
Highly Scalable Algorithms for Robust String Barcoding?

Bhaskar DasGupta1, Kishori M. Konwar2, Ion I. Măndoiu2, and Alex A. Shvartsman2
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Abstract. String barcoding is a recently introduced technique for genomic-based identification of
microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string
barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds
of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized
to further extend the applicability range to thousands of bacterial size genomes. Experimental results
on both randomly generated and NCBI genomic data show that whole-genome based selection results
in a number of distinguishers nearly matching the information theoretic lower bounds for the problem.

1 Introduction

String barcoding is a recently introduced technique for genomic-based identification of microorganisms such
as viruses or bacteria. The basic barcoding problem [11] is formulated as follows: given the genomic sequences
g1, . . . gn of n microorganisms, find a minimum number of strings t1, . . . , tk distinguishing these genomic
sequences, i.e., having the property that, for every gi 6= gj , there exists a string tl which is a substring of gi

or gj , but not of both. A closely related formulation was independently proposed in [3], where it is assumed
that it is possible to detect not just the presence or absence of a distinguisher ti, but also the number of
repetitions of ti as a substring, up to a threshold of R > 0. The formulation in [11], which we adopt in this
paper, corresponds to R = 1.

Identification is performed by spotting or synthesizing on a microarray the Watson-Crick complements
of the distinguisher strings t1, . . . , tk, and then hybridizing to the array the fluorescently labeled DNA
extracted from the unknown microorganism. Under the assumption of perfect hybridization stringency, the
hybridization pattern can be viewed as a string of k zeros and ones, referred to as the barcode of the
microorganism. By construction, the barcodes corresponding to the n microorganisms are distinct, and thus
the barcode uniquely identifies any one of them. To improve identification robustness, one may also require
redundant distinguishability (i.e., at least m different distinguishers for every pair of microorganisms, where
m > 1 is some fixed constant) and impose a lower bound on the edit distance between any pair of selected
distinguishers [11].

The algorithms previously proposed for string barcoding are based on integer programming [11], and
on Lagrangian relaxation and simulated annealing [3]. Unfortunately, the run-time of these algorithms does
not scale well with the number of microorganisms and the length of the genomic sequences, e.g., the largest
instance sizes reported in [11] have a total genomic sequence length of around 100,000 bases.

In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our
methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms
of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the
applicability range to thousands of bacterial size genomes. Whole-genome based selection is beneficial in at
least two significant ways. First, it simplifies assay design since the DNA of the unknown pathogen can be
amplified using inexpensive general-purpose whole-genome amplification methods such as specialized forms
of degenerate primer multiplex PCR [5] or multiple displacement amplification [8]. Second, whole-genome
based selection results in a reduced number of distinguishers, often very close to the information theoretic
lower bound of dlog2 ne.
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Our algorithms are based on a simple greedy selection strategy – in every iteration we pick a substring that
distinguishes the largest number of not-yet-distinguished pairs of genomic sequences. This selection strategy
is an embodiment of the greedy setcover algorithm (see, e.g., [12]) for a problem instance with O(n2) elements
corresponding to the pairs of sequences. Hence, by a classical result of [6, 9, 10], our algorithm guarantees an
approximation factor of 2 lnn for the barcoding problem. Very recently, Berman et al. [1] have shown that
no approximation algorithm can guarantee a factor of (1− ε) ln n unless NP = DTIME(nlog log n), and also
proposed an information content greedy heuristic achieving an approximation factor of 1+ln n. Experimental
results given in Section 5 show that our setcover greedy algorithm produces solutions of virtually identical
quality to those obtained by the information content heuristic.

The setcover greedy algorithm is extremely versatile, and can be easily extended to handle redundancy
and minimum edit distance constraints, as well as other biochemical constraints on individual distinguisher
sequences. Furthermore, unlike the information content heuristic of [1], the greedy setcover algorithm can
also take into account genomic sequence uncertainties expressed in the form of degenerate bases. Although
degenerate bases are ubiquitous in genomic databases, previous works have not recognized the need to
properly handle them. For example, experiments in [11] have implicitly treated degenerate bases in the input
genomic sequences as distinct nucleotides; under this approach a substring of degenerate nucleotides such as
NNNNN, might be erroneously selected as a distinguisher although it encodes for any possible substring of
length 5.

