
Practical Approximation Algorithms for
Separable Packing Linear Programs?

Feodor F. Dragan1, Andrew B. Kahng2, Ion I. Măndoiu3, Sudhakar Muddu4, and
Alexander Zelikovsky5

1 Department of Computer Science, Kent State University, Kent, OH 44242
dragan@cs.kent.edu

2 Departments of Computer Science and Engineering, and of Electrical and Computer
Engineering, UC San Diego, La Jolla, CA 92093-0114

abk@cs.ucsd.edu
3 Department of Computer Science, UC Los Angeles, Los Angeles, CA 90095-1596

mandoiu@cc.gatech.edu
4 Sanera Systems, Inc., Santa Clara, CA

muddu@sanera.net
5 Department of Computer Science, Georgia State University, Atlanta, GA 30303

alexz@cs.gsu.edu

Abstract. We describe fully polynomial time approximation schemes for gen-
eralized multicommodity flow problems arising in VLSI applications such as
Global Routing via Buffer Blocks (GRBB). We extend Fleischer’s improvement
[7] of Garg and Könemann [8] fully polynomial time approximation scheme for
edge capacitated multicommodity flows to multiterminal multicommodity flows
in graphs with capacities on vertices and subsets of vertices. In addition, our prob-
lem formulations observe upper bounds and parity constraints on the number of
vertices on any source-to-sink path. Unlike previous works on the GRBB problem
[5, 17], our algorithms can take into account (i) multiterminal nets, (ii) simultane-
ous buffered routing and compaction, and (iii) buffer libraries. Our method out-
performs existing algorithms for the problem and has been validated on top-level
layouts extracted from a recent high-end microprocessor design.

1 Introduction

In this paper, we address the problem of how to perform buffering of global netsgiven
an existing buffer block plan. We give integer linear program (ILP) formulations of
the basic Global Routing via Buffer Blocks (GRBB) problem and its extensions to (i)
multiterminal nets, (ii) simultaneous buffered routing and compaction, and (iii) buffer
libraries. The fractional relaxations of these ILP’s areseparable packing LP’s(SP LP)
which are multiterminal multicommodity flows in graphs with capacities on vertices
and subsets of vertices.

The main contribution of this paper is a practical algorithm for the GRBB problem
and its extensions based on a fully polynomial time approximation scheme (FPTAS)

? This work was partially supported by Cadence Design Systems, Inc., the MARCO Gigascale
Silicon Research Center and NSF Grant CCR-9988331.

2 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

for solving SP LPs. Prior to our work, heuristics based on solving fractional relaxations
followed by randomized rounding have been applied to VLSI global routing [12, 16, 2,
9, 1] As noted in [11], the applicability of this approach is limited to problem instances
of relatively small size by the prohibitive cost of solving exactly the fractional relax-
ation. We avoid this limitation by giving an FPTAS for SP LP’s based on results in [8,
7]. Computational experience with industrial benchmarks shows that our approach is
practical and outperforms existing algorithms.

The rest of the paper is organized as follows. In Section 3 we formulate the GRBB
problem and its extensions as integer linear programs. The fractional relaxation of these
ILPs is a special type of packing LP which we refer to as separable packing LP. In
Sections 4 we give a practical approximation algorithm, obtained by extending the ideas
of Fleischer [7] for separable packing LPs; the details of the key subroutine for finding
minimum-weight feasible Steiner trees are given in Section 5; the details of randomized
rounding algorithms are in Section 6. In Section 7 we describe implementations of
several GRBB heuristics and give the results of an experimental comparison of these
heuristics on industrial test cases.

2 Global Buffering via Buffer Blocks

Process scaling in VLSI leads to an increasingly dominant effect of interconnect on
high-end chip performance. Each top-level global net must undergo repeater or buffer
(inverter) insertion to maintain signal integrity and reasonable signal delay [4]. It is es-
timated that up to 106 repeaters will be needed for the next generation on-chip intercon-
nect. To isolate repeaters from circuit block implementations, a buffer block methodol-
ogy is becoming increasingly popular. Two recent works by Cong, Kong and Pan [5]
and Tang and Wong [17] give algorithms to solve thebuffer block planningproblem.
Their buffer block planning formulation is roughly stated as follows: Given a placement
of circuit blocks, and a set of 2-pin connections withfeasible regionsfor buffer inser-
tion, plan the location ofbuffer blockswithin the available free space so as to route a
maximum number of connections.

