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Abstract—To implement high-performance global interconnect with-  approach of Garg anddiemann [8] and Fleischer [7]. Our method
out impacting the placement and performance of existing blocks, the use routes the nets using available buffer blocks, such that required up-
of buffer blocks is becoming increasingly popular in structured-custom  per and lower bounds on repeater intervals—as well as length upper
and block-based ASIC methodologies. Recent works by Cong, Kong and bounds per connection—are satisffeth addition, our algorithm ob-

Pan [5] and Tang and Wong [18] give algorithms to solve théuffer block  servegepeater parity constraints.e., it will choose to use an inverter
planning problem. In this paper, we address the problem of how to per- or a buffer (= co-located pair of inverters) according to source and des-
form buffering of global multiterminal nets given an existing buffer block  tination signal parity. The authors of [5, 18, 6] assumed that global
plan. We give a provably good algorithm based on a recent approach nets have been already decomposed into two-pin connections; unlike
of Garg and Kdnemann [8] and Fleischer [7] (see also Albrecht [1] and these works our model takes into accommtltiterminal nets

Dragan et al. [6]). Our method routes connections using available buffer Informally, our problem is defined as follows.

blocks, such that required upper and lower bounds on buffer intervals—  Gijyen:

as well as wirelength upper bounds per connection—are satisfied. In e a planar region with rectangular obstacles;

addition, our algorithm allows more than one buffer to be inserted into e aset of nets in the region, each net has:

any given connection and observes buffer parity constraints. Most im- — asingle source and multiple sinks;

portantly, and unlike previous works on the problem [5, 18, 6], we take — anon-negative importance (criticality) coefficient;

into account multiterminal nets. Our algorithm outperforms existing al-
gorithms for the problem [5, 6], which are based on 2-pin decompositions
of the nets. The algorithm has been validated on top-level layouts ex-
tracted from a recent high-end microprocessor design.

e each sink has:

— a parity requirement, which specifies the required parity
of the number of buffers (inverters) on the path connecting
it to the source;

— a timing-driven requirement, which specifies the maxi-
mum number of buffers on the path to the source;

e aset of buffer blocks, each with given capacity; and )
Process scaling leads to an increasingly dominant effect of in- ® an interval[L,U] specifying lower and upper bounds on the dis-
terconnect on high-end chip performance. Each top-level global tance between buffers.

net must undergo repeater insertion (among other optimizations; &R . . .
L o= X : - obal Routing via Buffer Blocks (GRBB) Problem: route a subset
[4, 11, 14]) to maintain signal integrity and reasonable signal d'elay.of the given ngts With maximum iotal im)portance such that:

Esgtrg;‘j‘stiz rotfoth-llae\r;glegnf-%rhire‘ﬁgr('ac:rowr?:cr:ttlc\)/\r/]hreingvi Lfgg?f)ﬂ::'s onm® the distance between the source of a route and its_ first repeater,
p P P between any two consecutive repeaters, respectively between

technology node. These repeaters are large (anywhere frantel0 the last repeater on a route and the route’s sink, are all between
200x minimum inverter size), affect global routing congestion, can L andU:

entail non-standard cell he'ight and special power routing require- the number of trees passing through any given buffer block does
ments, and can act as noise sources. In a block- or reuse-baseJ not exceed the block’s capacity:
methodology, designers seek to isolate repeaters for global intercon-y he number of buffers on each source-sink path does not exceed

nect from individual block implementations. the given upper bound and has the required parity; to meet the
__ Forthese reasons affer blockmethodology has become increas- parit%/ constFr)gint two buffers of the sam(l bIockpcanybe used.
ingly popular in structured-custom and block-based ASIC method-
ologies. Two recent works by Cong, Kong and Pan [5] and Tang arifipossible, the optimum solution to the GRBB problem simultane-
Wong [18] give algorithms to solve tharuffer block planningroblem.  ously routes all the nets. Otherwise, it maximizes the sum of the
Their buffer block planning formulation is roughly stated as followsimportance coefficients over routed nets. The importance coefficients
Given a placement of circuit blocks, and a set of two-pin connectionsan be used to model various practical objectives. For example, im-
with feasible region&for buffer insertion, plan the location aiuffer  portance coefficients of 1 for each net correspond to maximizing the
blockswithin the available free space so as to route a maximum nummumber of routed nets, and importance coefficients equal the number
ber of connections. In another recent development, Dragan et al. [@]sinks in the net correspond to maximizing the number of connected
give an algorithm for performing global buffered routing of two-pinsinks.
nets under an existing buffer block plan. The GRBB problem can be formulated as a generalized version
In this paper, we address the problem of how to perform buffelef (vertex-capacitated) integenultiterminal multicommodity flow
ing of globalmultiterminalnets given an existing buffer block plan. (MTMCF). The main contribution of this paper is an MTMCF based
(Hence, our work is compatible with and complements the methodsgorithm for the GRBB problem. Prior to our work, multicommodity
in [5, 18, 6].) We give a provably good algorithm based on a recerftow (MCF) based heuristics have been applied to VLSI global routing

