 , otherwise

Finally, a variant is called if the genotype with highest
posterior probability is different than homozygous reference.
In the next section we show a comparison of results among
these methods by reanalyzing a publicly available dataset.

C. Software and performance issues

We implemented mapped read merging strategies and
SNVQ in Java 1.6 and we packed both programs with a

Table II
MAPPING STATISTICS(MILLION READS )

Sample Raw Transcripts Genome Hard Soft
Id Reads Mapping Mapping Merge Merge

SRR002052 12.6 2.9 4.3 4.5 4.7
SRR002054 12.9 3.9 5.7 5.9 6.2
SRR002060 25.7 4.4 6.7 7.0 7.3
SRR002055 11.4 3.7 5.5 5.6 5.9
SRR002063 23.0 3.5 5.6 5.8 6.0
SRR005091 13.9 3.3 4.9 5.0 5.2
SRR005096 14.4 0.6 1.0 1.1 1.1

Total 113.9 22.4 33.8 34.9 36.4

few additional utilities in a single jar file. The open source
code, released under the GNU General Public License, is
available at http://dna.engr.uconn.edu/software/NGSTools/.

In order to enable integration with other analysis tools
we use the SAM format [11] for both the input and the
output of mapped read merging. We also sort alignments
by chromosome and absolute position to enable efficient
processing in subsequent modules and fast merging of results
from different lanes if available. SAM files produced by
the merging module can be used directly as input for the
SAMtools package [11] to produce run statistics, pileup
information, and for variants detection. We recommend to
run the merging process lane by lane because it needs to
load all unique alignments in memory in order to sort them
at the end of the process. We used space efficient data
structures that allow us to process more than ten million
reads in a few minutes, using up to 16Gb of memory.
The code implementing SNVQ is able to receive as input
either alignments in SAM format or pileup information in
the format described in the SAMtools package. The pileup
format is recommended because it enables faster processing
and reduces the memory requirements. Our experiments
indicate that SNVQ is able to process a whole transcriptome
pileup file in about 20 minutes using a single processor and
up to 4Gb of memory.

III. RESULTS

A. Methods comparison

We tested the performance of the combined mapping
strategies and SNV detection methods on publicly available
33 bp long Illumina mRNA reads generated from blood cell
tissue of the Hapmap individual NA12878 [5] (NCBI SRA
database accession numbers SRX000565 and SRX000566).
We used Bowtie [10] to map the reads against both the
human reference genome (NCBI Build 37.1, downloaded
from the UCSC hg19 genome browser database [21]) and
the CCDS transcript library [20]. Table II shows results
in terms of reads uniquely mapped using each considered
method. Accuracy was determined using as gold standard
3, 371, 552 Hapmap SNP genotype calls for NA12878, in-
cluding 2, 008, 415 that are homozygous for the reference
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Figure 1. Genotype calling accuracy for reads aligned uniquely to the
reference genome, reads aligned uniquely to the CCDS transcripts, hard
merged alignments, and soft merged alignments (41,961 Hapmap SNPs in
CCDS exons using SNVQ for genotype calling)

allele, 802, 472 that are heterozygous and560, 665 that are
homozygous for the non-reference allele.

To measure accuracy of genotype calling, we defined as
true positive a correctly called heterozygous or homozygous
non reference SNP and as false positive an incorrectly
called homozygous SNP. We did not consider as error a
heterozygous SNP called homozygous or not called because
this can be due to lack of read coverage for one or both
alleles. We consider that one method is more accurate than
another when it is able to detect more true positives for the
same number of false positives, or conversely if it detects
the same number of true positives with fewer false positives.

