
Int. J. Bioinformatics Research and Applications, Vol. x, No. x, xxx 1

Highly Scalable Algorithms for Robust String

Barcoding*

Bhaskar DasGupta†

Kishori M. Konwar‡§

Ion I. Măndoiu‡¶

Alex A. Shvartsman‡§

†Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7053. E-mail: dasgupta@cs.uic.edu. Supported
in part by NSF grants CCR-0206795, CCR-0208749 and NSF CA-
REER grant IIS-0346973.
‡Computer Science and Engineering Department, University of
Connecticut, 371 Fairfield Rd., Unit 2155, Storrs, CT 06269-2155.
E-mail: {kishori,ion,aas}@cse.uconn.edu.
§Supported in part by NSF ITR grant 0121277.
¶Corresponding author. Supported in part by a “Large Grant”
from the University of Connecticut’s Research Foundation.
∗Authors are listed in alphabetical order.

Abstract: String barcoding is a recently introduced technique for
genomic-based identification of microorganisms. In this paper we de-
scribe the engineering of highly scalable algorithms for robust string
barcoding. Our methods enable distinguisher selection based on whole
genomic sequences of hundreds of microorganisms of up to bacterial size
on a well-equipped workstation. Experimental results on both randomly
generated and NCBI genomic data show that whole-genome based se-
lection results in a number of distinguishers nearly matching the infor-
mation theoretic lower bounds for the problem.

Keywords: String barcoding, setcover problem, greedy algorithm

Reference to this paper should be made as follows: DasGupta, B.,
Konwar, K.M., Măndoiu, I.I., and Shvartsman, A.A. (xxxx) ‘Highly
Scalable Algorithms for Robust String Barcoding’, Int. J. of Bioinfor-
matics Research and Applications, Vol. x, No. x, pp.xxx–xxx.

Biographical notes:
Bhaskar DasGupta received his PhD from University of Minnesota. Sub-
sequently he held post-doctoral positions at the DIMACS institute of
Rutgers University, and at University of Waterloo and McMaster Uni-
versity in Canada before joining the Camden campus of Rutgers Univer-
sity as a faculty. Currently, he is an assistant professor in the University
of Illinois at Chicago. His main research interests include designing
combinatorial approximation algorithms for computationally challeng-
ing problems in bioinformatics and several other areas. His research has
been supported by several NSF research grants. He was the recipient of
the NSF CAREER award in 2004.

Copyright c© 200x Inderscience Enterprises Ltd.

2 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Kishori M. Konwar received the M.Sc. degree in physics from the In-
dian Institute of Technology, Kanpur, India, in 1998 and the M.Tech.
degree in computer science from the Indian Statistical Institute, Cal-
cutta, India, in 2000. Presently, he is pursuing the Ph.D. degree at the
University of Connecticut, Storrs.

Ion I. Măndoiu received the M.S. degree from Bucharest University in
1992 and the Ph.D. degree from Georgia Institute of Technology in 2000,
both in Computer Science. He is now an Assistant Professor with the
Computer Science and Engineering Department at the University of
Connecticut. His research focuses on the design and analysis of exact
and approximation algorithms for NP-hard optimization problems, par-
ticularly in the areas of bioinformatics and computational biology, VLSI
computer aided design, and ad-hoc wireless notworks.

Alexander Allister Shvartsman is on the faculty of Computer Science
and Engineering at the University of Connecticut and he is a research
associate at the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Previously he was a Member of Technical Staff
at Bell Labs from 1981 to 1982, and later he had led the development
of distributed systems in the areas of manufacturing automation, re-
source management and interactive multimedia at Digital Equipment
Corp. from 1983 to 1994 and Logica, Inc. from 1994 to 1995. His
primary research interests are in the principles and practices of depend-
able distributed computing. He graduated secondary school in 1972 in
Chişinău, Moldova. He received a B.S. from Stevens Institute of Tech-
nology in 1979, an M.S. from Cornell University in 1981, and a Ph.D.
from Brown University in 1992, all in Computer Science.

1 Introduction

String barcoding is a recently introduced technique for genomic-based
identification of microorganisms such as viruses or bacteria. The basic bar-
coding problem [15] is formulated as follows: given the genomic sequences
g1, . . . gn of n microorganisms, find a minimum number of strings t1, . . . , tk
distinguishing these genomic sequences, i.e., having the property that, for
every gi 6= gj , there exists a string tl which is a substring of gi or gj , but
not of both. A closely related formulation was independently proposed in
[3], where it is assumed that it is possible to detect not just the presence
or absence of a distinguisher ti, but also the number of repetitions of ti as
a substring, up to a threshold of R > 0. The formulation in [15], which we
adopt in this paper, corresponds to R = 1.

Identification is performed by spotting or synthesizing on a microarray
the Watson-Crick complements of the distinguisher strings t1, . . . , tk, and
then hybridizing to the array the fluorescently labeled DNA extracted from
the unknown microorganism. Under the assumption of perfect hybridization
stringency, the hybridization pattern can be viewed as a string of k zeros

Algorithms for Robust String Barcoding 3

and ones, referred to as the barcode of the microorganism. By construction,
the barcodes corresponding to the n microorganisms are distinct, and thus
the barcode uniquely identifies any one of them. To improve identification
robustness, one may also require redundant distinguishability (i.e., at least
m different distinguishers for every pair of microorganisms, where m > 1 is
some fixed constant) and impose a lower bound on the edit distance between
any pair of selected distinguishers [15].