, - _ [)13, 17,2, 9, 1]. As noted in [12], the applicability of these algorithms
*This work was partially supported by Cadence Design Systems, Inc., the MARC

Gigascale Silicon Research Center and NSF Grant CCR-9988331. 3For example, global repeater rules for a high-end microprocessor design jm0.25
!Following the literature, we will use the terrhsfferandrepeaterfairly interchange-  cMOS [10] require repeater intervals of at most 4880 The number of buffers needed
ably. When we need to be more precise: a repeater can be implemented as eithef@m given connection depends strongly on the length of the connection; as noted in [10],
inverter or as a buffer (= two co-located inverters). the repeater interval is not only required for delay reduction, but also for crosstalk noise

2In [18] only a single buffer per connection is allowed. immunity and edge slewtime control.

|. INTRODUCTION




has often been limited to problem instances of relatively small size maximize  St7 o(T)fr

by the prohibitive cost of solving exactly the fractional relaxation. subject to
Following [1, 6], we avoid this limitation by using an approximate SteT T (V) fr <clv) WeV
MTMCF algorithm based on results in [8, 7]. An important feature fr € {0,1} vTeT.

of our algorithm is that it allows for a smooth trade-off between runwherefr = 1 if the treeT is used in the solution anft = 0 otherwise,
ning time and solution accuracy. Our experiments indicate that eveimdre (v) is the number of occurrenceswin T, i.e.,
MTMCEF solutions with very low accuracy give good final solutions
for the GRBB problem. 0,ifvegT

The most interesting feature of our algorithm is its ability to T (V) 1= { 1,if ve T and loopvvis not inT
work with multiterminalnets. Previous work on the GRBB problem 2,if ve T and loopwvisin T
[5, 18, 6] has considered only the case of 2-pin nets. Experiments on
top-level layouts extracted from a recent high-end microprocessor de-Qur approach will be to solve the relaxation of the above integer
sign validate our MTMCF algorithm, and indicate that it significantlyprogram obtained by replacing the integrality constraint vfith> 0
outperforms existing algorithms for the problem [5, 6]. VT e T ; we will then use randomized rounding to obtain an integer

The rest of the paper is organized as follows. In Section 2, weplution. We will refer to this relaxation as tidultiterminal Multi-
reduce the Global Buffering Problem to a generalized version of ircommodity Flow Linear PrograMTMCF LP).
teger multiterminal multicommodity flow. The fractional relaxation  Although the MTMCF LP is solvable in polynomial time (using,
of this problem is a special case péicking LR and can thus be ap- e g., the ellipsoid algorithm), exact algorithms are highly impractical.
proximated within any desired accuracy using the algorithm of Gargn the other hand, the MTMCF LP is a special caseaxfking LP
and Kénemann [8]. In Section 3 we present a faster approximatiognd can thus be efficiently approximated within any desired accuracy
algorithm, obtained by extending the ideas of Fleischer [7] to thigsing the recent combinatorial algorithm of Garg areh&thann [8].
special type of packing LPs. In Section 4 we describe the randomizgg this paper we give a significantly faster approximation algorithm
rounding algorithm used to convert near-optimal fractional MTMChyased on a speed-up idea due to Fleischer [7]. Fleischer’s idea, orig-
solutions to near-optimal integral solutions. In Section 5 we descrihfally proposed for approximating the maximum edge-capacitated
several global buffering heuristics, some based on the MTMCF apiCF, has been recently extended [1, 6] to edge-capacitatdtiter-
proach, and some based on less sophisticated greedy ideas. In Seqi@ihal MCF andvertex-capacitatetICF, respectively. Here we take
6 we give the results of an experimental comparison of these he_uristltpﬁ,s approach further and show how to use it for efficient approxima-
on test cases extracted from the top-level layout of a recent high-efigh of vertex-capacitated multiterminatulticommodity flow.
microprocessor. Finally, we conclude in Section 7 with a list of open
research directions.