In this paper we address the problem of maximizing the number of routed nets for
given buffer block locations and capacities, informally defined as follows.

Given:
– a planar region with rectangular obstacles;
– a set of nets in the region, each net having:

� a non-negative importance (criticality) coefficient;
� a single source and multiple sinks;

– for each sink:

� a parity requirement and an upper-bound on the number of buffers on the path
connecting it to the source;

– a set of buffer blocks, each with given capacity; and
– an interval[L;U] specifying lower and upper bounds on the distance between buffers.

Global Routing via Buffer Blocks (GRBB) Problem: route a subset of the given nets,
with maximum total importance, such that:

Approximation Algorithms for Separable Packing LPs 3

– the distance between the source of a route and its first repeater, between any two
consecutive repeaters, respectively between the last repeater on a route and the
route’s sink, are all betweenL andU ;

– the number of routing trees passing through any given buffer block does not exceed
the block’s capacity;

– the number of buffers on each source-sink path does not exceed the given upper
bound and has the required parity; to meet the parity constraint two buffers of the
same block can be used.

We also address the following extensions of the basic GRBB problem:

– GRBB with Set Capacity Constraints.The basic GRBB problem assumes prede-
termined capacities for all buffer blocks. In practice buffer blocks are placed in the
space available after placing circuit blocks, and some of the circuit blocks can still
be moved within certain limits (Figure 1). TheGRBB problem with set capacity
constraintscaptures this freedom by allowing constraints on the total capacity of
arbitrarysetsof buffer blocks.

BB1 BB2 BB1 BB2

M M

Fig. 1.Two buffer blocks BB1 and BB2 that share capacity: if the circuit block M moves to
the right, then the capacity of buffer block BB1 is increasing while the capacity of buffer
block BB2 is decreasing. In this example it is the sum of capacities of BB1 and BB2, rather
than their individual capacities, that is bounded.

– GRBB with Buffer Library. To achieve better use of area and power resources,
multiple buffer types can be used. TheGRBB problem with buffer libraryoptimally
distributes the available buffer block capacity between given buffer types and si-
multaneously finds optimum buffered routings.

3 Integer Linear Program Formulations

Throughout this paper we letNk = (sk;t1
k ; : : : ; t

qk
k), k = 1; : : : ;K, denote the nets to be

routed;sk is thesource, andt1
k ; : : : ; t

qk
k are thesinksof netNk. We denote bygk � 1 the

4 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

importance (criticality) coefficient of netNk, and byai
k2 feven, oddg andl ik� 0 the pre-

scribedparity, respectivelyupper bound, on the number of buffers on the path between
sourcesk and sinkt i

k. We also letS= fs1; : : : ;sKg andS0 = ft1
1; : : : ; t

q1
1 ; : : : ; t1

K ; : : : ; t
qK
K g

denote the set of sources, respectively of sinks, andR= fr1; : : : ; rng denote the given
set ofbuffer blocks. For each buffer blockri , we letc(ri) denote itscapacity, i.e., the
maximum number of buffers that can be inserted inri .

A routing graphfor netsNk, k = 1; : : : ;K, is an undirected graphG = (V;E) such
that S[S0 � V. The set of vertices ofG other than sources and sinks,V n (S[S0), is
denoted byV 0. All vertices in a routing graph are associated to locations on the chip,
including vertices ofV 0 which are associated with buffer block locations. We require
that the rectilinear distance with obstacles between two vertices connected by an edge
in the routing graph be either betweenL andU or 0 (this last case corresponds to using
two buffers in the same buffer block). Thus, inserting a buffer at each Steiner point
ensures that every Steiner tree in the routing graph satisfies the givenL=U bounds. A
feasible Steiner treefor net Nk is a Steiner treeTk connecting terminalssk; t1

k ; : : : ; t
qk
k

such that, for everyi = 1; : : : ;qk, the path ofTk connectingsk to t i
k has length at most

l ik and parityai
k. We denote the set of all feasible Steiner trees for netNk by Tk, and let