To assess the accuracy of various mapping strategies, we
ran SNVQ on datasets consisting of reads mapped uniquely
onto the CCDS transcript library and onto the reference
genome, respectively reads mapped by the hard and soft
merging strategies presented in the methods section. Since
for reads mapped on transcripts it is only possible to detect
SNVs in transcripts included in the CCDS database, we
excluded from this comparison all Hapmap SNPs located
outside of annotated CCDS exons. Figure 1 shows that
our merging strategies produce more accurate results than
just genome or transcripts mapping for the NA12878 data.
Although in this comparison suggests that genome mapping
could be more sensitive than the merging strategies for some
specificity levels, we confirmed by repeating the comparison
on the full set of Hapmap SNPs that merging methods
dominate for all levels of specificity (data not shown). Since
the performance of the hard and soft merging strategies is
very similar, further results are presented only for the former
method.
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Figure 2. Accuracy comparison among four different SNV detection
methods on the Hard Merged reads. A total of 3,371,552 HapmapSNPs
with known genotypes for the individual NA12878 were used asgold
standard for comparison. The tradeoff between sensitivityand specificity
is controlled in the Bayesian Methods (SNVQ, SOAPsnp, and Maq) by
varying the minimum probability of having a genotype different than the
reference, while in PMA it is controlled by varying the maximum p-value
required to discard the null hypothesis of absence of variants

In order to compare Bayesian methods with PMA, we
ran all methods on the set of reads aligned by the hard
merge method. Since PMA only performs SNV detection,
for this comparison we define as true positive a detected
heterozygous or homozygous non reference SNP, no matter
which is the actual genotype call, and as false positive a
homozygous reference SNP marked as having a variant.
Thus, calling as heterozygous a homozygous not-reference
SNP is considered a true positive for SNV detection, because
the variant was detected, but a false positive for genotype
calling because an inexistent reference allele is being called.
Figure 2 shows that all Bayesian methods have significantly
better SNV detection accuracy than PMA and SNVQ is
slightly more sensitive than SOAPsnp and Maq at different
specificity levels obtained by varying the threshold on the
genotype probability reported by each method. Figure 3
shows that the accuracy gain of SNVQ over SOAPsnp
and Maq is more pronounced for genotyping accuracy. We
confirmed this behavior by running the Bayesian methods on
the set of reads mapped uniquely onto the genome reference
(data not shown). Our results indicate that the binomial tests
of heterozygosity employed by Maq and SOAPsnp result
in under-calling true heterozygous loci. These heterozygous
loci are found by SNVQ thanks to its unified model based
on computing conditional probabilities for every possible
genotype.
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Figure 3. Accuracy comparison among three different Bayesian methods
for genotyping on the Hard Merged reads. A total of 3,371,552Hapmap
SNPs with known genotypes for the individual NA12878 were used as gold
standard for comparison

B. Accuracy for different expression levels

In RNA-Seq reads are sampled from transcripts roughly
proportionally to their relative expression levels. To assess
the effect of expression level on genotyping accuracy we
calculated RPKM (Reads per Kilobase per Million Reads)
values for every exon in the CCDS database based on
the hard merged alignments. For each exon, we counted
the number of reads that span it partially or totally and
then we normalized the count by dividing it by the size
of the exon in kilobases. We finally divided that number
by the total number of reads in millions (34.9 for the
hard merged dataset). We defined the RPKM value of each
heterozygous and homozygous non reference Hapmap SNP
in a known exon as equal to the RPKM of the exon to which
it belongs. We finally grouped variants into bins according
to their RPKM values and computed genotyping accuracy of
SOAPsnp, Maq, and SNVq for each bin. Figure 4 shows that,
as expected, all methods have poor sensitivity for variants
with low RPKM. SNVQ consistently outperforms the other
two methods, with most pronounced gains at intermediate
coverage depths.

IV. CONCLUSION

In this paper we propose several techniques that increase
sensitivity of detecting and genotyping expressed sequence
variants using RNA-Seq data. Experiments on publicly avail-
able datasets show that our methods outperform widely used
SNV detection methods, and that transcriptome sequencing
can indeed provide a cost effective method for analyzing
these variants. In future work we seek to integrate our tools
with methods for estimating isoform expression levels [19]

and to extend our model by incorporating allele specific
expression of isoforms [27]. We also plan to integrate
additional transcript annotation sources such as dbEST and
UCSC, and to integrate our methods in a bioinformatics
pipeline enabling personalized cancer immunotherapy based
on tumor transcriptome sequencing.
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