Il1. A PPROXIMATION OF VERTEX-CAPACITATED MTMCF

Il. INTEGERPROGRAM FORMULATION OF GRBB Our MTMCF approximation algorithm simultaneously solves the
) MTMCF LP and itsdual LR, the dual solution is used in proving the

GivenK netsNy = (St ...t &), k=1,..., K, andn buffer blocks  approximation guarantee of the algorithm. The dual of the MTMCF
{r,...,tn}, letS={sy,...,x}, T={t},... .t} .., t&,...,tz},and  LPis:
R={rq,...,rn}. Letalso a{( € {even, odd, respectively{{(, be the minimize ey W(V)c(V)
parity requirementrespectively the prescribed upper bound, on the subject to 1
number of buffers on the path between soigcand sinkt;. U SveTW(V) > 1 vTcT

Let pyy be a rectilinear path connecting pointandy of a planar w(v) >0 YWweV.
region and avoiding all rectangular obstacles given in the region. De-
note byd(x,y) the length of a shortest such path. Get= (V,E) be a  The dual LP can be viewed as an assignment of non-negative weights,
graph with vertex sef = SUT UR. The edge sdf contains all edges yy(.), to the vertices o6 such that the weight of any tr@ec T is at
of typevv, ve R(such an edge is called a loop). Two different verticegeast 1; the objective is to minimize the sgpey W(v)c(v). Here, the

xandy are adjacent (i.exy € E) ifand only if L <d(x,y) <U.  weijght weightT), of the treeT is the sum of the weights of vertices
A path p= (¢, v1,V2,...,V, 1) in G between sourcg, and sinkty  forming this tree (if the tree uses a logpthen vertexv contributes
k=1,...,K,i=1,... 7qk) is arestrictec(sk,tli()-pathif twice to this sum) divided by the importangéT ) of this tree.
e vicRforeachi=1,...,1, DenoteD(w) = Ty W(V)c(v) and leta(w) be the weight of a
o the parity ofl is aL minir_num W_eight tree f_ron_T (with respect t0/\_/(-)). The dual prob-
o | < I{<, lem is equivalent to finding a weight functiom : V — R* such
o there can be some pairs of different indiégise {1,...,1} such thatp = % is minimized. In the following we will assume that
thatv; = vj; in this case we must have— j| = 1. min{gx : k= 1,...,K} = 1—this can be easily achieved by scaling—

. . . . . . nd will den he maxim . r algorithm for MTMCF
A feasible Steiner tre®r netNy is a Steiner tredy in G connecting and denote byl the maximumgy. Our algorit ° c

; 1 Ok S approximation is given in Fig. 1.
terminalss t .. ., i such that, for every=1,.. ., g, the path offi In the algorithm,f,(v) denotes how many times vertexs visited

connectings tot is a restricteds, t,)-path as defined above. by feasible Steiner trees used to connectyeindf denotes the total
Define capacities on all vertices Gfby number of feasible Steiner trees used by the algorithm. The algorithm
) associates a weight with each vertex, and in each iteration it uses a
- 1, . !f vesSuT minimum weight treelT ¢ Ty to connect the pins of some nis.
c(v) f buffer block, if v € R - : o -
capacity of butier block, It v ¢ When treeT is selected, the algorithm multiplies the weight of every

) ) vertex inT by 1+ £ for a fixede (if this tree uses a loopv, then

Let Ty be the set of all feasible Steiner trees for Ngt and letT = ) . C(V)_ ) 2% .

Uﬁlek- For eachT € Ty, k=1,...,K, defineg(T) := gy, wheregy the weight ofv is multiplied by 1+ W)' Initially, every vertexv has

is the importance of. weightd for some constand. Thus, the more often is a vertex used,
The GRBB problem is then equivalent to the following integetthe larger its weight, which implies that often used vertices are less

linear program: likely to be part of future minimum weight trees.