The algorithms previously proposed for string barcoding are based on
integer programming [15], and on Lagrangian relaxation and simulated an-
nealing [3]. Unfortunately, the run-time of these algorithms does not scale
well with the number of microorganisms and the length of the genomic se-
quences, e.g., the largest instance sizes reported in [15] have a total genomic
sequence length of around 100,000 bases.

In this paper we describe the engineering of highly scalable algorithms for
robust string barcoding. Our methods enable distinguisher selection based
on whole genomic sequences of hundreds of microorganisms of up to bacterial
size on a well-equipped workstation, and can be easily parallelized to fur-
ther extend the applicability range to thousands of bacterial size genomes.
Whole-genome based selection is beneficial in at least two significant ways.
First, it simplifies assay design since the DNA of the unknown pathogen can
be amplified using inexpensive general-purpose whole-genome amplification
methods such as specialized forms of degenerate primer multiplex PCR [5]
or multiple displacement amplification [8]. Second, whole-genome based se-
lection results in a reduced number of distinguishers, often very close to the
information theoretic lower bound of dlog2 ne.

Our algorithms are based on a simple greedy selection strategy – in ev-
ery iteration we pick a substring that distinguishes the largest number of
not-yet-distinguished pairs of genomic sequences. This selection strategy is
an embodiment of the greedy setcover algorithm (see, e.g., [17]) for a prob-
lem instance with O(n2) elements corresponding to the pairs of sequences.
Hence, by a classical result of [6, 11, 13], our algorithm guarantees an approx-
imation factor of 2 ln n for the barcoding problem. Very recently, Berman
et al. [1] have shown that no approximation algorithm can guarantee a fac-
tor of (1 − ε) lnn unless NP = DTIME(nlog log n), and also proposed an
information content greedy heuristic achieving an approximation factor of
1 + lnn. Experimental results given in Section 5 show that our setcover
greedy algorithm produces solutions of virtually identical quality to those
obtained by the information content heuristic.

The setcover greedy algorithm is extremely versatile, and can be easily
extended to handle redundancy and minimum edit distance constraints, as
well as other biochemical constraints on individual distinguisher sequences.
Furthermore, unlike the information content heuristic of [1], the greedy set-

4 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

cover algorithm can also take into account genomic sequence uncertainties
expressed in the form of degenerate bases. Although degenerate bases are
ubiquitous in genomic databases, previous works have not recognized the
need to properly handle them. For example, experiments in [15] have im-
plicitly treated degenerate bases in the input genomic sequences as distinct
nucleotides; under this approach a substring of degenerate nucleotides such
as NNNNN, might be erroneously selected as a distinguisher although it
encodes for any possible substring of length 5.

To achieve high scalability, our implementation relies on several tech-
niques. First, we use an incremental algorithm for quickly generating a rep-
resentative set of candidate distinguishers and collecting all their occurrences
in the given genomic sequences. To reduce the number of candidates, we
avoid generating any substring that appears in all genomic sequences, which
typically eliminates very short candidates. For each genomic sequence, we
also generate only one of the substrings that appear exclusively in that se-
quence, this optimization eliminates from consideration most candidate dis-
tinguishers above a certain length. Unlike the suffix tree method proposed by
Rash and Gusfield [15], our approach may generate multiple candidates that
appear in the same set of k genomic sequences (for 1 < k < n). However,
the penalty of having to evaluate redundant candidates in the candidate
selection phase is offset in practice by the faster candidate generation time.
Finally, the efficient implementation of the greedy selection phase of algo-
rithm combines a partition based method for computing the coverage gain
of candidate distinguishers (this method was first proposed in the context of
the information content heuristic in [1]) with a “lazy” strategy for updating
coverage gains.

The rest of the paper is organized as follows. In Section 2 we give formal
problem formulations and review previous work. In Section 3 we describe the
efficient implementation of the setcover greedy algorithm for the basic string
barcoding problem. In Section 4 we discuss the modifications required in the
implementation for handling degenerate bases in input genomic sequences,
redundancy and edit distance constraints, as well as biochemical constraints
such as constraints on melting temperature and GC-content. In Section 5
we give the results of a comprehensive experimental study comparing, on
both randomly generated and genomic data, our setcover greedy algorithms
with other scalable methods including the information content heuristic and
a recent set multicover randomized rounding approximation algorithm. We
conclude in Section 6 with directions for further research.

Algorithms for Robust String Barcoding 5

2 Preliminaries and Problem Formulation

Let Σ = {a, c, g, t} be the DNA alphabet, and Σ∗ be the set of string over
Σ. A degenerate base is a non-empty subset of Σ. We identify degenerate
bases of cardinality 1 with the respective non-degenerate bases. Given a
DNA string x = x1 . . . xk ∈ Σ∗ and a string of degenerate bases y = y1 . . . yn,
n ≥ k, we say that

• x has a perfect match at position i of y iff yi+j−1 = {xj} for every
1 ≤ j ≤ k,

• x has a perfect mismatch at position i of y iff there exists 1 ≤ j ≤ k
such that {xj} 6⊆ yi+j−1, and

• x has an uncertain match at position i of y iff {xj} ⊆ yi+j−1 for every
1 ≤ j ≤ k, but yi+j−1 6= {xj} for at least one j.

String x = x1 . . . xk ∈ Σ∗ distinguishes two sequences of degenerate bases
y and z iff (a) x has a perfect match at one or more positions of y, and
has perfect mismatches at all positions of z, or, symmetrically, (b) x has a
perfect match at one or more positions of z, and has perfect mismatches at all
positions of y. The robust string barcoding problem with degenerate bases
is formulated as follows: Given sequences of degenerate bases g1, . . . gn and

redundancy threshold m, find a minimum number of strings t1, . . . , tk ∈ Σ∗

such that, for every i 6= j, there exist m distinct strings tl distinguishing gi

and gj .