To achieve high scalability, our implementation relies on several techniques. First, we use an incremental
algorithm for quickly generating a representative set of candidate distinguishers and collecting all their
occurrences in the given genomic sequences. To reduce the number of candidates, we avoid generating any
substring that appears in all genomic sequences, which typically eliminates very short candidates. For each
genomic sequence, we also generate only one of the substrings that appear exclusively in that sequence, this
optimization eliminates from consideration most candidate distinguishers above a certain length. Unlike the
suffix tree method proposed by Rash and Gusfield [11], our approach may generate multiple candidates that
appear in the same set of k genomic sequences (for 1 < k < n). However, the penalty of having to evaluate
redundant candidates in the candidate selection phase is offset in practice by the faster candidate generation
time. Finally, the efficient implementation of the greedy selection phase of algorithm combines a partition
based method for computing the coverage gain of candidate distinguishers (this method was first proposed
in the context of the information content heuristic in [1]) with a “lazy” strategy for updating coverage gains.

The rest of the paper is organized as follows. In Section 2 we give formal problem formulations and review
previous work. In Section 3 we describe the efficient implementation of the setcover greedy algorithm for the
basic string barcoding problem. In Section 4 we discuss the modifications required in the implementation for
handling degenerate bases in input genomic sequences, redundancy and edit distance constraints, as well as
biochemical constraints such as constraints on melting temperature and GC-content. In Section 5 we give the
results of a comprehensive experimental study comparing, on both randomly generated and genomic data,
our setcover greedy algorithms with other scalable methods including the information content heuristic and
a recent set multicover randomized rounding approximation algorithm.

2 Preliminaries and Problem Formulation

Let Σ = {a, c, g, t} be the DNA alphabet, and Σ∗ be the set of string over Σ. A degenerate base is a non-
empty subset of Σ. We identify degenerate bases of cardinality 1 with the respective non-degenerate bases.
Given a DNA string x = x1 . . . xk ∈ Σ∗ and a string of degenerate bases y = y1 . . . yn, n ≥ k, we say that

– x has a perfect match at position i of y iff yi+j−1 = {xj} for every 1 ≤ j ≤ k,
– x has a perfect mismatch at position i of y iff there exists 1 ≤ j ≤ k such that {xj} 6⊆ yi+j−1, and
– x has an uncertain match at position i of y iff {xj} ⊆ yi+j−1 for every 1 ≤ j ≤ k, but yi+j−1 6= {xj} for

at least one j.

String x = x1 . . . xk ∈ Σ∗ distinguishes two sequences of degenerate bases y and z iff (a) x has a perfect
match at one or more positions of y, and has perfect mismatches at all positions of z, or, symmetrically,
(b) x has a perfect match at one or more positions of z, and has perfect mismatches at all positions of y.
The robust string barcoding problem with degenerate bases is formulated as follows: Given sequences of



degenerate bases g1, . . . gn and redundancy threshold m, find a minimum number of strings t1, . . . , tk ∈ Σ∗

such that, for every i 6= j, there exist m distinct strings tl distinguishing gi and gj .

It is easy to see that, for m = 1, at least dlog2 ne distinguishers are needed to distinguish any n genomic
sequences. However, achieving this lower bound requires distinguishers that have perfect matches in nearly
half of the sequences. In practice, additional constraints, such as lower bounds on the length of distinguishers,
may result in no string having perfect matches in a large number of sequences, and therefore much more
than a logarithmic number of distinguishers. The next theorem, the proof of which we omit due to space
constraints, establishes under a simple probabilistic model that there is an abundance of distinguishers
perfectly matching at least a constant fraction of the input sequences.

Theorem 1. Consider a randomly generated instance of the string barcoding problem over a fixed alphabet

Σ in which there are n strings, each string s = s0s1 . . . s`−1 is of length exactly ` generated independently

randomly with Pr[si = a] = 1/|Σ| for any i and any a ∈ Σ. Also assume that ` is sufficiently large compared

to n. Then, for a random string x ∈ Σ∗ of length O(log `), the expected number of the input strings which

contain x as a substring is pn for some constant 0 < p < 1.