T =
SK

k=1 Tk.
For the GRBB problem, the routing graphG= (V;E) hasV =S[S0[fr 0; r 00 j r 2Rg

(there are two vertices corresponding to each buffer block to allow for feasible Steiner
trees that meet the parity constraints by using two buffers in the same buffer block) and
E = f(r 0; r 00) j r 2 Rg [f(x;y) j x;y2V, L� d(x;y)�Ug, where,d(x;y) is the rec-
tilinear distance with obstacles between pointsx andy. Given importance coefficients
gk = g(Nk) for each netNk, let g(T) = gk for each treeT 2 Tk, k= 1; : : : ;K. The GRBB
problem is then equivalent to the following integer linear program:

maximize ∑T2T g(T) fT (GRBB ILP)
subject to

∑T2T πT(v) fT � 1, 8v2 S[S0

∑T2T (πT(r 0)+πT(r 00)) fT � c(r), 8r 2 R
fT 2 f0;1g, 8T 2 T

whereπT(v) is 1 if v2 T and 0 otherwise.
The GRBB ILP, as well as the ILP formulations for GRBB with set constraints and

buffer library (which we omit from this extended abstract) are captured by the following
common generalization, referred to as theseparable packing ILP(SP ILP):

maximize ∑T2T g(T) fT (SP ILP)
subject to

∑T2T (∑v2X πT(v)s(v)) fT � c(X), 8X 2 V
fT 2 f0;1g, 8T 2 T

for given
– arbitrary setsTk of Steiner trees for each netNk;
– family V of subsets ofV such thatfvg 2 V for everyv2 S[S0;
– “size” functions : V ! R+ such thats(v) = 1 for everyv2 S[S0; and

Approximation Algorithms for Separable Packing LPs 5

– “set-capacity” functionc : V ! Z+ such thatc(fvg) = 1 for everyv2 S[S0.
Our two-step approach to the GRBB problem and its extensions is to first solve

the fractional relaxations obtained by replacing integrality constraintsfT 2 f0;1g with
fT � 0, and then use randomized rounding to get integer solutions. In next section
we give an algorithm for approximating the fractional relaxation of the SP ILP. The
algorithm relies on a subroutine for finding minimum weight feasible Steiner trees, the
details of this subroutine are given in Section 5.

4 Approximating the SP ILP Relaxation

The fractional relaxation of the SP ILP can be solved exactly in polynomial time us-
ing, e.g., the ellipsoid algorithm. However, exact algorithms are highly impractical. The
SP LP can be efficiently approximated within any desired accuracy using Garg and
Könemann’s approximation scheme for packing LPs [8]. The main step of their al-
gorithm is computing the minimum weight column of the LP. For the special case of
edge-capacitated multicommodity flow LPs, Fleischer [7] gave a significantly faster al-
gorithm by computing in each step the minimum weight column only among columns
corresponding to a single commodity. Below we generalize Fleisher’s idea to separable
packing LPs by partitioning the columns into groups corresponding to the nets.

4.1 The Algorithm

Our algorithm simultaneously finds feasible solutions to the SP LP and its dual. The
dual LP asks for an assignment of non-negative weightsw(X) to everyX 2 V such
that the weight of every treeT 2 T is at least 1, where the weight ofT is defined by
weight(T) = 1

g(T) ∑X2V πT(X)w(X) andπT(X) = ∑v2X πT(v)s(v):

minimize ∑X2V w(X)c(X) (SP LP Dual)
subject to 1

g(T) ∑X2V πT(X)w(X)� 1, 8T 2 T
w(X)� 0, 8X 2 V

In the following we assume that minfgk : k= 1; : : : ;Kg= 1 (this can be easily achieved
by scaling) and denote maxfgk : k= 1; : : : ;Kg by Γ.

