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Abstract The formulation of [6, 25] requires a single buffer per connec-
tion. This allows use of computational geometry and network flows
To implement high-performance global interconnect without impactwith respect tdeasible regionsand the buffer block plan implicitly
ing the performance of existing blocks, the use of buffer blocks is incontains the global buffering solution for the netlist of connections.
creasingly popular in structured-custom and block-based ASIC/SQébwever, in reality, multiple buffers are often needed per connec-
methodologies. Recent works by Cong et al. [6] and Tang and Worign. For example, global repeater rules for a high-end micropro-
[25] give algorithms to solve thieuffer block planningoroblem. In  cessor design in 0.28n CMOS [14] require repeater intervals of at
this paper we address the problem of how to perform buffering ahost 450pm.2 The number of buffers needed for a given connec-
global netsgiven an existing buffer block planAssuming as in tion depends strongly on the length of the connection; as noted in
[6, 25] that global nets have been already decomposed into two-{it¥], the repeater interval is not only required for delay reduction,
connections, we give a provably good algorithm based on a recdnit also for crosstalk noise immunity and edge slewtime control. We
approach of Garg anddfiemann [8] and Fleischer [7]. Our method also note that buffer block resources may not always be completely
routes connections using available buffer blocks, such that requirgtannable — buffer sites are often embedded in IP blocks or in block
upper and lower bounds on buffer intervals — as well as wirelengtigollars” within a hierarchical ASIC/SOC methodology.
upper bounds per connection — are satisfied. Unlike [6, 25], our In this paper, we address the problem of how to perform buffer-
model allows more than one buffer to be inserted into any given coing of global netgyiven an existing buffer block plar(Hence, our
nection. In addition, our algorithm observes buffer parity constraintavork is compatible with and complements the methods in [6, 25].)
i.e., it will choose to use an inverter or a buffer (= co-located pair ofissuming as in [6, 25] that global nets have been already decom-
inverters) according to source and destination signal parity. The dtosed into two-pin connections, we give a provably good algorithm
gorithm outperforms previous approaches [6] and has been validate@sed on a recent approach of Garg aodéiann [8] and Fleischer
on top-level layouts extracted from a recent high-end microprocessbfl: Our method routes connections using available buffer blocks,

design. such that required upper and lower bounds on repeater interval — as
well as length upper bounds per connection — are satisfied. Notably,
1 Introduction unlike [6, 25] our model allowsnore than one buffeio be inserted

into any given connection. In addition, our algorithm obsemees
A key consequence of the semiconductor technology roadmap [28¢ater parity constraintsi.e., it will choose to use an inverter or a
is the dominant effect of interconnect in deep-submicron design. Asuffer (= co-located pair of inverters) according to source and desti-
clock frequencies reach and exceed the gigahertz level, each temtion signal parity. Informally, our problem is defined as follows.
level global net must undergo repeater insertion (among other Op&'lven'
mizations; see [5, 18, 20]) to maintain signal integrity and reason- :
able signal delay.Estimates of the need for repeater insertion range _— . . A L
o e a set of source-destination pairs (point pairs) in the region;
up to O(106) repeaters for top-level on-chip interconnect when we ) . . )
reach the 50nm technology node. These repeaters are large (any® each pglr_has a_parlty requwement, i i .
where from 40« to 200x minimum inverter size), affect global rout-  ® €&ch (timing-driven) source-destination pair has a limit on the
ing congestion, can entail non-standard cell height and special power length of its path, i.e., there is a prescribed bound that limits
routing requirements, and can act as noise sources. In a block- the number of used repeaters;
or reuse-based methodology, designers seek to isolate repeater fop a set of buffer blocks, each with given capacity; and
global interconnect from individual block implementations. e an interval[L,U] that defines lower and upper bounds on the
For these reasons, laffer blockmethodology has become in- distance between repeaters.
creasingly popular in structured-custom and block-based ASIC/SOC )
methodologies. Two recent works by Cong et al. [6] and Tang arf@lobal Buffering Problem: Construct a route for each source-
Wong [25] give algorithms to solve tiauffer block planningprob- destination pair, such that each route passes through zero or more
lem. Their buffer block planning formulation is roughly stated asfepeaters, subject to:
Given a placement of circuit blocks, and a set of two-pin connec- e the distance between the source of a route and its first repeater