Input: Graph G with K nets Ni,... N, vertex capacities c(v) Theorem 1 The algorithm in Fig. 1 is 41+ w)-approximation algo-

Output: MTMCF value, f, and flows fi(v) € [0,1], k=1,... K, rithm for the MTMCF LP by choosing = (1+ 2¢)((1+ 2¢)LIN) "=

v € V(G) satisfying capacity constraints ande < min{.07, 1+§)r—r) }, where L is the number of vertices in the
longest feasible Steiner tree of G connecting any net.

Set f=0

Setw(v) =3 forall ve V Proof. Our proof is an adaptation of the proof of Garg and

Konemann [8] (see also Fleischer [7]). First we show that the val-
Set fg(v)=0forallveV andk=1,...,K fi(V) .

) uesm—i—g (veV,k=1,...,K), computed by the algorithm, are
For i = 1 to logy;2: X% do 00+

Fork— 110 K do feasible, i.e. ’W SK 1 fi(v) < c(v) and hence we do not ex-

ceed the capacity of any verteof G. Consider an arbitrary vertex
of Gand letM = 3K _; fi(v) denotes how many times the vertewas
used by all feasible Steiner trees found by algorithm. For every two
times that the vertex was used by feasible Steiner trees, the weight

of vincreased by a factor of at least+ %). Sincewp(v) = 9, it

Find a minimum weight tree T in Ty.

While weight{T) < min{1/I, /T (1+2¢)'} do
f=Ff+1;
Forallve T, if T uses a loop vvthen set

fi(v) = fi(v) +2 and w(v) = w(v)(14 Z &y ); €lse set N
fi(V) = fi(v) + 1 and w(v) = w(v)(1+ L)) follows thatw:(v) > 8(1+ %)7. Simplifying this expression, we
Find a minimum weight tree T in Ty get
End while
2 M 2t M ™
End for W (V) > d(1+ (—)) 2 =9((1+ TV))C(V))ZC(V) > (1+2¢) =,

End for

f fi (V) B The last time we increased the weight\ofit was on a feasible
Output 2logy e TE and 2logy 5 T foreachveVandk=1,...,K Steiner tree of weight less thanTL Hence, the weight of was

less than 1. Since in each iteration we increase the vertex weight by
factor of at most(1+ 2¢), the final weight ofv is at most(1 + 2¢).

Fig. 1. The fractional tree-routing algorithm Consequently,

1+2¢

<}
According to Garg and &riemann’s approximation algorithm [8], . .
each iteration must use a lightest (with respect to current weight func- Now we show that the g.o of the values of the dual and the primal
tion w(-)) tree fromT if the weight of this tree is less thar/ll. The solutionsy= 72|091+zg 5, is at most(1+ w).

5(1+28)% <wi(v) <142, ie., M<c(v)2logy, o

algorithm then stops afteriterations wherd is the smallest num- For each iteration > 1 we have

ber such thati(w), computed with respect to vertex weighig) of

this iteration, is at least/I’. We extend an idea due to Fleischer [7] D(i) = Z/Wi( Z/Wu 1(v)e(v) +¢€ eru 1(v
to our vertex-capacitated MTMCF problem to reduce the number of Ve

minimum weight tree computations during the algorithm. Instead of . .
finding the lightest tree i in each iteration (which essentially in- D(i—1)+e(1+2e)la(i-1).
volvesK shortest-path computations) we settle for some tree within Note that, if T used a loopwv, thenv contributes to the sum
a factor of (1+ 2¢) of the lightest, and show that this still leads to as o1 Wi_1(V) twice (sincew; (v) = wi_1(v)(1+ 2% )
similar approximation guarantee. Then V)