It is easy to see that, for m = 1, at least dlog2 ne distinguishers are
needed to distinguish any n genomic sequences. However, achieving this
lower bound requires distinguishers that have perfect matches in nearly half
of the sequences. In practice, additional constraints, such as lower bounds on
the length of distinguishers, may result in no string having perfect matches
in a large number of sequences, and therefore much more than a logarithmic
number of distinguishers. The next theorem, the proof of which we omit
due to space constraints, establishes under a simple probabilistic model that
there is an abundance of distinguishers perfectly matching at least a constant
fraction of the input sequences.

Theorem 1 Consider a random instance of the string barcoding problem

over a fixed alphabet Σ in which there are n strings, each string s = s0s1 . . . s`−1

is of length exactly ` selected independently at random with Pr[si = a] =
1/|Σ| for any i and any a ∈ Σ. Also assume that ` is sufficiently large

compared to n. Then, for a random string x ∈ Σ∗ of length O(log `), the

expected number of the input strings which contain x as a substring is pn
for some constant 0 < p < 1.

6 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Proof. Assume n and ` to be sufficiently large for asymptotic results and
σ = |Σ| > 1 to be fixed. It suffices to show that for a random string x ∈ Σ∗

of length k = O(log `), Pr[x is a substring of s] = p for some constant 0 <
p < 1 and s is any one of the input n strings. In [14]Examples 6.4, 6.7, 6.8,
9.3 and 10.11, Odlyzko uses the bounds and generating function described
in [10] to give asymptotic bounds on Pr[x is a substring of s] when σ = 2.
The result can be generalized to the case of any fixed σ > 2 as follows.
For a fixed x = x1x2 . . . xk, define the correlation polynomial Cx(z) of x as
Cx(z) =

∑k−1
j=0 cx(j)zj where cx(0) = 1 and, for 1 ≤ j < k,

cx(j) =

{

1 if x1x2 . . . xk−j = xj+1xj+2 . . . xk

0 otherwise

Let fx(`) be the number of strings in Σ∗ of length ` that do not contain x
as a substring and Fx(z) =

∑

∞

`=0 fx(`)z
` be the generating function for this

number. Then, Fx(z) = Cx(z)
zk+(1−σz)Cx(z)

. From this, it follows that

Pr[x ≺ s] = 1− e
−

`

σkCx(1/σ)
+O(`kσ−σk)

+ O(e−`/O(1))

for all sufficiently large n, k and `, where e is the base of natural logarithm.
Note that 1 ≤ Cx(σ) < 2 and for a specific x, Cx(σ) can be calculated
exactly. Now, setting k = Θ(logσ `) gives Pr[x is a substring of s] = p for
some constant 0 < p < 1. ❑

Previous work. The robust string barcoding problem was introduced (for
the case when genomic sequences contain no degenerate bases) by Rash and
Gusfield [15]; they provided some experimental results based on integer pro-
gramming methods, and left open the exact complexity and approximability
of this problem. The problem without redundancy constraints was indepen-
dently considered by Borneman et al. [3], who also considered non-binary
distinguishability (based on detecting the multiplicity of a distinguisher as
a substring) and a slightly more general problem in which the objective is
to pick a given number of distinguishers maximizing the number of distin-
guished pairs. The main motivation for the formulations in [3] comes from
minimizing the number of oligonucleotide probes needed for analyzing popu-
lations of ribosomal RNA gene (rDNA) clones by hybridization experiments
on DNA microarrays. Borneman et al. provided computational results using
Lagrangian relaxation and simulated annealing techniques, and noted that
the problem is NP-hard assuming that the lengths of the sequences in the
prespecified set were unrestricted. Very recently, Berman, DasGupta and
Kao [1] considered a general framework for test set problems that captured
the string barcoding problem and its variations; their main contribution is
to establish theoretically matching lower and upper bounds on the worst-
case approximation ratio. Cazalis et al. [4] have independently investigated

Algorithms for Robust String Barcoding 7

similar greedy distinguisher selection strategies for string barcoding. Unlike
our work, the algorithms in [4] consider only a small random subset of the
possible distinguishers and also prescribe their length in order to achieve
practical running time.

3 Efficient Implementation of the Greedy Setcover Algorithm

In this section we present the implementation of the setcover greedy
algorithm in the context of the basic string barcoding problem, i.e., we
disregard redundancy constraints and the presence of degenerate bases in
the input sequences. Implementation modifications needed to handle the
robust barcoding problem in its full generality are discussed in Section 4.

Our implementation of the setcover greedy algorithm has two main
phases: a candidate generation phase and a candidate selection phase. In the
candidate generation phase a representative set of candidate distinguishers
is generated from the given genomic sequences. For each generated candi-
date, we also compute the list of sequences with which the candidate has
perfect matches; this information is needed in the candidate selection phase.
To reduce the number of candidates, we avoid generating any substring that
appears in all genomic sequences, which typically eliminates very short can-
didates. For each genomic sequence, we also make sure to generate only one
of the substrings that appear exclusively in that sequence, this optimization
eliminates from consideration most candidate distinguishers above a certain
length. Unlike the suffix tree method proposed by Rash and Gusfield [15],
our approach may generate multiple candidates that appear in the same set
of k genomic sequences (for 1 < k < n). However, the penalty of having to
evaluate redundant candidates in the candidate selection phase is offset in
practice by the faster candidate generation time.