e aplanar region with rectangular obstacles;

tions with afeasible regiorfor a single buffer per connection, plan is betweerl andU;
the shape and location bfiffer blocksso as to maximally use avail- e the distance between any two consecutive repeaters on any
able free space and minimally impact the existing floorplan. given route is betweeh andU ;3
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changeably. When we need to be more precise: a repeater can be implemented as eithéfour approach can also handle the case whemadU bounds differ for different
an inverter or as a buffer (= two co-located inverters). source-destination pairs, and depend on the position (from source) of two consecutive
repeaters on the routing path.




e the number of repeaters on each source-destination rouite edge seE contains all edges of typev, v € R, (such an edge
should be of the given parity (if necessary, to achieve the paritig called a loop), as well as all edgegfor whichL < d(x,y) <U.
condition, the route can use two sites in a single buffer block(This graph can be constructed using, e.g., shortest paths in visibility
i.e., a buffer instead of an inverter; in this case wetugeunits  graphs [22].)

of the block’s capacity); We will use the following definition of anisy,tx)-path. A path
¢ the number of repeater sites on each source-destination royte- (s¢,v1,Vo,...,V,t) in G between thét" sources, and sinky is
should not exceed the given limit (upper boufid). an (s, ty)-pathif

e Vi ¢ Rforeachi=1,...,I,

¢ there exists at most one pair of different indicgsc {1,...,1}
such thatv; = v; (i.e., v andvj represent the same buffer
block), and in this case we must have- j| =1,

Note that coupling awareness is built into the user-prescribed re-
peater interval, via the switch-factor methodology [13] which ac-
counts for best- and worst-case Miller coupling between adjacent
nets. Typically, switch factors between 0 and 2, or between -1 and ! i
3, are used to multiply the nominal victim-aggressor coupling ca- ® the parity ofl is a,
pacitance when doing timing analysis. Then, repeater intervals aree | <ly.
calculated to maximize interconnect performance, subject to bounds

on noise and delay uncertainty [12]. Having this graph and the definition @, tx)-path, our problem

The most simple-minded implementation of our approach willS 25 foIIows.hFor g\_/ery pai{] of terminaﬂs(,rt]k), kh: 17"'£)K’ ﬁ?d.

treat all source-sink paths as “equally critical”; buffers are inserte@i? (S t)-path, su Jefjt _to; e consrt]ralnr: t I?jt the num derho times
at the same regular interval along each source-sink path, independ®flY Vertex € Ris used in these paths should not exceed the capac-
AR c(r) of r. If the problem has no solution, we want to maximize the

of the path’s length. However, we note that if a particular source-si ber of pai h b d with iolati

path is not timing-critical, our method allows net ordering that woul&ug}'tye;)gri tF;/aellrr?dSktirtrﬁ?ntg %trfﬁ cgncs(i:]a?iﬁfsteLgrllzsocuatllvtll(w)iisnrl)r:gbﬁg;n
r it | r net weighting that woul r he priori B . - :

process it last, or net weighting that would decrease the priority e Maximum Routing-Via-Buffer-Block§MRVBB ) problem

its claim on buffer resources. Post-processing of the solution cou TheMRVBB probi be f lated h . |
remove inserted buffers (starting at most-used blocks) until further '€ B problem can be formulated as a maximum integra
ulticommodity flow problem on a graph with vertex capacities. An

removal violates some actual timing budget. On the other hand, JA : ! oPe
early chip planning stages it is typical for aggressive or “optimalinStance consists of a graggh= (V,E) with vertex capacities: V —
buffering to be performed, so that all global paths are as fast as pos§:2NdK pairs of terminalgs, t), with one commodity associated
ble [9]. This breaks the chicken-egg problem of budgeting betwee}/th each pair. We seek a multicommodity flow such that the sum of
block and within-block paths in pre-synthesis RTL planning; it als¢"€ f|0\;\_/S of all cqr_nmodltnTls IS r_naX|m|zec:c. lows:
allows maximum timing budgets for within-block timing paths. Define capacities on all vertices Gfas follows:

Our paper is organized as follows. In Section 2, we reduce the
Global Buffering Problem to a generalized version of integer multi- c(v) = {
commodity flow (MCF), and in Section 3 we give algorithms for ap-
proximating the optimal fractional relaxation of this MCF — for both . )
maximum-routingand minimum-routing-costormulations — within LetPy be the set of all pOKSS'bl(Eskvtk)'pathS' We defin® to be
any desired accuracy. Our algorithm is based on recent resultsthe union of alPy, i.e.,P = Ui_, Px. Forpe P, let f, be a variable -
[8] and [7], which we extend to a vertex-capacitated context. Seglenoting the flow along this path. The commodity to which this
tion 4 describes a randomized rounding procedure that converts nefpw corresponds is clear from looking at indices of the end vertices
optimal fractional MCF solutions to near-optimal integral solutionsOf p. Thus, we have the following integer linear program:

1 if veSuT,
capacity of buffer block if veR

MCF based heuristics (with or without randomized rounding) have maximize ¥ pep fp

been applied to VLSI global routing [24, 3, 11]. However, global subiect to

routing appears less naturally suited for MCF than our Global buffer- ) Zpep p(V)fp < V) WveV
ing problem; it does not seem to yield as strong theoretical bounds fp€{0,1} VpeP.

nor as effective implementations. Section 5 describes the four Glob&here
Buffering heuristics that we have implemented: (i) Greedy, &) .
approximate MCF §-MCF), (iii) Greedy enhancement @tMCF 0 if vép .

(e-MCFG), and (iv) “1-Shot”. Finally, Section 6 gives the results p(v):=4 1 if vepbutwisnotaloop o,
of these heuristics on test cases extracted from top-level layout of a 2 if vep, andwis aloop onp.
recent high-end microprocessor, and Section 7 concludes with a list

of open research directions. Rather than solve the integer program directly, we consider the
LP relaxation, substituting the last constraint by

2 Integer Multicommodity Flow Formulation fp>0 vpeP.

Assume that we have& pairs of terminals(sc,tx), and n buffer We call the problem of finding an optimal solution to this LP

blocks{ry,...,r}. DenoteS={s,...,}, T = {t1,....tc }, R=" the Maximum Fractional Routing-Via-Buffer-BlockeMFRVBB )
{r1,...,r}. Letalsoc(r) € N denote theapacity of the buffer block  propjem After solving the fractional routing problem, we will apply

r e R & c {even, oddf be theparity requiremerfor pair (S,t), and  randomized rounding to get an approximate solution for the initial
I be the prescribed upper bound on the number of buffers on paiirvBB problem. (Note that, in fact, this MCF formulation can
between sourcs, and destinatiof. also handle routing congestion, e.g., by putting on each edge of the

We construct a grapls = (V,E) as follows. Letpxy be arecti-  granhG a new vertex (pseudo buffer block) with suitable capacity.)

linear path connecting pointsandy of a planar region that avoids The dual of this LP is
all rectangular obstacles given in the region. Denotelpyy) the N
length of a shortest such path. The vertex\seitf Gis SUT UR. minimize 3 yev W(V)c(V)

subject to SvepW(V) > 1 VpeP

4Our approach also handles the variant where each source-destination pair has a
weight (importance or criticality of each pair) and a measure of cost is to be minimized. W(V) >0 WweV.