Let wi_1(-) be the weight function at the beginning of thk it- ’ i
eration. We havew(v) = & for eachv € V. For brevity denote D(i) — D(0) < &(1+2¢)F Za(j —1)
a(wi) and D(w;) by a(i) and D(i), respectively. Following Fleis- ’
cher, we cycle through the nets, sticking with a net until the light- . ) )
est feasible Steiner tree for that net is above{aZt factor times a ~ Consider the weight functiom; (-) —wo(-). We havea(w; —wp) >
lower bound estimate of the overall lightest tree. &ét) be a lower (W) — 3L, whereL is the number of vertices in the longest feasible
bound ona(i). To start, we sef((0) = 5/I. As long as there is Steiner tree o5 connecting any net.
someT € T with weightT) < min{1/I", (14 2¢)a(i)}, we use tree ~ Consequently, ifi(w;) — 8L > 0, then
T. When this no longer holds, we know that the weight of the lightest ) ]
tree is at least1 + 2¢)a(i), and so we sedi(i 4+ 1) = (1+ 2¢)a(i). D(wi —wo) _ D(i)—=D(0) _ g(l+2e)ryi_qa(j-1)
Thus, throughout the course of the algorithmtakes on values in < awi—wp) — a(i)—oL — afi)—oL
the set{6/I (14 2¢)'}icn - Sincea(0) > 3/l anda(t—1) < 1/T,

a(t) < (14 2¢)/I. Thus, when we stopy(t) is between 1 and  Thus, in any case (for the cagéw;) — 6L < 0, it is trivial) we have
(1+2¢)/T. Each increase ofi is by a 1+ 2¢ factor, hence the

number oizlgcreases af is logy | o¢ 1*—625 (and the final value of is ali) < 6L-|— 1+28 z alj-
“091+25 - J)

Between updates w, the algorithm proceeds by considering each
net one by one. As long as the lightest feasible SteinerTréer e(1+2e)l 4 e(1+2¢)r
netNy has weight less than the minimum of-2e times the current (1 T) (8L + TG(O)) <
value ofa and YT, this lightest tre€l is used to connect the pins of
the netNy. Whenminy 1, weight(T) > (1+2€)a, netNy 1 is consid- (14 g(1+2e)l )L + g(1+2¢)l 5L) =
ered. After eZIIIK nets are considered,is updated. A total of at most B B -
Klogy, 2 Y52 minimum weight feasible Steiner tree computations ) ol
are us+ed toéupdane over the course of the algorithm. SL(1+ g1+ 28)I') < 5|_eA1T3ﬂ



For the last inequality the factx < € for x > 0 is used.

Since we stop at iteratiarwith a(t) > 1/, andt = f, we get Input: Multiterminal flows fi(e) € [0,1], k=1,....K, e€ E(G)

Output: Set of trees Ty € Ty

te(14+-2¢)r fe(1+2¢)r

1r<a(t)<dle” P =dle 7 . For each k=1,...,K, with probability fy, do
Hence, T+ {s}
B _e(d+2e)l For each sink t} in N do
f = In(oLr)-t’ Pe0, vetl
Now, for the ratioy we obtain While v ¢ Ty do
Pick arc (u,v) with probability fi(u,v)/ fi(v)
B 142 P+ PU{(uVv)}; v«u
==—2lo — < V)i
V=200 — 5 = End while
109 112 Tk + TxUP
2e(14-2¢)Tlogy o 75 2e(1+2¢)l In 4% End for
-1 - 1
In(oLT) In(1+2¢)In(3LT) End for
Since we have chosed = (1+ 2¢)((1+ Zs)LF)ETl, we get
|n 2
m(n&_ﬁ = 1,7122 and hence, Fig. 2. Randomized MTMCF rounding algorithm

2e(1+2e)l

STz < LHEA-2T

other ways to compute such trees. One approach, used by Albrecht [1]
for edge-capacitated MTMCF approximation, is to compute (exactly
or approximately) a DRST once, then use in each of the following
iterations minimum directedpanningtrees (with respect to the up-
dated edge lengths) in the graph inducec{skyt%, 8P, -, Psh
wherepy, ..., ps are the Steiner points of the original DRST. To find

a minimum spanning directed tree in directed acyclic graphs, one can
use a very simple procedure: for each vertex choose a shortest incom-
ing arc, then, after running this procedure, recursively delete all leaves
that are not sinks of the nék.

Here we used that [ +x) > x—x?/2 (by Taylor series expansion of
In(1+ x)).

Since (14 2¢)(1— 2¢)~2 is at most(1 + 8¢), for € < .07, and
(14 8¢)I should be no more than our approximation rétlo+ w),
we are done. .