The algorithm (Figure 2) starts with weightsw(X) = δ for everyX 2 V , where
δ is an appropriately chosen constant, and with a SP LP solutionf � 0. While there
is a feasible tree whose weight is less than 1, the algorithm selects such a treeT and
incrementsfT by 1. This increase will likely violate the capacity constraints for some
of the sets inV ; feasibility is achieved at the end of the algorithm by uniformly scaling
down all fT ’s. WheneverfT is incremented, the algorithm also updates each weight
w(X) by multiplying it with (1+ επT(X)=c(X)), for a fixedε.

According to the Garg and K¨onemann’s approximation algorithm [8] each iteration
must increment the variablefT corresponding to a tree with minimum weight among
all trees inT . Finding this tree essentially requiresK minimum-weight feasible Steiner
tree computations, one for each netNk. We reduce the total number of minimum-weight

6 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

Input: Nets N1; : : : ;NK , coefficients g1; : : : ;gK , routing graph G= (V;E), family V of
subsets of V, capacities c(X), X 2V , and weights s(v), v2V
Output: SP LP solution fT , T 2 T

For every T 2 T , fT 0
For every X 2V , w(X) δ
ᾱ δ=Γ
For i = 1 to t =

j
log1+ε

(1+ε)Γ
δ

k
do

For k= 1 to K do
Find a minimum weight feasible Steiner tree T in Tk
While weight(T)< minf1;(1+ ε)ᾱg do

fT fT +1
For all X 2V , w(X) w(X)(1+ επT (X)=c(X))
Find a minimum weight feasible Steiner tree T in Tk

End while
End for on k
ᾱ (1+ ε)ᾱ

End for on i
For every T 2 T , fT

fT
log1+ε

(1+ε)Γ
δ

Output fT , T 2 T

Fig. 2. The algorithm for finding approximate solutions to the SP LP.

feasible Steiner tree computations during the algorithm by extending a speed-up idea
due to Fleischer [7]. Instead of always finding the minimum-weight tree inT , the idea
is to settle for trees with weight within a factor of(1+ ε) of the minimum. As shown
in next section, the faster algorithm still leads to an approximation guarantee similar to
that of Garg and K¨onemann.

4.2 Runtime and Performance Analysis

In each iteration the algorithm cycles through all nets. For each net, the algorithm
repeatedly computes minimum-weight feasible Steiner tree until the weight becomes
larger than(1+ε) times a lower-bound̄α on the overall minimum weight, minfweight(T) :
T 2 T g. The lower-bound̄α is initially set toδ=Γ, and then multiplied by a factor of
(1+ ε) from one iteration to another (note that no tree inT has weight smaller than
(1+ ε)ᾱ at the end of an iteration, so(1+ ε)ᾱ is a valid lower-bound for the next itera-
tion).

The scheme used for updatinḡα fully determines the number of iterations in the
outer loop of the algorithm. Sincēα = δ=Γ in the first iteration and at most(1+ ε) in

the last one, it follows that the number of iterations is
j
log1+ε

(1+ε)Γ
δ

k
. The following

lemma gives an upper-bound on the runtime of the algorithm.

Approximation Algorithms for Separable Packing LPs 7

Lemma 1. Overall, the algorithm in Figure 2 requires O
�

K log1+ε
(1+ε)Γ

δ

�
minimum-

weight feasible Steiner tree computations.

Proof. First, note that the number of minimum-weight feasible Steiner tree computa-

tions that do not contribute to the final fractional solution isK
j
log1+ε

(1+ε)Γ
δ

k
. Indeed,

in each iteration, and for each netNk, there is exactly one minimum-weight feasible
Steiner tree computation revealing thatminT2Tk

weight(T)� (1+ε)ᾱ, all other compu-
tations trigger the incrementation of somefT .