5Thus, blocks can go through synthesis, place and route with more aggressive area
targets. A strategy of uniform buffering of as many global nets as possible also helps The dual can be viewed as an assignment of non-negative

control signal integrity and delay uncertainty issues. Weights, W(~), to the vertices ofG such that the weight of any



path p € P is at least 1; the objective is to minimize the sum  According to Garg and &fiemann’s approximate algorithm [8],
S vev W(V)c(Vv). Here, theweight of the patfis the sum of the weights we must route a unit flow along a lightest (with respect to current
of vertices forming this path (singeis by definition a sequence of weight functionw(-)) path fromP, if the weight of this path is less
vertices, not a set of vertices, if the path uses a loofhen vertex than 1. We also must stop afteiterations wherd is the small-

v contributes twice to the weight of the path). The approximatiorst number such that(w), computed with respect to vertex weights
algorithm given in the next section simultaneously solves both prix(-) of this iteration, is at least 1. Fleischer [7] noted that instead of
mal and dual problems — the dual solution is then used in proving tHimding the lightest path i, one can settle for some path within a

approximation guarantee of the algorithm.

3 Approximation of Node-Capacitated Fractional MCF

The fractional routing problenMFRVBB, can be solved exactly in

polynomial time by any polynomial-time LP algorithm. However,
such algorithms are very inefficient in practice. Two recent resul
in approximation algorithms allow us to obtain high-quality solu

tions efficiently. Our algorithm for solving theIFRVBB problem

is based on the fast approximate algorithm for the maximum muE
ticommodity flow problem on graphs with edge capacities due t9
Garg and KWhemann [8]. Small modifications allow us to adapt thein:[
method to our context of vertex-capacitated graphs, source-sink p
parity constraints and timing-driven constraints. Moreover, we ap
ply an idea of Fleischer [7] to reduce the number of minimum weig

path computations made by the algorithm.

DenoteD(w) = Syey W(V)C(v) and leta(w) be the weight of a
minimum weight path fron® (with respect tav(-)). The dual prob-
lem is equivalent to finding a weight function: V — R* such that
B= % is minimized (see [8]). Algorithm 1 solves tiMFRVBB
problem for any given approximation ratio.

Algorithm 1: MFRVBB Algorithm

Input: Graph G with source-sink pairs (S,t), node capacities c(Vv)
Output: Flows fi(v) €[0,1], k=1,...,K, ve V(G) satisfying
capacity constraints

1. Set f=0.
2. Setw(v)=0dforallveV.
3. Set fg(v)=0for allveV and k=1,...,K.
4. Fori=1to logy, o % do
For k=1 to K do
Find a path p in Py with minimum weight w.r.t. w(-).
While weight(p) < min{1,8(1+2¢)'} do
f=~1f+1;
For all ve p, if p uses a loop Vv then set
fi(v) = fk(v) +2 and w(v) =w(v)(1+ %) else set
fic(v) = fi(v) + 1 and W(v) = W(v)(1+ &&5)-
Find a path p in Px with minimum weight w.r.t. w(-).

End while
End for
End for )
k(V)
5. Output Zou5 TE and 2100y, 20 T for each veV and
k=1,...,K.

In the algorithm,fi(v) denotes the flow of commoditypassing

factor of (14 2¢) of the lightest while obtaining a similar approxi-
mation guarantee.

Let wi_1(-) be the weight function at the beginning of tH&
iteration. We havewg(v) = o for eachv € V. For brevity denote
a(w;i), D(w;i) by a(i), D(i) respectively. Following Fleischer, we

tI?ycle through the commodities, sticking with a commodity until the
9

htest source-sink path for that commodity is above an?t fac-

‘tor times a lower bound estimate of the overall lightest path. Let

(i) be a lower bound on(i). To start, we seti(0) = 3. As long
s there is some € P with weight(p) < min{1,(1+ 2¢)a(i)}, we
ugment flow alongp. When this no longer holds, we know that
e weight of the lightest path is at led4t+ 2¢)a(i), and so we set
+1) = (1+2¢)a(i). Thus, throughout the course of the algo-
ithm, o takes on values in the séb(1+ 2¢)'}n . Sincea(0) > o
anda(t—1) < 1, a(t) < 1+2¢e. Thus, when we stop(t) is be-
tween 1 and - 2¢. Each increase df is by an 14 2¢ factor, hence
the number of increases afis log, , 5 1+—525 (and the final value af

is [logy , o 52 |)

Between updates ta, the algorithm proceeds by considering
each commodity one by one. As long as the lightest path for com-
modity k has weight less than the minimum of-2¢ times the cur-
rent value ofa and 1, flow is augmented along such a lightest path.
Whenmin,cp, weight(p) > (14 2¢)a, commodityk+ 1 is consid-
ered. After allk commodities are considered,is updated. A total

of at mostKlog; , ¢ 142 minimum weight path computations are
used to update over the course of the algorithm.