Efficient implementation of the above candidate elimination rules is achieved
by generating candidates in increasing order of length and using exact match
positions for candidates of length l−1 when generating candidates of length
l. For each position p in the input genomic sequences, we also maintain
a flag to indicate whether or not the algorithm should evaluate candidate
substrings starting at p. The possible values for the flag are TRUE (the
substring of current length starting at p is a possible candidate), FALSE
(we have already saved the substring of current length starting at p as a
candidate), or DONE (all candidates containing as prefix the substring of
current length starting at p are redundant, i.e., the position can be skipped
for all remaining candidate lengths). Initially all flags are set to TRUE.
The FALSE flags are reset to TRUE whenever we increment the candidate
length, however, we never reset DONE flags. For every candidate length l,
candidate evaluation proceeds sequentially over all positions of the genomic

8 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Figure 1 The setcover greedy candidate selection algorithm

Input: Set C of candidate distinguishers
Output: Set D of selected distinguishers

D ← ∅; For every c ∈ C, ∆old(c)←∞

Repeat

∆∗ ← 0

For every c ∈ C with ∆old(c) > ∆∗ do // Since ∆(c, D) ≤ ∆old(c), c
can be ignored if ∆old(c) ≤ ∆∗

∆old(c)← ∆(c, D)

If ∆(c, D) > ∆∗ then ∆∗ ← ∆(c, D); c∗ ← c

If ∆∗ > 0 then D ← D ∪ {c∗}

While ∆∗ > 0

sequences. Whenever we reach a position p whose flag is set to TRUE, we
use the list of matches for the substring of length l − 1 starting at p (or a
linear time string matching algorithm if l is the minimum candidate length)
to determine the list of matches for the substring of length l starting at p,
and set the flag to FALSE for all positions where these matches occur. If
the substring of length l starting at p has matches only within the source
sequence, and we have already generated a “unique” candidate for this se-
quence, we discard the candidate and set the flag of p to DONE.

A further speed-up technique is to generate candidate distinguishers from
a strict subset of the input sequences. Although this speed-up can poten-
tially affect solution quality, the results in Section 5 show that the solution
quality loss for whole-genome barcoding is minimal, even when we gen-
erate candidates based on a single input sequence, which corresponds to
pre-assigning a barcode of all 1’s to this sequence.

After the set of candidates is generated we select the final set of distin-
guishers in the greedy phase of the algorithm (Figure 1). We start with an
empty set of distinguishers D. While there are pairs of sequences that are
not yet distinguished by D, we loop over all candidates and compute for each
candidate c the number ∆(c,D) of pairs of sequences that are distinguished
by c but not by D, then add the candidate c with largest ∆ value to D.
Two sequences s and s′ are distinguished by a candidate c iff exactly one of
s and s′ appears in the list Pc of perfect matches of c, which is available from
the candidate generation phase. A simple method for computing ∆ values
is to maintain an n × n symmetric matrix indicating which of the pairs of
sequences are already distinguished, and then to probe the |Pc| · (n − |Pc|)
entries in this matrix corresponding to pairs (s, s′) with s ∈ Pc and s′ /∈ Pc

Algorithms for Robust String Barcoding 9

when computing ∆(c,D). A more efficient method is based on maintain-
ing the partition defined on the set of sequences by D. If the partition
defined by D consists of sets S1, . . . , Sk, then we can compute ∆(c,D) in
O(k + |Pc|) = O(n) time using the observation that

∆(c,D) =

k
∑

i=1

|Si ∩ Pc| · |Si \ Pc| (1)

In addition to the fast partition based computation, our implementation of
the greedy selection phase uses a lazy strategy for updating the ∆ values,
based on the observation that they are monotonically non-increasing during
the algorithm (see Figure 1).

4 Extended Barcoding Requirements

In this section we describe the modifications needed to the basic imple-
mentation given in previous section when handling practical extensions of
the barcoding problem.

Degenerate bases. In the presence of degenerate bases in the input ge-
nomic sequences, the hybridization of a particular distinguisher may depend
on which bases are actually present positions with degeneracy greater than
1. The greedy setcover algorithm takes into account this possibility for un-
certain hybridization by only counting a pair (g, g ′) as distinguished by a
candidate c if and only if c has a perfect match with one and only perfect
mismatches with the other. For each generated candidate, in addition to
the list of sequences that have only perfect matches we also save a list con-
taining all sequences with at least one uncertain match. This allows fast
computation of the (typically much longer) list of sequences having only
perfect mismatches. To avoid generating candidate distinguishers contain-
ing degenerate bases, we set the DONE flag as soon as the corresponding
substring extends past a degenerate base. Finally, since the partition of
genomic sequences is no longer defined in the presence of uncertain hy-
bridization, formula (1) is no longer applicable and we have to use the n×n
“distinguished so far” matrix for computing ∆ values.

Biochemical constraints on individual distinguishers. Since selected
distinguishers must hybridize under the same experimental conditions, in
practice it is natural to impose a variety of constraints on individual dis-
tinguishers, such as minimum and maximum length, GC content, melting
temperature, etc. Furthermore, we may want to avoid using as distinguishers
strings which appear in other organisms that may contaminate the sample.
All individual constraints are easily incorporated as a simple filter in the
candidate generation phase.

10 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Table 1 Average solution statistics for instances with 1,000 random sequences of length
10,000, redundancy 1, and number of source sequences varying from 1,000 down to 1.