In the algorithm in Fig. 1 we need to solve the following problem
LetGk (k=1,...,K) be a subgraph of the gra@induced by vertices
{sk,tI}, .. ,tﬂ"} UR (recall that each vertexc R has a loopvv € E).
Let also each vertex of G have a non-negative weightv). Find a
minimum weight tred in Gy connectings, with t&, e ,tgk such that, IV. ROUNDING THE FRACTIONAL MTMCE
for eachi = 1,..., 0, the path ofTy betweenrs, andt; passes through
even (odd, depending aa}) number of vertices, and that number of [N the previous section we presented an algorithm for approxi-
vertices does not excedalb This path may contain a loop, in this caseMating the optimum multiterminal multicommodity flow (MTMCF)

the weight of the vertex at which the loop is attached will contributd//thin any desired accuracy. The optimum MTMCF gives an upper-
twice to the weight of the tre®,. ound on the maximum number of routable nets (connections). In

Let Ly = ma){h%’.“’lgk . We reduce this problem to the this Isection we s?ow how t(; use the approximat_e MTMCF to route
usual shortest directed rooted Steiner tree problem on an ed ) aimost optimal numbero_ nets (resp. conne(_:tlons). Our construc-
weighted directed acyclic graph (da@ with V(D) = {s} U 10N is based on the rz_indomlzed rounding technique of Ragh_avan and

] 1<i<n1<]<LgUftd.. 1%} andE(Dy) = EUE,U Thomson [16], in particular, on the random-walk based algorithm for
{ri,j sisnis s by koot k 152 rounding multicommodity flow [15] (see also [12]).

Es, where The MCF rounding algorithm in [15] chooses a set of source-sink
_ ) ; ) pairs by including each pais,t) with a probability equal to the flow
B = {(Sonig)[1si< h’_,(sk’r') < E_(G)} from sto t. Then, for each chosen paifs,t), the algorithm per-
Eo = {(rijrij+2) [1<0,i7<n 1< <Ly, forms a random-walk frons to t, based on probabilities given by
(ri,ry) €E(G)} edge-flowls. In oqur MTMCF rounding algorithm (see Figure 2), a net
B ~.h . C Nk = (S ti, - -, *) is also routed with probability equal to the net's
Bs = {(njt)[l<isnilsh<ql<js<l total flow, fy = Src7, fr. Since we need to construct a tree con-

j = afi(mod 2),(r;,t})) € E(G)} necting all sinkg} to the sources,, we route the net by performing
) o . backwardrandom walks from each sink until reaching eitlsgior a

Ifthe cost of each arfx,y) in Dy is given byw(x), it is easy to see yertex on a path already included in the tree. Thus, if the net has only
that finding the minimum weight tree i reduces to finding a min- one sink, our rounding algorithm becomes identical to the algorithm
imum cost directed rooted Steiner tree (DRSTPin Generally, the [15], except for the direction of the random walk.
directed rooted Steiner tree problexsks, for a given directed edge-  Ensuring that no vertex capacities are exceeded can be accom-
weighted graptH = (X,U), a specified root € X, and a set of ter- pjished in two ways. Following [12], one way is to solve the MTMCF
minalsY C X, to find the minimum cost arborescence rootedaitd | p wijth capacities scaled down by a small factor that guarantees that
spanning all the vertices M (in other words should have a directed the rounded solution will meet thiginal capacities with very high
path to every vertex il). Unfortunately, the fact thady is acyclic  propability. A simpler approach, the so-callgebedy-deletion algo-
does not help. There is a simple reduction for this problem from arbyithm [6], is to repeatedly drop routed nets that visit over-used vertices
trary directed graphs to acyclic graphs. As far as we know, the best igntj| feasibility is achieved. We implement a modification of the sec-
anO(log? g)-approximate solution can be found in quasi-polynomiakinks which use paths through over-used vertices.
time O(n3'°9%) . Since this is very inefficient, we need to find some



Input: Graph G with K nets Ny,...,Nk, vertex capacities c(v)
Output: Set of trees Ty € Ty

Input: Graph G with K nets Ny,...,Nk, vertex capacities c(v)
Output: Set of trees Ty € Ty

Foreachk=1,...,K, do
Tk — {Sk}
For each sink t} in N do

Using a backward BFS search, find a shortest path P from
t to Tg in G using only vertices v with c(v) > 0; if no such

Find an approximate MTMCF using the algorithm in Fig. 1
Round the approximate MTMCF using the algorithm in Fig. 2
Use greedy deletion to find a feasible integer solution