Note also that the number of possible augmentations is at most
Klogy ;o 1*—525. Indeed, at the staw(v) = & for each vertex. The
last time the weight of a vertex is updated, it is on a path of weight
less than one, and itis increased by at most a factord?el Hence,
the final weight of any vertex is at most-12¢. Since every augmen-
tation increases the weight of some sipkk = 1,...,K) by a factor
of at least I+ 2¢, the number of possible augmentations is at most

Klogy, 1+—52£. This, together with our observation on the number

of timesa is recomputed, implies a runtime G{Kmlog , 5 1%;28)
for our algorithm, wheren is the number of edges between buffer
blocks in our graplt.

Theorem 1 Algorithm 1 yields a(1 + 8¢)-approximation for the

MFRVBB problem by choosing = (1 + 2¢)((1+ 2£)L)’71z and
€ < .07, where L is the number of vertices in the longest simple path
of G between any source-sink pair.

Proof. Our proof is an extension of the proof of Fleischer [7]
(see also [8]) to vertex-capacitated case, and is omitted due to space
constraints. 0

In Algorithm 1 we need to solve the following problem. Let
Gk (k=1,...,K) be a subgraph of the gragghinduced by vertices
{sx,tk} UR (recall that each vertex € R has a loopvv € E). Let
also each vertex of G¢ have a non-negative weight(v). Find a
minimum weight pathpy in G¢ connectings with ty which passes

through a vertex, andf denotes the total flow routed. The algorithmthrough an even (odd, dependingax) number of vertices, with the

associates a weight with each vertex, and every time it routes an u

flow along some(sy, tx)-path p from Py (k= 1,...,K) it multiplies
the weight of every vertex on this path bytle/c(v) for a fixede
(if the path uses a loopv, then the weight ofv is multiplied by
1+2¢/c(v)). Initially, every vertexv has weigh® for some constant
0. Thus, the heavier the vertex the greater the flow through it.

RAlimber of vertices not exceedihg This path may contain at most
one loop. So, the vertex weight will contribute either once or twice
(in case of loop) to the weight of the path.

We will reduce this problem to the usual shortest path problem on
a edge-weighted directed acyclic graph (dag)with 2+ nly vertices
and at mosh+ n?(l — 1) +n[li /2] arcs, constructed as follows:

o V(D) =sU{rij[1<i<n 1<) <I}U{te}



e E(Dy) = E;UE2UES3, where Kth source-sink pair with probabilitfy. Hence,P contains on aver-

Bi = {(soriall<i<n (sori)€E(G)} ageyf ; fic = fi source-sink pairs. It is easy to see that the proba-
’ . ) bility that nodev is visited during the random walk for commodky
Eo = {(rijrij+2) [1<0i7<n 1< <y, is equal tof (V). As suggested in [19] for the edge-capacitated case,
(ri,ry) €E(G)} gnsurlin_g that nolnode ca%acit#as are ?l(ceede_dhcan be accompllizhed
_ . : : y solving a multicommodity flow problem with capacities scale
Bs = {(r"“tk) [isisnisislh down by a factor of 1- € for a sufficiently smalle. Using Cher-
j = a(mod 2),(ri,t) € E(G)} noff bounds on the sum of independent Bernoulli trials [21, 19] we

can prove that, with high probability, this method routes an almost
Here, we assume thag = O if itis even, andy = 1 ifitis odd. The optimum number of nets without violating any node capacity:
weight of each ar¢x,y) in Dy equalsw(x). Clearly, any path frons,
toty in Dy visits at most, buffers, and the number of visited buffers Theorem 3 If c(v) > 5.2In(4n) for every vertex v in the given graph
has the parity prescribed lay. Moreover, G, then, for any positive < (v/5—1)/2), |P| > (1—€)20PT with

probability of at leastL — & — 2e~03%°OPT \yhere OPT is the opti-

Lemma 2 The shor h fr inD ntain m n
emma e shortest path frony $o t k contains at most one mum number of routable nets.

edge of the fornr; j,rj j4+1).