#Source Seq. 1000 50 10 5 4 3 2 1

#Candidates (×103) 7213.6 1438.6 402.7 225.9 186.9 146.1 102.8 55.7
#Matches (×106) 55.7 35.2 23.2 18.4 16.9 15.0 12.5 8.7
Gen. time 132.3 44.7 35.5 31.4 31.3 30.6 28.1 24.9
Selection time 31.7 10.7 5.3 3.6 3.4 3.1 2.3 1.6
#Distinguishers 14.1 14.1 14.1 14.1 14.0 14.1 14.2 14.5

Redundancy constraints and minimum edit distance constraints.

In practice, robust identification requires redundant distinguishability, i.e.,
more than one distinguisher distinguishing any given pair of genomic se-
quences. One may also impose a lower bound on the edit distance between
any pair of selected distinguishers [15]. Taking into account redundancy re-
quirements is done by maintaining the number of times each pair of genomic
sequences has been distinguished. In order to incorporate the minimum edit
distance constraint, after selecting a distinguisher we eliminate from consid-
eration all candidates that are within an edit distance smaller than the given
threshold.

5 Experimental Results

We performed experiments on both randomly generated instances and
NCBI databases. Random testcases were generated from the uniform dis-
tribution induced by assigning equal probabilities to each of the four nu-
cleotides; these testcases do not contain any nucleotides with degeneracy
greater than 1. We also used several testcases consisting of sequences ex-
tracted from the NCBI databases [7] as described in Section 5.3. All exper-
iments were run on a PowerEdge 2600 Linux server with 4 Gb of RAM and
dual 2.8 GHz Intel Xeon CPUs – only one of which is used by our sequential
algorithms.

5.1 Algorithm Scalability

As described in Section 3, there are two main phases in the algorithm:
candidate distinguisher generation, and greedy candidate selection. Figure
2 gives the average candidate selection CPU time for n random sequences
of length 10,000 and redundancy 1, averaged over 10 instances of each size.
Combining the two speed-up techniques for this phase (partition based cov-
erage gain computation and lazy update of candidate gains) results in over
two orders of magnitude reductions in runtime.

Algorithms for Robust String Barcoding 11

Figure 2 Candidate selection CPU time (in seconds) for n random sequences of length
10,000 and redundancy 1, averaged over 10 instances of each size.

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000

C
P

U
 s

ec
on

ds

n

basic
lazy only

partition only
partition+lazy

As mentioned in Section 3, a further speed-up technique is to gener-
ate candidate distinguishers only from a small number of “source” input
sequences. Table 1 gives the average number of candidates, number of
matches, runtimes for candidate generation and greedy selection, and num-
ber of selected distinguishers for instances with 1,000 random sequences of
length 10,000 and redundancy 1, when the number of source sequences is
varied from 1,000 down to 1 (the source sequences were chosen at random).
Although this speed-up can potentially affect solution quality, we found that
on large instances the solution quality loss is minimal even when we generate
candidates based on a single input sequence; this case corresponds to pre-
assigning a barcode of all 1’s to the source sequence. The technique reduces
significantly both the memory requirement (which is proportional to the
number of candidates and the number of times they match input sequences)
and the runtime required for candidate generation and greedy selection. As
shown in Table 2, this makes the method applicable to hundreds of sequences
of bacterial genome size on a well-equipped workstation.

Even when a single input sequence is used to generate candidate distin-
guishers, this will still result in millions of candidates that must be evaluated
by the greedy algorithm for whole-genome barcoding. While our implemen-
tation of the setcover greedy algorithm can efficiently handle millions of can-
didates (Table 2), this may be impractical for other barcoding algorithms.
As a more extreme speed-up technique, Cazalis et al. [4] proposed using
only a small number (2,000 in [4]) of random candidates in conjunction
with various barcoding algorithms including greedy, simulated annealing,
and genetic algorithms. However, Cazalis et al. did not provide any data on

12 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Table 2 Average solution statistics for instances with up to 100 random sequences of
length 1,000,000 and redundancy 1 (number of source sequences set to 1).

n #Candidates #Matches Gen. time Select time #Dist.

10 2039766.8 8281127.2 45.1 0.6 4.0
20 2607128.9 16730749.0 87.0 1.3 5.0
30 2940246.3 25475766.3 129.1 1.6 5.0
40 3178773.8 34529068.3 172.2 2.6 6.0
50 3363016.8 43802244.9 216.1 3.6 6.6
60 3512271.5 53216933.1 262.7 4.7 7.0
70 3637129.4 62714814.3 303.9 5.1 7.0
80 3744452.1 72256768.1 347.4 6.3 7.4
90 3838282.2 81807129.2 395.5 8.0 8.0
100 3921359.6 91346850.3 444.4 8.5 8.0

the possible solution quality loss from such extreme reductions in the num-
ber of candidates, and did not evaluate the relative merits of alternative
strategies for sampling these candidates. In Figure 3 we plot the number
of distinguishers selected by the greedy setcover algorithm when run on a
random subset of all possible candidates, under 3 different candidate sam-
pling strategies: (a) from all source sequences, without length restrictions;
(b) from a single random source sequence, without length restrictions; and
(c) from all source sequences, with length restricted to 7. Length 7 was
chosen here since it leads to the smallest number of selected distinguishers
among all fixed distinguisher lengths for instances consisting of 1,000 ran-
dom sequences of length 10,000 such as those used in this experiment. We
note that, although Cazalis et al. [4] suggest using distinguishers of length
≈ log2 n for a set of n sequences, this rule must be followed with caution.
In general, a “most informative” distinguisher is one that appears in ex-
actly half of the sequences, and the typical length of distinguishers with this
property depends not only on the number of sequences, but also on their
length.