We claim that the number of minimum-weight Steiner trees that lead to variable
incrementations is at mostK log1+ε

(1+ε)Γ
δ . To see this, note that the weight of the set

fskg 2V is updated whenever a variablefT , T 2 Tk, is incremented. Moreover,w(fskg)
is last updated when incrementingfT for a treeT 2 Tk of weight less than one. Thus,
before the last update,w(fskg) � Γ �weight(T) < Γ. SinceπT(fskg) = c(fskg) = 1,
the weight offskg is multiplied by a factor of 1+ ε in each update, including the last
one. This implies that the final value ofw(fskg) is at most(1+ ε)Γ. Recalling that
w(fskg) is initially set toδ, this gives that the number of updates tow(fskg) is at most
log1+ε

(1+ε)Γ
δ . The lemma follows by summing this upper-bound over all nets.

We now show that, for an appropriate value of the parameterδ, the algorithm finds
a feasible solution close to optimum.

Theorem 1. For everyε < 0:15, the algorithm in Figure 2 computes a feasible solution
to the SP LP within a factor of1=(1+4ε) of optimum by choosingδ = (1+ ε)Γ((1+
ε)LΓ)�

1
ε ; the runtime of the algorithm for this value ofδ is O

�
1
ε2 K(logL+ logΓ)Ttree

�
.

Here, L is the maximum number of vertices in a feasible tree, and Ttree is the time
required to compute the minimum weight feasible Steiner tree for a net.

Proof. Our proof is an adaptation of the proofs of Garg and K¨onemann [8] and Fleischer
[7]. We omit the proof that the solution found by the algorithm is feasible. To establish
the approximation guarantee, we show that the solution computed by the algorithm is
within a factor of 1=(1+ 4ε) of the optimum objective value,β, of the dual LP. Let
α(w) be the weight of a minimum weight tree fromT with respect to weight function
w : V ! R+, and letD(w) = ∑X2V w(X)c(X). A standard scaling argument shows
that the dual LP is equivalent to finding a weight functionw such thatD(w)=α(w) is
minimum, and thatβ = minwfD(w)=α(w)g.

For everyX 2 V , let wi(X) be the weight of setX at the end of theith iteration and
w0(X) = δ be the initial weight of setX. For brevity, we will denoteα(wi) andD(wi)
by α(i) andD(i), respectively. Furthermore, letf i

T be the value offT at the end ofith
iteration, andhi = ∑T2T g(T) f i

T be the objective value of the SP LP at the end of this
iteration.

When the algorithm incrementsfT by one unit, each weightw(X) is increased by
(επT(X)w(X)=c(X). Thus, the incrementation offT increasesD(w) by

ε ∑
X2V

πT(X)w(X) = ε weight(T)g(T)

8 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

If this update takes place in theith iteration, thenweight(T)� (1+ ε)α(i�1). Adding
this over all fT ’s incremented inith iteration gives

D(i)�D(i�1)� ε(1+ ε)α(i�1)(hi �hi�1)

which implies that

D(i)�D(0)� ε(1+ ε)
i

∑
j=1

α(j�1)(hj �hj�1)

Consider the weight functionwi �w0, and notice thatD(wi �w0) = D(i)�D(0). Since
the minimum weight tree w.r.t. weight functionwi �w0 has a weight of at mostα(wi �
w0)+Lδ w.r.t. wi , α(i)� α(wi �w0)+Lδ. Hence, ifα(i)�Lδ > 0, then

β �
D(wi �w0)

α(wi �w0)
�

D(i)�D(0)
α(i)�Lδ

�
ε(1+ ε)∑i

j=1α(j�1)(hj �hj�1)

α(i)�Lδ

Thus, in any case (whenα(i)�Lδ � 0 this follows trivially) we have

α(i)� Lδ+
ε(1+ ε)

β

i

∑
j=1

α(j�1)(hj �hj�1)

Note that, for each fixedi, the right-hand side of last inequality is maximized by setting
α(j) to its maximum possible value, sayα0(j), for every 0� j < i. Then, the maximum
value ofα(i) is

α0(i) = Lδ +
ε(1+ ε)

β

i�1

∑
j=1

α0(j�1)(hj �hj�1) +
ε(1+ ε)

β
α0(i�1)(hi �hi�1)

= α0(i�1)

�
1 +

ε(1+ ε)
β

(hi �hi�1)

�

� α0(i�1)e
ε(1+ε)