Proof. Suppose it contains two such edges. Then, by “sliding-up” N our experiments we have found that instead of scaling down

the path along the two edges we obtain a shorter path that visits tRgde capacities, itis preferable to use a simpler approach: repeatedly
fewer buffers and hence still has the right parity. O drop the path irP that visits the most over-used nodes, until feasi-

bility is achieved. We will call this thgreedy-deletion algorithm
Notice also that, sincBy is acyclic, the shortest path connecting5

Impl ted Algorith
s toty, can be computed i®(|E(Dy)|) time8 mplemented Algortims

In this section we will describe all implemented algorithms for the
Global Buffering Problem. We first give a naive greedy algorithm
4@nd then describe a full implemented version of the solution based
on the rounded approximate solution of the corresponding multicom-

4 Rounding of Fractional MCF

In the previous section we presented an algorithm for approxim
ing the optimum fractional multicommodity flow within any desired . X . 9
acgcuracy? Since the total flof provides )z/an upper bounﬁ on the Modity flow. Finally, we describe a so-calléeShot heuristiovhich
optimum integral multi-commodity flow, we will be able to con- tries to find an integer solution avoiding fractional relaxation.

nect no more tharf; source-sink pairs under the given capacityGreedy Algorithm.  If we just connect all source-sink pairs with
parity, and path-length constraints. In this section we show hoghortest paths, then we may greatly overuse the buffer resource and
to use the fractional flow to obtain a valid routing that contains alebtain a non-feasible solution. If we make it feasible by using the
most f; paths. The construction is based on thedomized round- “negative” greedy algorithm from the previous section, some pairs
ing technique of Raghavan and Thomson [21] (see also [19]). Fonay still be routable afterward. We suggest a simpler algorithm
k=1,...,K, let fy(e) denote the flow of commodity routed along which obtains a maximal feasible solution, i.e., such that no discon-
arcee E(Dy), fx(u) denote the flow of commodity routed through nected pairs can be routed. The running tim@(&E) whereK is
vertexu € V(Dy), and fy = f(s¢) denote the total flow of commod- the number of source-sink pairs aids the number of edges in the

ity k. Since the underlying graph is in our case directed and acycligraphG.

randomized rounding can be efficiently implemented as a random

walk; see Algorithm 2.

Algorithm 3: Greedy Routing Algorithm

Algorithm 2: Randomized MCF rounding Input: Graph G with the source-sink pairs (s;,t)
Output: Set of paths connecting pairs (S,t)

Input: Flows f(e) €[0,1], k=1,...,K, e€ E(G) satisfying capacity
constraints 1. For each sink-source pair (s,t) do

Output: Set P of paths connecting pairs (Sq,tk)
if there exists an (s —tj)-path satisfying parity and length

constraints
then find the shortest such path P and for each buffer block r

1. For each k=1,... K, with probability f, do

/I Find path fromsy to ty using a random walk based dg(e)’s on P decrease the capacity of r by 1 unit
U< & if resulting capacity of r is 0, then delete r from the graph G
While u#tq do

Pick arc (u,v) with probability fx(u,v)/fi(u)

uev £-MCFG Algorithm.  The rounded-approximate solution for the
multi-commodity flow formulation will give us a feasible solution
for the Global Buffering Problem. Since the fractional relaxation is
Note that the seP of paths of the given grap® produced by the solved only approximately, the rounded solution may be not maxi-
randomized MCF rounding algorithm contains a path connecting thgal, i.e., some extra pairs can be routed. Experimental results below
show that the Greedy Algorithm applied on top of the rounded solu-