Figure 3 shows that even a few tens of thousands of random candidates
sampled using scenarios (b) and (c) above lead to a solution quality very
close to that obtained by the setcover greedy algorithm when run on all
possible candidates. A much larger number of candidates is required to
achieve similar solution quality under scenario (c), i.e., when sampling the
random candidates from all sequences and without length constraints. This
finding can be explained by the fact that “most informative” candidates
represent only a small fraction of the entire set of candidates, while they are
more densely represented in the sets of candidates sampled under the first
two scenarios.

Algorithms for Robust String Barcoding 13

Figure 3 Number of distinguishers selected by the greedy setcover algorithm from a
random subset of all possible candidates. Candidates are randomly chosen (a) from all
source sequences, without length restrictions; (b) from a single random source sequence,
without length restrictions; and (c) from all source sequences, with length restricted to
7. Each data point represents the average over 100 instances, each consisting of 1,000
random sequences of length 10,000. Redundancy was set to 1 in these experiments.

 12

 14

 16

 18

 20

 22

 24

 26

 100 1000 10000 100000 1e+06 1e+07

nu
m

be
r

of
 s

el
ec

te
d

di
st

ng
ui

sh
er

s

number of random candidates

#source seq.=n, l=any
#source seq.=1, l=any

#source seq.=n, l=7

5.2 Solution Quality on Random Data

Table 3 gives the number of distinguishers returned by the setcover
greedy algorithm for redundancy varying between 1 and 20 on between 10
and 1,000 random sequences of length 10,000. For comparison we include in
the table the results obtained by the information content heuristic results of
[1], as well as the information theoretic lower bound of dlog2 ne for the case

Table 3 Number of distinguishers returned by the setcover greedy algorithm (SGA) for
varying redundancy and number of sequences. For each value of n we report the average
over 10 testcases, each consisting of n random sequences of length 10,000. For comparison
we include information content heuristic results (ICH) and the information theoretic lower
bound of dlog2 ne for redundancy 1 (LB).

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

LB 1 4 5 6 7 8 9 10
ICH 1 4.0 5.0 7.0 8.0 10.0 12.2 14.1
SGA 1 4.0 5.0 7.0 8.0 10.0 12.3 14.1
SGA 2 6.7 8.3 10.6 12.5 14.1 16.7 18.9
SGA 3 8.8 11.6 13.6 15.5 17.3 20.1 22.4
SGA 4 10.8 14.0 16.5 18.7 20.7 23.5 26.1
SGA 5 13.6 16.6 19.5 21.5 23.7 26.8 29.5
SGA 10 22.5 26.8 32.0 34.6 37.5 41.7 44.9
SGA 20 43.0 47.6 55.6 59.5 63.4 68.0 72.6

14 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Table 4 Number of distinguishers returned by the setcover greedy algorithm (SGA) and
the multi-step rounding algorithm in [2] (RND) for varying redundancy and number of
sequences. For each value of n we report the average over 10 testcases, each consisting of
n random sequences of length 1,000. Boldface entries correspond to instances for which
the multi-step rounding algorithm has better solution quality than setcover greedy.

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200

SGA 1 4.0 5.0 7.0 9.0 11.0
RND 1 5.0 6.8 10.5 13.0 16.0

SGA 2 6.3 8.2 11.2 12.9 15.0
RND 2 7.3 10.7 14.8 17.0 20.4

SGA 5 13.2 16.1 19.5 22.4 24.6
RND 5 13.2 18.2 23.5 27.3 31.2

SGA 10 22.8 27.0 32.1 36.1 39.4
RND 10 20.2 30.9 37.4 41.9 48.3

SGA 20 43.4 48.8 57.0 61.0 65.8
RND 20 38.9 50.7 62.6 69.4 76.2

SGA 50 100.9 112.0 125.6 133.8 142.0
RND 50 92.6 107.8 125.2 141.6 159.5

SGA 100 195.0 217.2 239.0 255.5 264.0
RND 100 184.9 205.2 236.0 270.0 289.0

SGA 200 392.00 432.30 471.70 495.40 512.40
RND 200 372.10 412.00 455.40 485.80 539.40

SGA 300 594.60 661.30 713.70 744.10 762.00
RND 300 571.30 633.10 693.80 726.10 757.70

when the redundancy requirement is 1. We note that the number of dis-
tinguishers returned by the setcover greedy algorithm is virtually identical
to that returned by the information content heuristic, despite the latter one
having a better approximation guarantee [1]. Furthermore, the results for
redundancy one are within 50% of the information theoretic lower bound for
the range of instance sizes considered in this experiment. The gap between
the solutions returned by the algorithms and the lower bound does increase
with the number of sequences; however it is not clear how much of this in-
crease is caused by degrading algorithm solution quality, and how much by
degrading lower bound quality.

We also compared our setcover greedy algorithm with a recently pro-
posed multi-step rounding algorithm for set multicover [2]. The rounding
algorithm has the following steps:

1. Solve the fractional relaxation of the natural integer program formu-
lation of problem [15] (we used the commercial solver CPLEX 9.0 for
implementing this step)

2. Scale the fractional solution by an appropriate constant factor (see [2]
for details)

3. Deterministically select all distinguishers with a scaled fractional value

Algorithms for Robust String Barcoding 15

exceeding 1

4. Randomly select a subset of the remaining candidates, each candidate
being chosen with a probability equal to the scaled fractional value

5. Finally, if the selected set of distinguishers is not yet feasible, add
further distinguishers using the setcover greedy algorithm

The approximation guarantee established in [2] for the general set multicover
problem translates into an approximation factor of 2 ln n − ln r for robust
string barcoding with redundancy r, which suggests that the multi-step
rounding algorithm is likely to improve upon the setcover greedy for high
redundancy constraints. Table 4 gives the results of experiments comparing
the setcover greedy and multi-step rounding algorithms on testcases con-
sisting of up to 200 random sequences, each of length 1,000 for redundancy
requirement ranging from 1 to 300. The results confirm that the multi-step
rounding algorithm has better solution quality than setcover greedy when
redundancy requirement is large relative to the number of sequences (entries
typeset in boldface), yet the setcover greedy has best performance for most
practical redundancy requirements.