β (hi�hi�1)

where the last inequality uses that 1+ x� ex for everyx� 0. Using thatα0(0) = Lδ,
this gives

α(i)� Lδe
ε(1+ε)

β hi

Let t be the last iteration of the algorithm. Sinceα(t)� 1,

1� Lδe
ε(1+ε)

β ht

and thus
β
ht
�

ε(1+ ε)
ln(Lδ)�1

Let γ = β
ht

log1+ε
(1+ε)Γ

δ be the ratio between the optimum dual objective value and the
objective value of the SP LP solution produced by the algorithm. By substituting the
previous bound onβ=ht we obtain

γ�
ε(1+ ε) log1+ε

(1+ε)Γ
δ

ln(Lδ)�1 =
ε(1+ ε) ln (1+ε)Γ

δ
ln(1+ ε) ln(Lδ)�1

Approximation Algorithms for Separable Packing LPs 9

For δ = (1+ ε)Γ((1+ ε)LΓ)�
1
ε ,

ln (1+ε)Γ
δ

ln(Lδ)�1 =
ln((1+ ε)LΓ)

1
ε

ln((1+ ε)LΓ)�1+ 1
ε
=

1
ε ln(1+ ε)LΓ)

1�ε
ε ln(1+ ε)LΓ)

=
1

1� ε

and thus

γ �
ε(1+ ε)

(1� ε) ln(1+ ε)
�

ε(1+ ε)
(1� ε)(ε� ε2=2)

�
(1+ ε)
(1� ε)2

Here we use the fact that ln(1+ ε) � ε� ε2=2 (by Taylor series expansion of ln(1+ ε)
around the origin). The proof of the approximation guarantee is completed by observing
that(1+ε)=(1�ε)2 � (1+4ε) for everyε < 0:15. The runtime follows by substituting
δ in the bound given by Lemma 1.

5 Computing Minimum-Weight Feasible Steiner Trees

The key subroutine of the approximation algorithm given in the previous section is to
compute, for a fixedk and given weightsw(X), X2V , a feasible treeT 2Tk minimizing
weight(T) = 1

g(T) ∑X2V πT(X)w(X). Define a weight functionw0 on the vertices of

the routing graphG = (V;E) by settingw0(v) = 1
g(T) ∑v2X2V w(X), and letw0(T) =

∑v2V(T)w0(v) be the total vertex weight w.r.t.w0 of T. Thenweight(T) = w0(T), and
the problem reduces to finding a treeT 2 Tk with minimum total vertex weight w.r.t.
w0.

Recall that for the GRBB problem and its extensions,Tk contains all Steiner trees
connecting the sourcesk with the sinkst1

k ; : : : ; t
qk
k such that the number of intermediate

vertices on each tree path betweensk andt i
k has the parity specified byai

k and does not
exceedl ik. In this case we can further reduce the problem of finding the treeT 2 Tk mini-
mizingw0(T) to theminimum-cost directed rooted Steiner tree(DRST) problem in a di-
rected acyclic graph. Unfortunately, the minimum-cost DRST problem is NP-hard, and
the fact thatDk is acyclic does not help since there is a simple reduction for this problem
from arbitrary directed graphs to acyclic graphs. As far as we know, the best result for
the DRST problem, due to Charikar et al. [3], givesO(log2qk)-approximate solutions
in quasi-polynomial timeO(n3logqk). Note, on the other hand, that the minimum-cost
DRST can be found in polynomial time for small nets (e.g., in timeO(nM�1) for nets
with at mostM sinks, forM = 2;3;4); most of the nets in industrial VLSI designs fall
into this category [10]. For nets of small size, Theorem 1 immediately gives:

Corollary 1. If the maximum net size is M�4, the algorithm in Figure 2 finds, for every
ε < 0:15, a feasible solution to the SP LP within a factor of1=(1+4ε) of optimum in

time O
�

1
ε2 KnM�1(logn+ logΓ)

�
.

We have implemented both heuristics that use approximate DRSTs instead of opti-
mum DRSTs and heuristics that decompose larger nets into nets with 2-4 pins before
applying the algorithm in Figure 2; results of experiments comparing these approaches
are reported in Section 7.