Previous work. The robust string barcoding problem was introduced (for the case when genomic sequences
contain no degenerate bases) by Rash and Gusfield [11]; they provided some experimental results based on
integer programming methods, and left open the exact complexity and approximability of this problem.
The problem without redundancy constraints was independently considered by Borneman et al. [3], who also
considered non-binary distinguishability (based on detecting the multiplicity of a distinguisher as a substring)
and a slightly more general problem in which the objective is to pick a given number of distinguishers
maximizing the number of distinguished pairs. The main motivation for the formulations in [3] comes from
minimizing the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA gene
(rDNA) clones by hybridization experiments on DNA microarrays. Borneman et al. provided computational
results using Lagrangian relaxation and simulated annealing techniques, and noted that the problem is
NP-hard assuming that the lengths of the sequences in the prespecified set were unrestricted. Very recently,
Berman, DasGupta and Kao [1] considered a general framework for test set problems that captured the string
barcoding problem and its variations; their main contribution is to establish theoretically matching lower
and upper bounds on the worst-case approximation ratio. Cazalis et al. [4] have independently investigated
similar greedy distinguisher selection strategies for string barcoding. Unlike our work, the algorithms in [4]
consider only a small random subset of the possible distinguishers and also prescribe their length in order to
achieve practical running time.

3 Efficient Implementation of the Greedy Setcover Algorithm

In this section we present the implementation of the setcover greedy algorithm in the context of the basic
string barcoding problem, i.e., we disregard redundancy constraints and the presence of degenerate bases in
the input sequences. Implementation modifications needed to handle the robust barcoding problem in its full
generality are discussed in Section 4.

Our implementation of the setcover greedy algorithm has two main phases: a candidate generation phase

and a candidate selection phase. In the candidate generation phase a representative set of candidate distin-
guishers is generated from the given genomic sequences. For each generated candidate, we also compute the
list of sequences with which the candidate has perfect matches; this information is needed in the candidate
selection phase. To reduce the number of candidates, we avoid generating any substring that appears in all
genomic sequences, which typically eliminates very short candidates. For each genomic sequence, we also
make sure to generate only one of the substrings that appear exclusively in that sequence, this optimization
eliminates from consideration most candidate distinguishers above a certain length. Unlike the suffix tree
method proposed by Rash and Gusfield [11], our approach may generate multiple candidates that appear in
the same set of k genomic sequences (for 1 < k < n). However, the penalty of having to evaluate redundant
candidates in the candidate selection phase is offset in practice by the faster candidate generation time.

Efficient implementation of the above candidate elimination rules is achieved by generating candidates
in increasing order of length and using exact match positions for candidates of length l− 1 when generating
candidates of length l. For each position p in the input genomic sequences, we also maintain a flag to



Input: Set C of candidate distinguishers
Output: Set D of selected distinguishers

D ← ∅; For every c ∈ C, ∆old(c)←∞
Repeat

∆∗ ← 0
For every c ∈ C with ∆old(c) > ∆∗ do // Since ∆(c, D) ≤ ∆old(c), c can be ignored if ∆old(c) ≤ ∆∗

∆old(c)← ∆(c, D)
If ∆(c, D) > ∆∗ then ∆∗ ← ∆(c, D); c∗ ← c

If ∆∗ > 0 then D ← D ∪ {c∗}
While ∆∗ > 0

Fig. 1. The greedy candidate selection algorithm

indicate whether or not the algorithm should evaluate candidate substrings starting at p. The possible values
for the flag are TRUE (the substring of current length starting at p is a possible candidate), FALSE (we
have already saved the substring of current length starting at p as a candidate), or DONE (all candidates
containing as prefix the substring of current length starting at p are redundant, i.e., the position can be
skipped for all remaining candidate lengths). Initially all flags are set to TRUE. The FALSE flags are reset
to TRUE whenever we increment the candidate length, however, we never reset DONE flags. For every
candidate length l, candidate evaluation proceeds sequentially over all positions of the genomic sequences.
Whenever we reach a position p whose flag is set to TRUE, we use the list of matches for the substring of
length l − 1 starting at p (or a linear time string matching algorithm if l is the minimum candidate length)
to determine the list of matches for the substring of length l starting at p, and set the flag to FALSE for
all positions where these matches occur. If the substring of length l starting at p has matches only within
the source sequence, and we have already generated a “unique” candidate for this sequence, we discard the
candidate and set the flag of p to DONE.