5.3 Experiments on Genomic Data

In a first set of experiments we used 10 groups of testcases obtained from
the authors of [15], each consisting of random sets of viruses, respectively
HIV strains, extracted from GenBank. Most of these testcases contain a
small number of degenerate bases; detailed testcase parameters are given
in Table 5. Hence, we cannot use the partition method for computing the
number of sequence pairs distinguished by a candidate in the greedy selection
phase, and we have to use the slower matrix datastructure. Table 6 gives the
average runtime and the number of distinguishers selected by the setcover
greedy algorithm on these testcases when using all available candidates. For
comparison, we also include the average number of distinguishers obtained
in [15] by solving an integer program formulation of the problem using the
CPLEX commercial optimization package. However, the results in [15] may
be overly optimistic since the underlying integer program treats degenerate
bases as distinct nucleotides. (We do not know if degenerate bases were
actually used in distinguishers selected by CPLEX since we do not have
access to the solutions in [15].) With few exceptions, the greedy algorithm
comes very close to the solution computed by the integer program.

In a second set of experiments we ran our algorithm on a set of 29
complete microbial genomic sequences extracted from NCBI databases [7].
Sequence lengths in the set vary between 490 Kbases and 4.75 Mbases, with
an average length of 2.6 Mbases (over 76 Mbases total). Unlike random

16 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

Table 5 Size and algorithm parameters for genomic instances from [15].

Test #Test Avg. Avg. Avg. lmin lmax Min r

Group cases n str. len. #degen. edit

hiv0 27 91.44 967.50 59.81 15 40 4 5
hiv1 26 89.28 684.91 53.19 15 40 4 2
hiv4 26 90.80 723.47 41.27 15 40 2 2
hiv5 26 90.40 1085.01 35.50 15 40 2 5
hiv6 26 90.92 849.47 45.77 15 40 4 5
len0 26 105.40 1086.28 36.27 17 21 4 5
s0 26 51.12 1123.17 54.27 15 40 4 5
s1 26 70.64 942.19 18.69 15 40 4 5
s2 26 105.96 897.63 29.96 15 40 4 5
s3 26 129.92 948.56 32.87 15 40 4 5

Table 6 Average solution statistics for genomic instances from [15].

Test #Candidates #Matches Gen. Select SGA ILP
Group time time #Dist. #Dist.

hiv0 175707.8 440615.7 7.3 100.0 137.8 89.44
hiv1 158530.0 396909.4 4.4 43.0 70.8 45.12
hiv4 125694.3 333881.9 4.8 35.4 71.8 43.88
hiv5 146462.4 377735.3 8.3 104.8 177.0 132.76
hiv6 147135.1 388387.0 5.6 98.4 167.8 126.61
len0 42091.0 175841.9 3.4 26.7 180.6 160.29
s0 282467.7 726758.6 5.3 167.6 108.0 99.92
s1 123694.9 452387.2 5.5 65.1 126.8 117.20
s2 194253.1 755897.3 7.3 161.1 178.1 115.70
s3 278795.2 1075451.6 10.7 308.7 216.6 200.91

Algorithms for Robust String Barcoding 17

Table 7 Results on a set of 29 NCBI complete microbial genomes. Candidate generation
time is approximately 335 seconds for all combinations of parameters.

Redundancy lmin lmax MinEdit Select time #Distinguishers

1 0 ∞ 0 14.2 6.0
1 15 40 6 2.6 8.0

5 0 ∞ 0 20.3 21.0
5 15 40 6 8.7 31.0

10 0 ∞ 0 22.9 41.0
10 15 40 6 16.4 60.0

20 0 ∞ 0 26.8 76.0
20 15 40 6 33.4 123.0

testcases, the sequences in the NCBI data set contain a small number of
degenerate bases, 861 bases in total. Therefore, we cannot use the partition
method for computing the number of sequence pairs distinguished by a can-
didate in the greedy selection phase, and we have to use the slower matrix
datastructure. In these experiments we varied the redundancy requirement
from 1 to 20. To see the effect of length and edit distance requirements on
the number of distinguishers, for each redundancy requirement we computed
both an unconstrained solution, and a solution in which distinguishers must
have length between 15 and 40, and there should be a minimum edit distance
of 6 between every two selected distinguishers (these values are similar to
those used in [15]. In all experiments, we generated candidates based only
on the shortest sequence of 490 Kbases.

The results on this NCBI dataset are given in Table 7. Naturally, meeting
higher redundancy constraints requires more distinguishers to be selected.
Additional length and edit distance constraints further increase the number
of distinguishers, but the latter is still within reasonable limits. The length
constraints reduce the number of candidates (from 1,775,471 to 122,478),
which, for low redundancy values has the effect of reducing greedy selection
time. However, for high redundancy requirements the reduction in number
of candidates is offset by the increase in solution size, and greedy selection
becomes more time consuming with length and edit distance than without
(selection time grows roughly linearly with solution size).

6 Conclusions

In this paper we have given highly scalable algorithms for the robust
string barcoding problem, and have shown that distinguisher selection based
whole genomic sequences results in a number of distinguishers nearly match-
ing the information theoretic lower bounds for the problem.