10 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

Input: Net- and edge-cumulated fT values, fk = ∑T2Tk
fT and

fk(e) = ∑T2Tk: e2E(T) fT , k= 1; : : : ;K, e2 E(Dk)

Output: Routed trees Tk 2 Tk

For each k= 1; : : : ;K, select net Nk with probability fk
Route each selected net Nk as follows:
Tk fskg

For each sink t i
k in Nk do

P /0; v t i
k

While v =2 Tk do
Pick arc (u;v) with probability fk(u;v)

∑(w;v)2E fk(w;v)

P P[f(u;v)g; v u
End while
Tk Tk[P

End for

Fig. 3.The random walk based rounding algorithm.

6 Rounding Fractional SP LP Solutions

In the previous two sections we presented an algorithm for computing near-optimal
solutions to the SP LP. In this section we give two algorithms based on the randomized
rounding technique of Raghavan and Thomson [14] (see also [11]) for converting these
solutions to integer SP ILP solutions.

The first algorithm is to route netNk with probability equal tofk = ∑T2Tk
fT by

picking, for selected nets, one of the treesT 2 Tk with probability fT= fk. A drawback of
this algorithm is that it requires the explicit representation of treesT 2 T with f (T) 6= 0.
Although the approximate SP LP algorithm produces a polynomial number of trees with
non-zerofT , storing all such trees is infeasible for large problem instances. Our second
rounding algorithm (Figure 3) takes as input the net- and edge-cumulatedfT values,
fk = ∑T2Tk

fT , respectivelyfk(e) = ∑T2Tk: e2E(T) fT , thus using onlyO(KjEj) space.
As the first rounding algorithm, the algorithm in Figure 3 routes each netNk with

a probability of fk = ∑T2Tk
fT . The difference is in how each chosen net is routed: to

route netNk, the algorithm performsbackward random walksfrom each sink ofNk until
reaching either the source ofNk or a vertex already connected to the source. The random
walks are performed in the directed acyclic graphs used for DRST computation, with
probabilities given by the normalizedfk(e) values.

On the average, the total importance of the nets routed by each of the two algorithm
is ∑K

k=1gk fk = ∑T2T g(T) fT . By Theorem 1, this is within a factor of 1=(1+4ε) of the
optimum SP LP solution, which in turn is an upper-bound on the optimum SP ILP solu-
tion. Ensuring that no set capacity is exceeded can be accomplished in two ways. One
approach is to solve the SP LP with set capacities scaled down by a small factor which
guarantees that the rounded solution meets theoriginal capacities with very high prob-
ability (see [11]). A more practical approach, extending the so-calledgreedy-deletion

Approximation Algorithms for Separable Packing LPs 11

algorithmin [6] to multiterminal nets, is to repeatedly drop routed paths passing through
over-used sets until feasibility is achieved.

7 Experimental Results

We have implemented four greedy algorithms for the GRBB problem; all four greedy
algorithms route nets sequentially. For a given net, the algorithms start with a tree con-
taining only the net’s source, then iteratively add shortest paths from each sink to the
already constructed tree. The only difference is in whether or not net decomposition is
used, and in the size of the decomposed nets. The first three algorithms—referred to
as 2TG, 3TG, and 4TG, respectively—start by decomposing larger multiterminal nets
into 2-, 3-, respectively 4-pin nets. The fourth algorithm, MTG, works on the original
(undecomposed) nets.

We have also implemented four algorithms that approximate the fractional solution
to the SP LP corresponding to GRBB problem (which generalizes the node-capacitated
multiterminal multicommodity flow problem) and then apply randomized rounding.
The first three algorithms (2TMCF, 3TMCF, and 4TMCF) decompose larger nets into
2-, 3-, respectively 4-pin nets then call the algorithm in Figure 2 with exact DRST com-
putations. The fourth algorithm, MTMCF, works on the original (undecomposed) nets,
using shortest-path trees as approximate DRSTs in the SP LP approximation algorithm.