A further speed-up technique is to generate candidate distinguishers from a strict subset of the input
sequences. Although this speed-up can potentially affect solution quality, the results in Section 5 show that
the solution quality loss for whole-genome barcoding is minimal, even when we generate candidates based
on a single input sequence, which corresponds to pre-assigning a barcode of all 1’s to this sequence.

After the set of candidates is generated we select the final set of distinguishers in the greedy phase of the
algorithm (Figure 1). We start with an empty set of distinguishers D. While there are pairs of sequences that
are not yet distinguished by D, we loop over all candidates and compute for each candidate c the number
∆(c, D) of pairs of sequences that are distinguished by c but not by D, then add the candidate c with largest
∆ value to D. Two sequences s and s′ are distinguished by a candidate c iff exactly one of s and s′ appears in
the list Pc of perfect matches of c, which is available from the candidate generation phase. A simple method
for computing ∆ values is to maintain an n×n symmetric matrix indicating which of the pairs of sequences
are already distinguished, and then to probe the |Pc| · (n−|Pc|) entries in this matrix corresponding to pairs
(s, s′) with s ∈ Pc and s′ /∈ Pc when computing ∆(c, D). A more efficient method is based on maintaining
the partition defined on the set of sequences by D. If the partition defined by D consists of sets S1, . . . , Sk,
then we can compute ∆(c, D) in O(k + |Pc|) = O(n) time using the observation that

∆(c, D) =

k∑

i=1

|Si ∩ Pc| · |Si \ Pc| (1)

In addition to the fast partition based computation, our implementation of the greedy selection phase uses a
lazy strategy for updating the ∆ values, based on the observation that they are monotonically non-increasing
during the algorithm (see Figure 1).

4 Extended Barcoding Requirements

In this section we describe the modifications needed to the basic implementation given in previous section
when handling practical extensions of the barcoding problem.
Degenerate bases. In the presence of degenerate bases in the input genomic sequences, the hybridization of
a particular distinguisher may depend on which bases are actually present positions with degeneracy greater



Table 1. Average statistics for instances with 1,000 random sequences of length 10,000, redundancy 1, and number
of source sequences varying from 1,000 down to 1.

#Source Seq. 1000 50 10 5 4 3 2 1

#Candidates 7213568.8 1438645.4 402700.5 225842.7 186871.3 146054.3 102800.6 55738.9
#Matches 55696250.9 35246584.9 23162063.6 18384468.1 16898179.9 15037610.7 12532936.0 8741587.0
Gen. time 132.3 44.7 35.5 31.4 31.3 30.6 28.1 24.9

Selection time 31.7 10.7 5.3 3.6 3.4 3.1 2.3 1.6
#Distinguishers 14.1 14.1 14.1 14.1 14.0 14.1 14.2 14.5

than 1. The greedy setcover algorithm takes into account this possibility for uncertain hybridization by only
counting a pair (g, g′) as distinguished by a candidate c if and only if c has a perfect match with one and only
perfect mismatches with the other. For each generated candidate, in addition to the list of sequences that
have only perfect matches we also save a list containing all sequences with at least one uncertain match. This
allows fast computation of the (typically much longer) list of sequences having only perfect mismatches. To
avoid generating candidate distinguishers containing degenerate bases, we set the DONE flag as soon as the
corresponding substring extends past a degenerate base. Finally, since the partition of genomic sequences is
no longer defined in the presence of uncertain hybridization, formula (1) is no longer applicable and we have
to use the n × n “distinguished so far” matrix for computing ∆ values.
Biochemical constraints on individual distinguishers. Since selected distinguishers must hybridize
under the same experimental conditions, in practice it is natural to impose a variety of constraints on
individual distinguishers, such as minimum and maximum length, GC content, melting temperature, etc.
Furthermore, we may want to avoid using as distinguishers strings which appear in other organisms that may
contaminate the sample. All individual constraints are easily incorporated as a simple filter in the candidate
generation phase.
Redundancy constraints and minimum edit distance constraints. In practice, robust identification
requires redundant distinguishability, i.e., more than one distinguisher distinguishing any given pair of ge-
nomic sequences. One may also impose a lower bound on the edit distance between any pair of selected
distinguishers [11]. Taking into account redundancy requirements is done by maintaining the number of
times each pair of genomic sequences has been distinguished. In order to incorporate the minimum edit
distance constraint, after selecting a distinguisher we eliminate from consideration all candidates that are
within an edit distance smaller than the given threshold.