Use the MTG algorithm in Fig. 3 on the unrouted nets to find a
maximal routing

path exists let P=0
T + TcUP
For each vertex vin P, ¢(v) « c(v) —1
End for

End for

Fig. 4 The MTMCEF routing algorithm

The three test cases used in our experiments were extracted from
the next-generation microprocessor chip at SGI. We used an opti-
mized floorplan of the circuit blocks and also optimized the loca-
tion of the source/sink pin locations based on coarse timing bud-
gets. We usedJ = 400Qum, and variedL between 50(m and
200Qum. Path-length upper-bounds were computed with the formula
Iy = dist(sq, t)/1000. In all test cases considered the number of nets

pwas large (close to 5000), and the number of buffer blocks small (50),
with relatively large capacity (400 buffers per block); such values are
typical for this application [6].

Greedy Routing Algorithms Table | gives the number of routed sinks and the running time on

We have implemented 3 greedy algorithms for the GRBB problenthe three instances by each of the algorithms included in our compar-
The first algorithm [5, 6] starts by decomposing each multitermindson. Figure VIl plots the solution quality versus the CPU time (in
net into 2-terminal nets. Then, the algorithm attempts to route the &econds, excluding I/O and memory allocation) for each algorithm.
terminal nets one by one, using for routing a shortest available path The first surprising thing to notice is that B-2TG gives noticeably
from the net’s source to its sink, if such a path exists. We will refer tbetter results than F-2TG, despite the fact that the two algorithms are
this algorithm as théorward 2-terminal greedyF-2TG) algorithm. nearly identical (they both add paths of the same length until some
The second greedy algorithm, referred to as mheltiterminal  of the vertices use up the full capacity)Perhaps not so surprising

Greedy(MTG) algorithm, routes multiterminal nets without splitting is the fact that the multiterminal greedy algorithm is better than both

(Fig. 3). In this algorithm we also attempt to route the sinks of &-2TG and B-2TG. Notice that the running time of all three greedy

net one by one. For a given net, the algorithm starts with a tree coalgorithms is virtually the same, so MTG is the clear choice among
taining only the net’s source, then iteratively adds shortest paths fraimem.

each sink to the already constructed tree. Our experiments clearly demonstrate the high quality of the solu-

The third algorithm, theébackward 2-terminal greedyB-2TG), tions obtained by flow rounding methods. Significant improvement
works as F-2TG, except for the fact that shortest paths are comput@eer the best of the greedy methods is possible even with a very small
backward, from sinks toward sources and not from sources towaimtrease in running time, proof that even very coarse MCF/MTMCF
sinks. Notice that B-2TG becomes identical to MTG when applied tapproximations give helpful hints to the randomized rounding proce-
2-terminal nets. dure. Since randomized rounding is very fast, faster in fact than any

Flow Roundina Algorith of the greedy algorithms, the MCF/MTMCF algorithms can be further

ow rounding Algonthms .improved by running randomized rounding with the same fractional

We have implemente_d two flow rounding algorith_ms. Th? first Slow a large number of times and taking the best of the rounded solu-
the MCF rounding algorithm of Dragan et al. [6] , which we will referéions; our current implementation does not exploit this idea.

to as 2TMCEF. It starts by decomposing each multiterminal net into Finally, our experiments show that even a limited use of multiter-

terrE:naI nets, and then casts the GRBB problem as an integer Mcr:rll:lnal nets (decomposition into nets of size 3) gives improvements
probiem. over the already very high-quality MCF algorithm of Dragan et al.

cu;;2ﬁtsi%:p?lg?nzlr?gtii?r:ncjzgariggsoenshflatgﬂecr:iéct);?r?tiggsfei?ﬁﬁrzélor:{ . In fact, the 3TMCF algorithm outperforms the MCF algorithm in
before applying the MTMCF routing algorithm, we will refer to this even when the same time budget is given to both algorithms.

implementation as 3TMCF. For 3-terminal nets we can find the op-
timum directed routed Steiner tree efficiently, and we do not need to
resort to the approximations suggested at the end of Section IlI.

Fig. 3. The multiterminal greedy (MTG) routing algorithm

V. IMPLEMENTED ALGORITHMS

In this section we describe the implemented algorithms for t
Global Routing via Buffer Blocks problem.