Figure 4 plots the solution quality versus the CPU time (on a 195MHz SGI Origin
2000) of each implemented algorithm. The test cases used in our experiments were
extracted from the next-generation (as of January 2000) microprocessor chip at SGI.
The results clearly demonstrate the high quality of solutions obtained by rounding the
approximate SP LP solutions. The MTMCF algorithm proves to be the best among all
algorithms when the time budget is limited, providing significant improvements over
greedy algorithms without undue runtime penalty. However, the best convergence to
the optimum is achieved by 4TMCF, which dominates all other algorithms when high
time budgets are allowed.

References

1. C. Albrecht, “Provably good global routing by a new approximation algorithm for multicom-
modity flow”, Proc. ISPD, 2000.

2. R.C. Carden and C.-K. Cheng, “A global router using an efficient approximate multicom-
modity multiterminal flow algorithm”,Proc. DAC, 1991, pp. 316–321.

3. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, and S. Cheung, “Approximation algo-
rithms for directed Steiner problems”,J. Algorithms, 33 (1999), pp. 73–91.

4. J. Cong, L. He, C.-K. Koh and P.H. Madden, “Performance optimization of VLSI intercon-
nect layout”,Integration21 (1996), pp. 1–94.

5. J. Cong, T. Kong and D.Z. Pan, “Buffer block planning for interconnect-driven floorplan-
ning”, Proc. ICCAD, 1999, pp. 358–363.

6. F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu and A. Zelikovsky, “Provably good global
buffering using an available buffer block plan”,Proc. ICCAD, 2000, pp. 104–109.

7. L.K. Fleischer, “Approximating fractional multicommodity flow independent of the number
of commodities”,Proc. 40th Annual Symposium on Foundations of Computer Science, 1999,
pp. 24–31.

12 F.F. Dragan, A.B. Kahng, I.I. M˘andoiu, S. Muddu, and A. Zelikovsky

90

91

92

93

94

95

96

97

98

99

0.25 1 4 16 64 256 1024 4096 16384 65536

C
on

ne
ct

ed
 s

in
ks

 (
%

 o
f a

ll
si

nk
s)

CPU seconds

2TG
3TG
4TG
MTG

G2TMCF
G3TMCF
G4TMCF
GMTMCF

Fig. 4. Percent of sinks connected vs. CPU time.

8. N. Garg and J. K¨onemann, “Faster and simpler algorithms for multicommodity flow and
other fractional packing problems”,Proc. 39th Annual Symposium on Foundations of Com-
puter Science, 1998, pp. 300–309.

9. J. Huang, X.-L. Hong, C.-K. Cheng and E.S. Kuh, “An efficient timing-driven global routing
algorithm”,Proc. DAC, 1993, pp. 596-600.

10. A.B. Kahng and G. Robins.On Optimal Interconnections for VLSI, Kluwer Academic Pub-
lishers, Norwell, Massachusetts, 1995.

11. R. Motwani, J. Naor, and P. Raghavan, “Randomized approximation algorithms in combi-
natorial optimization”, InApproximation algorithms for NP-hard problems(Boston, MA,
1997), D. Hochbaum, Ed., PWS Publishing, pp. 144–191.

12. A.P.-C. Ng, P. Raghavan, and C.D. Thomson, “Experimental results for a linear program
global router”.Computers and Artificial Intelligence, 6 (1987), pp. 229–242.

13. C.A. Phillips, “The network inhibition problem”,Proc. 25th Annual ACM Symposium on
Theory of Computing, 1993, pp. 776–785.

14. P. Raghavan and C.D. Thomson, “Randomized rounding”,Combinatorica, 7 (1987), pp.
365–374.

15. P. Raghavan and C.D. Thomson, “Multiterminal Global Routing: A Deterministic Approxi-
mation Scheme”,Algorithmica, 6 (1991), pp. 73–82.

16. E. Shragowitz and S. Keel, “A global router based on a multicommodity flow model”,Inte-
gration, 5 (1987), pp. 3–16.

17. X. Tang and D.F. Wong, “Planning buffer locations by network flows”,Proc. ISPD, 2000.