5 Experimental Results

We performed experiments on both randomly generated instances and whole microbial genomes extracted
from the NCBI databases [7]. Random testcases were generated from the uniform distribution induced by
assigning equal probabilities to each of the four nucleotide; these testcases do not contain any nucleotides
with degeneracy greater than 1. The NCBI testcase represents a selection of 29 complete microbial sequences,
varying in length between 490,000 and 4,750,000 bases (over 76 million bases in total). All experiments were
run on a PowerEdge 2600 Linux server with 4 Gb of RAM and dual 2.8 GHz Intel Xeon CPUs – only one
of which is used by our sequential algorithms.

5.1 Algorithm Scalability

As described in Section 3, there are two main phases in the algorithm: candidate distinguisher generation,
and greedy candidate selection. Figure 2 gives the average candidate selection CPU time for n random
sequences of length 10,000 and redundancy 1, averaged over 10 instances of each size. Combining the two
speed-up techniques for this phase (partition based coverage gain computation and lazy update of candidate
gains) results in over two orders of magnitude reductions in runtime.

As mentioned in Section 3, a further speed-up technique is to generate candidate distinguishers only
from a small number of “source” input sequences. Table 1 gives the average number of candidates, number
of matches, runtimes for candidate generation and greedy selection, and number of selected distinguishers
for instances with 1,000 random sequences of length 10,000 and redundancy 1, when the number of source
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Fig. 2. Candidate selection CPU time (in seconds) for n random sequences of length 10,000 and redundancy 1,
averaged over 10 instances of each size.

sequences is varied from 1,000 down to 1 (the source sequences were chosen at random). Although this speed-
up can potentially affect solution quality, we found that on large instances the solution quality loss is minimal
even when we generate candidates based on a single input sequence; this case corresponds to pre-assigning a
barcode of all 1’s to the source sequence. The technique reduces significantly both the memory requirement
(which is proportional to the number of candidates and the number of times they match input sequences)
and the runtime required for candidate generation and greedy selection.

5.2 Solution Quality on Random Data

Table 2 gives the number of distinguishers returned by the setcover greedy algorithm for redundancy varying
between 1 and 20 on between 10 and 1,000 random sequences of length 10,000. For comparison we include in
the table the results obtained by the information content heuristic results of [1], as well as the information
theoretic lower bound of dlog2 ne for the case when the redundancy requirement is 1. We note that the
number of distinguishers returned by the setcover greedy algorithm is virtually identical to that returned
by the information content heuristic, despite the latter one having a better approximation guarantee [1].
Furthermore, the results for redundancy one are within 50% of the information theoretic lower bound for
the range of instance sizes considered in this experiment. The gap between the solutions returned by the
algorithms and the lower bound does increase with the number of sequences; however it is not clear how

Table 2. Number of distinguishers returned by the setcover greedy algorithm (SGA) for varying redundancy and
number of sequences. For each value of n we report the average over 10 testcases, each consisting of n random sequences
of length 10,000. For comparison we include information content heuristic results (ICH) and the information theoretic
lower bound of dlog

2
ne for redundancy 1 (LB).

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

LB 1 4 5 6 7 8 9 10
ICH 1 4.0 5.0 7.0 8.0 10.0 12.2 14.1
SGA 1 4.0 5.0 7.0 8.0 10.0 12.3 14.1
SGA 2 6.7 8.3 10.6 12.5 14.1 16.7 18.9
SGA 3 8.8 11.6 13.6 15.5 17.3 20.1 22.4
SGA 4 10.8 14.0 16.5 18.7 20.7 23.5 26.1
SGA 5 13.6 16.6 19.5 21.5 23.7 26.8 29.5
SGA 10 22.5 26.8 32.0 34.6 37.5 41.7 44.9
SGA 20 43.0 47.6 55.6 59.5 63.4 68.0 72.6



Table 3. Number of distinguishers returned by the setcover greedy algorithm (SGA) and the multi-step rounding
algorithm in [2] (RND) for varying redundancy and number of sequences. For each value of n we report the average
over 10 testcases, each consisting of n random sequences of length 1,000. Boldface entries correspond to instances for
which the multi-step rounding algorithm has better solution quality than setcover greedy.