5We have also considered the variant formulation where an overall cost tisnd tion can significantly increase the number of routed nets.
given, along with a weightt, for each source-destination péi,tx). Define the cost of

aroute to be “the number of used buffer sites, times the weight of the source-destination The 1-_Sh0t HeUl’i_StiC. The appI'OXimc’_;'ltiOI’l algorithm for frac-
pair”. Then, we would like to solve the problem of maximizifigep fp, subject to  tional multi-commodity flow uses a very simple increment of buffer
the additional constraint that the total cost of all (fractional) routes is not more thag|ock weights used in the shortést, t;)-path. Intuitively, the weight

B. A variant of Algorithm 1 provably achieves(a + 8¢)-approximation for thi<Cost- . ) o

Constrained MFRVBB problem; we omit the details of this algorithm due to space'ncrement forces Slflbsequemly routed nets. tp "?‘VO'd usage of these
constraints. buffer blocks. The idea of the 1-Shot heuristic is to apply that ap-

proach directly to the integer flow formulation. The resulting flow




Algorithm 4: e-MCF Algorithm with Greedy Enhancement
(e-MCFG)

Input: Graph G with the source-sink pairs (s,t)
Output: Set of paths connecting pairs (S,t)

1.

Solve the Fractional MCF Problem with €-approximation
Fleischer's algorithm (Algorithm 1)

Round the approximate fractional solution using random walk
algorithm (Algorithm 2)

Using the greedy-deletion algorithm find feasible integer
solution of Global Buffering Problem

Using Algorithm 3, augment the solution from step (3) to
obtain a maximal feasible solution.

At very early stages of chip planning, where our work applies, it
is reasonable to consider a single repeater size (typically between
60x and 80x times minimum inverter, to give good energy-delay
product as well as global line delay [2]). This is reasonable since
delay is actually not very sensitive to either repeater size or repeater
location (within reasonable bounds), and since we are considering
very long global wires. Of course, source resistance and sink input
capacitance can be significantly different from those of the standard
repeater: to address this, shorter distances between source and the
first repeater, or longer distances between the sink and the last re-
peater, can be enforced by constructing a restricted set of ggaph
edges incident to sources and sinks.

In all instances considered the number of nets was large (around
4000), and the number of buffer blocks small (50); such values are
typical for this application. Our implementation attempted to exploit
this particular structure of the problem for achieving practical MCF
running times. To our knowledge, MCF instances of this size have
never been solved before, neither exactly, using linear programming

may be infeasible due to overuse of some buffer blocks, therefo ethods [1, 4, 15], nor approximately [17, 10]. A key speed-up

we use the greedy-deletion algorithm to make it feasible. Finally
apply the same greedy enhancement that we usM@FG (Algo-

rithm 4).

Algorithm 5: 1-Shot Heuristic

Input: Graph G with the source-sink pairs (s,t)
Output: Set of paths connecting pairs (S, t)

1.
2.

Assign weight 1 to each buffer block in the graph G.

While total overused capacity does not go down for 10
iteration do

For each i, find a shortest (s,tj)-path R in G
For each buffer block r,
set W(r) =w(r)- (14 cy(r)/c(r))

Using greedy-deletion algorithm find feasible solution of Global
Buffering Problem

Using Algorithm 3, augment the solution from step (3) to
obtain a maximal feasible solution.

6

Implementation Experience

6.1 Experimental setup

All experiments were conducted on an SGI Origin 2000 with 16 Conclusions and Future Directions

ea was to keep individual directed acyclic graphs for each source-
sink pair. This allows shortest path computations to be performed on
graphs with no useless arcs (i.e., arcs leading into different sinks).
Although this representation introduces some redundancy — buffer
blocks and the arcs between them are now represdttches —
this representation still fits comfortably in the internal memory of a
workstation.