VIlI. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we addressed the problem of how to perform buffer-
ing of globalmultiterminalnets given an existing buffer block plan.
We gave a provably good algorithm based on a novel approach
. . . o MTMCF approximation inspired by recent results of Garg and
All experiments were conducted on a SGI Origin 2000 with 1 onemann [8] and Fleischer [7] on edge-capacitated MCF. Our

195MHz MIPS RlOQOQ processors_—or_]Iy one O.f which is aCt.ua”WITMCF algorithm outperforms existing algorithms for the problem
used by the sequential implementations included in our comparison—

and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27. “We presume that the advantage for computing backward shortest paths, as opposed
Timing was performed using low-level Unix interval timers, underto forward shortest paths, is that the former gives a set of paths that are better spread out
similar load conditions for all experiments. All algorithms were coded’ the vicinity of the source of a large net. If the sinks of such a net are grouped in a

. ) . . . . Small number of clusters, which is typically the case in real designs, the forward greedy
m_C "?md compiled usingcc version egcs-2.91.66 witfO4 opti-  aigorithm is likely to use a small number of neighbors of the source for all these paths,
mization.

thus leading to the faster exhaustion of the available capacity in these vertices.

VI. IMPLEMENTATION EXPERIENCE




TABLE |

PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME ON 3 INDUSTRIAL TEST CASES

[ Instance i GREEDY [ 2TMCF

3TMCF

| |
[ID]Nets Sinks N/§[F-2TG B-2TG MTGe=0.64 £=0.32 £¢=0.16 £¢=0.08 £€=0.04 £€=0.02]e=0.64 €¢=032 £€=0.16 £€=0.08 £¢=004 £=0.02]

i1|4764 6038 2.2

89.5 90.6 935 94.8 95.8 96.5 96.6 96.
0.58 0.54 0.53 2.84 12.13 39.50 139.83 600.89 2321.67| 16.57 53.62 203.03 817.59 3166.03 12736.22

8 96.8 95.7 96.8 97.3 97.5 97.6 97.6

24925 6296 2.2

89.9 91.6 93.6 96.2 97.1 97.4 97.5 97.
0.84 0.58 0.55 4.35 11.34 40.55 156.89 690.31 2604.34| 19.50 64.13 242.17 942.34 3721.95 14854.06

6 97.6 97.0 98.0 98.4 98.5 98.6 98.4

34938 6321 2.2

89.8 915 933 96.2 96.9 97.3 97.3 97.
0.65 0.59 0.54 3.37 11.08 40.84 163.32 730.95 2638.04| 18.99 66.12 246.29 956.83 3813.42 15088.50

5 97.5 96.8 97.8 98.3 98.4 98.4 98.3

[5, 6], and has been validated on top-level layouts extracted from a
recent high-end microprocessor design.

Ongoing work is aimed at increasing the space of methodologies
to which our new techniques apply. As presented here, our work is
clearly targeted to very early global wireplanning activity. In othei
words, the application domain is pre-synthesis chip planning: pré&-
scribed repeater intervals are driven only by coarse estimates of Millgr
coupling factors, repeater sizing, and source impedance or sink éa-
pacitance. The presented formulation also does not address timifig
criticalities or budgets except via net weighting (prioritization); this-ﬁ
is fortunately fairly common for initial wireplanning that breaks theg
“chicken-egg” problem of budgeting between-block and Within-bloc%
paths in pre-synthesis RTL planning with aggressive global wire op-
timization®

We are presently extending our approach in the following ways.
(1) Handling routing congestion, e.g., by introducing capacitated “vir-
tual” nodes in the flow graph. (2) Handling timing criticality and bud-
gets is another goal; our ideas include better use of net ordering and
weighting, and post-processing of the solution to eliminate unneeded
repeaters. (It is also possible to attempt to introduce layer awarenes§, >
source and sink parasitic awareness, etc., but this risks losing the fla-
vor of early feasibility checking with available buffer block plans.)
Here, maintaining provable solution quality is a key issue. (3) Fi-
nally, since accurate treatment of multiterminal nets is the key moti-[8]
vation for our present work, we are implementing better heuristics for
net decomposition into 2- and/or 3-terminal groups; we are also im-
plementing optimal graph Steiner solutions for up to 4-terminal nets,

to assess the associated quality-runtime tradeoffs. (9]

(20]
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