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200

SGA 1 4.0 5.0 7.0 9.0 11.0
RND 1 5.0 6.8 10.5 13.0 16.0

SGA 2 6.3 8.2 11.2 12.9 15.0
RND 2 7.3 10.7 14.8 17.0 20.4

SGA 5 13.2 16.1 19.5 22.4 24.6
RND 5 13.2 18.2 23.5 27.3 31.2

SGA 10 22.8 27.0 32.1 36.1 39.4
RND 10 20.2 30.9 37.4 41.9 48.3

SGA 20 43.4 48.8 57.0 61.0 65.8
RND 20 38.9 50.7 62.6 69.4 76.2

SGA 50 100.9 112.0 125.6 133.8 142.0
RND 50 92.6 107.8 125.2 141.6 159.5

SGA 100 195.0 217.2 239.0 255.5 264.0
RND 100 184.9 205.2 236.0 270.0 289.0

much of this increase is caused by degrading algorithm solution quality, and how much by degrading lower
bound quality.

We also compared our setcover greedy algorithm with a recently proposed multi-step rounding algorithm
for set multicover [2]. The rounding algorithm has the following steps:

1. Solve the fractional relaxation of the natural integer program formulation of problem [11] (we used the
commercial solver CPLEX 9.0 for implementing this step)

2. Scale the fractional solution by an appropriate constant factor (see [2] for details)
3. Deterministically select all distinguishers with a scaled fractional value exceeding 1
4. Randomly select a subset of the remaining candidates, each candidate being chosen with a probability

equal to the scaled fractional value
5. Finally, if the selected set of distinguishers is not yet feasible, add further distinguishers using the setcover

greedy algorithm

The approximation guarantee established in [2] for the general set multicover problem translates into an
approximation factor of 2 lnn− ln r for robust string barcoding with redundancy r, which suggests that the
multi-step rounding algorithm is likely to improve upon the setcover greedy for high redundancy constraints.
Table 3 gives the results of experiments comparing the setcover greedy and multi-step rounding algorithms
on testcases consisting of up to 200 random sequences, each of length 1,000 for redundancy requirement
ranging from 1 to 100. The results confirm that the multi-step rounding algorithm has better solution
quality than setcover greedy when redundancy requirement is very large relative to the number of sequences
(entries typeset in boldface), yet the setcover greedy still has the best performance for most combinations of
parameters.

5.3 Experiments on Genomic Data

We ran our algorithm on a set of 29 complete microbial genomic sequences extracted from NCBI databases
[7]. Sequence lengths in the set vary between 490 Kbases and 4.75 Mbases, with an average length of 2.6
Mbases (over 76 Mbases total). Unlike random testcases, the sequences in the NCBI data set contain a small
number of degenerate bases, 861 bases in total. Therefore, we cannot use the partition method for computing
the number of sequence pairs distinguished by a candidate in the greedy selection phase, and we have to use
the slower matrix datastructure. In these experiments we varied the redundancy requirement from 1 to 20. To
see the effect of length and edit distance requirements on the number of distinguishers, for each redundancy
requirement we computed both an unconstrained solution, and a solution in which distinguishers must have
length between 15 and 40, and there should be a minimum edit distance of 6 between every two selected



Table 4. Results on a set of 29 NCBI complete microbial genomes. Candidate generation time is approximately 335
seconds for all combinations of parameters.

Redundancy lmin lmax MinEdit Select time #Distinguishers

1 0 ∞ 0 14.2 6.0
1 15 40 6 2.6 8.0

5 0 ∞ 0 20.3 21.0
5 15 40 6 8.7 31.0

10 0 ∞ 0 22.9 41.0
10 15 40 6 16.4 60.0

20 0 ∞ 0 26.8 76.0
20 15 40 6 33.4 123.0

distinguishers (these values are similar to those used in [11]. In all experiments, we generated candidates
based only on the shortest sequence of 490 Kbases.

The results on the NCBI dataset are given in Table 4. Naturally, meeting higher redundancy constraints
requires more distinguishers to be selected. Additional length and edit distance constraints further increase
the number of distinguishers, but the latter is still within reasonable limits. The length constraints reduce the
number of candidates (from 1,775,471 to 122,478), which, for low redundancy values has the effect of reducing
greedy selection time. However, for high redundancy requirements the reduction in number of candidates is
offset by the increase in solution size, and greedy selection becomes more time consuming with length and
edit distance than without (selection time grows roughly linearly with solution size).
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