6.2 Results

Table 1 shows the number of routed nets and the running time re-
quired by each of the algorithms included in our comparison. Note
that the running time o€-MCFR grows quadratically in /E. As
proved in Section 3 and illustrated in Figure 1, the quality of the
fractional MCF depends linearly ofy and this clearly affects the
quality of the integral solution obtained by rounding. Quite surpris-
ingly, however, this does not necessarily mean that we always need
to solve the fractional flow with very good precision. As shown in
Figure 1, running the Greedy routing algorithm starting from the so-
lution obtained by randomized rounding leads to almost the same
quality solutions for all values o.

It can be noted that the 1-Shot heuristic, which is only slightly
slower than the Greedy routing, gives significantly improved solu-
tions. On lightly constrained instances (block capacity of 400) the 1-
Shot heuristic almost matches the performance-eMCFG. How-
ever, on highly constrained instaneesMCF Gretains an advantage
over the 1-Shot heuristic, especially for small values.of

used by the sequential implementations included in our comparisot) thiS paper, we addressed the problem of how to perform buffering
and 4GB of internal memory, running under IRIX 6.4 IP27. Timing®! global netsgiven an existing buffer block plamssuming as in
(reported in CPU seconds) was performed using low-level Unix ind: 2°] that global nets have been already decomposed into two-pin
terval timers, under similar load conditions for all experiments. Al€onnections, we gave a provably good algorithm based on a recent
algorithms were coded in C and compiled usinig: version eges- @PProach of Garg and dtiemann [8] (see also [7]). Our method
2.90.27 with-04 optimization. routes connections using available buffer blocks, such that required

The test instances used in our experiments were extracted fréfRPer and lower bounds on buffer intervals — as well as wirelength
the next-generation microprocessor chip at SGI. We used an optiPP€r bounds per connection — are safisfied. Unlike [6, 25], our
mized floorplan of the circuit blocks and also optimized the locatio*0de! allows more than one buffer to be inserted into any given
of the source/sink pin locations based on coarse timing budgets. Wgnnection.  In addition, our algorithm observes buffer parity con-
usedU = 400Qum, and varied. between 50@m and 200pm (for straints, i.e., it will choos_e to use an inverter or a buf_fer (=_ co-locat_ed
L = 500um the design is typically gate dominated, foe= 200Qum P&l of |n\{erters) according to source and Qestlnatlon sngnal parity.
the design tends to be totally wire dominated). Path-length uppdf€ @lgorithm outperforms an implementation of “greedy ripup and
bounds were computed with the formuila= dist(s, t)/1000. In our reroute”, and has been validated on top-level layouts extracted from
experiments, we used two different block capacities: 400, respe%—rece”t high-end microprocessor design. It gives very good results
tively 50, buffers per block. The latter value heavily constrains th@n réal-world test cases.

routing — only a little over half of the nets can be routed — while th% Our current research pursues several extensions of the MCF
former usually allows routing of all nets. ased approach. Examples include the following. (1) We incorporate

195MHz MIPS R10000 processors (only one of which is actuallﬁ?



ID L ] C K Greed 1-Shot

e-MCFG

€=0.16

€=0.08 €=0.04 €=0.02 €=0.01

i1 2000
i2 1000
i3 500

4000
4000
4000

3962
4191
4214

3883/19.86
4070/ 27.34
4101/ 28.79

3960/ 33.92
4186/ 38.28
4207/ 39.62

3962/ 109.26
4191/109.59
4212/107.09

3962292.48
41971 345.35
4212334.17

3967 1118.79
41911298.24
42121211.52

39624412.43
41914912.63
42124639.23

396216239.83
419118835.71
421217929.95

i4 2000
i5 1000
i6 500

4000
4000
4000

3964
4191
4212

2148/19.77
2216/27.32
2223/28.81

2179/23.21
2236/ 34.23
2232/ 36.14

2325/074.55
2378/ 109.75
2378/ 093.26

2339850.85
2393916.63
2389916.61

23473293.29
2394 3659.62
2394 3627.42

234013106.98
2392 14523.98
2394 15872.07

2334233.80
2369295.99
2382274.63

Table 1: Number of routed nets / running time for the implemented algorithms
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No. connected pairs
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2250
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(b)

proved solutions to the original buffer block planning (placement)
problem are still possible.
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