In ongoing work we are exploring heuristics and approximation algo-
rithms for several extensions of the string barcoding problem. First, we are

18 B. DasGupta, K.M. Konwar, I.I. Măndoiu, and A.A. Shvartsman

considering the use of probe mixtures as distinguishers. With most microar-
ray technologies it is feasible to spot/synthesize a mixture of oligonucleotides
at any given microarray location. The DNA of a pathogen will hybridize to
such a location if it contains at least one substring which is the Watson-Crick
complement of one of the oligonucleotides in the mixture. Using oligonu-
cleotide mixtures as distinguishers can reduce the number of spots on the
array – and therefore barcode length – closer to the information theoretical
lower-bound of log2 n. The reduction promises to be particularly significant
when reliable hybridization requires relatively long distinguishers; in these
cases even the optimum barcoding length is far from log2 n [15]. A special
case of this approach is the use of degenerate distinguishers similar to the
degenerate primers that have been recently employed in multiplex PCR am-
plification [12, 16]. Degenerate distinguishers are particularly attractive for
string barcoding since their synthesis cost is nearly identical to the synthe-
sis cost of a single non-degenerate distinguisher (synthesis requires the same
number of steps, the only difference is that multiple nucleotides must be
added in some of the synthesis steps).

In many practical pathogen identification applications collected biolog-
ical samples may contain the DNA of multiple pathogens. This issue is
considered to be particularly significant in medical diagnosis applications,
see, e.g., [9] for studies in detecting more than one HPV (human papiloma
virus) genotype with varying rate of multiple HPV infections carried by the
same HPV carrier. In future work we plan to develop extensions of the
barcoding technique that can reliably detect multiple pathogens for a given
bound on the number of pathogens present.

Acknowledgments

The authors would like to thank Claudia Prajescu for her help with the
implementation of the multi-step rounding algorithm in [2].

References and Notes

1 Berman, B., DasGupta, B. and Kao, M.-Y. (2004) ‘Tight approximability results for
test set problems in bioinformatics’, Proc. 9th Scandinavian Workshop on Algorithm
Theory (SWAT), volume 3111 of Lecture Notes in Computer Science, pages 39–50,
Springer-Verlag, Berlin.

2 Berman, P., DasGupta, B. and Sontag, E. (2004) ‘Randomized approximation algo-
rithms for set multicover problems with applications to reverse engineering of protein
and gene networks’, Proc. 7th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), volume 2748 of Lecture Notes
in Computer Science, pages 39–50, Springer-Verlag, Berlin. (Also to appear in a special
issue on computational biology of Discrete Applied Mathematics.).

Algorithms for Robust String Barcoding 19

3 Borneman, J., Chrobak, M., Vedova, G.D., Figueora, A. and Jiang, T. (2001) ‘Probe
selection algorithms with applications in the analysis of microbial communities’, Bioin-
formatics, Vol. 1, pp. 1–9.

4 Cazalis, D., Milledge, T. and Narasimhan, G. (2004) ‘Probe selection problem:
Structure and algorithms’, Proc. 8th Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2004), pp. 124–129.

5 Cheung, V.G. and Nelson, S.F. (1996) ‘Whole genome amplification using a degenerate
oligonucleotide primer allows hundreds of genotypes to be performed on less than one
nanogram of genomic DNA’, Proc. Natl. Acad. Sci. USA., Vol. 93, pp. 14676–14679.

6 Chvátal, V. (1979) ‘A greedy heuristic for the set covering problem’, Math. of Op.
Res., Vol. 4, pp. 233–235.

7 NCBI (2004) Completed Microbial Genomes, http://www.ncbi.nlm.nih.gov/genomes/
microbes/complete.html.

8 Dean, F.B. et al. (2002) ‘Comprehensive human genome amplification using multiple
displacement amplification’, Proc. Natl. Acad. Sci. USA., Vol. 99, pp. 5261–5266.

9 Gharizadeh, B. et al. (2003) ‘Viral and microbial genotyping by a combination of
multiplex competitive hybridization and specific extension followed by hybridization
to generic tag arrays’, Nucleic Acids Research, Vol. 31, No. 22, pp. e146.

10 Guibas, L.J. and Odlyzko, A.M. (1981) ‘String overlaps, pattern matching, and non-
transitive games’, Journal of Combinatorial Theory Series A, Vol. 30, pp. 183–208.

11 Johnson, D.S. (1974) ‘Approximation algorithms for combinatorial problems’, J.
Comput. Sys. Sci., Vol. 9, pp. 256–278.

12 Linhart, C. and Shamir, R. (2002) ‘The degenerate primer design problem’, Bioin-
formatics, Vol. 18, pp. S172–S181.

13 Lovász, L. (1975) ‘On the ratio of optimal integral and fractional covers’, Discrete
Mathematics, Vol. 13, pp. 383–390.

14 Odlyzko, A.M. (1995) ‘Asymptotic enumeration methods’, R.L. Graham,
M. Grötschel, and L. Lovász (eds.), Handbook of Combinatorics, Vol. II, pp. 1063–
1230, MIT Press, Cambridge, MA.

15 Rash, S. and Gusfield, D. (2002) ‘String barcoding: Uncovering optimal virus sig-
natures’, Proc. 6th Annual International Conference on Computational Biology, pp.
254–261.

16 Souvenir, R., Buhler, J., Stormo, G. and Zhang, Z. (2003) ‘Selecting degenerate
multiplex PCR primers’, Proc. 3rd Intl. Workshop on Algorithms in Bioinformatics
(WABI), pp. 512–526.

17 Vazirani, V.V. (2001) Approximation Algorithms, Springer-Verlag, Berlin.

