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The availability of large databases of genomic information has enabled research

efforts focused on refining methods for diagnosis and treatment of human diseases.

However, proper use of genomic databases can not be achieved without the devel-

opment of sophisticated data analysis methods, which is by itself a challenging task

due to the size and heterogeneity of the data. The focus of the research proposed

in this document is on developing computational methods and software tools for

diagnosis and treatment of human diseases.

We describe a primers design tool for rapid virus subtype identification, ap-

plied to Avian Influenza called PrimerHunter, which takes as input sets of both

target and non-target sequences and select primers that efficiently amplify any

one of the targets, and none of the non-targets. PrimerHunter ensures the de-

sired amplification properties by using accurate estimates of melting temperature

with mismatches, computed based on the nearest-neighbor model via an efficient

fractional programming algorithm

We also present a bioinformatics pipeline for detection of immunogenic cancer

mutations by high throughput mRNA sequencing. As part of this pipeline, we de-

veloped and integrated novel algorithms and strategies for mRNA reads mapping,

SNV detection, genotyping and haplotyping. We show through validations on real

data that our methods improve accuracy to identify expressed mutations over ex-

isting methods and that our haplotyping algorithm is more efficient than other

solutions with comparable accuracy levels. Our pipeline predicted more than a

thousand candidate epitopes for six different mouse cancer tumor cell lines, which

are currently used to find stable protocols for immunotherapy.
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Chapter 1

Introduction

Research efforts during the last two decades have provided huge amounts of ge-

nomic information for almost every form of life [8, 74, 20, 77]. The availability of

this information has enabled a deeper understanding on the behavior of studied

organisms. Indeed, much of this research effort is focused on refining methods

for diagnosis and treatment of human diseases [22, 75]. However, proper use of

genomic databases can not be achieved without the development of sophisticated

data analysis methods, which is by itself a challenging task due to the size and het-

erogeneity of the data. The focus of the research consigned in this document is on

developing computational methods and software tools for diagnosis and treatment

of human diseases. In particular, we describe a primers design tool for rapid virus

subtype identification, applied to Avian Influenza and a bioinformatics pipeline for

detection of immunogenic cancer mutations by high throughput mRNA sequenc-

ing.

Rapid and reliable virus subtype identification is critical for accurate diagno-

sis of human infections, effective response to epidemic outbreaks, and global-scale

surveillance of highly pathogenic viral subtypes such as avian influenza H5N1. The

Polymerase Chain Reaction (PCR) has become the method of choice for virus sub-
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type identification. However, designing subtype specific PCR primer pairs is a very

challenging task: on one hand, selected primer pairs must result in robust ampli-

fication in the presence of a significant degree of sequence heterogeneity within

subtypes, on the other, they must discriminate between the subtype of interest

and closely related subtypes [32, 90].

We present a new tool, called PrimerHunter, that can be used to select highly

sensitive and specific primers for virus subtyping. Our tool takes as input sets

of both target and non-target sequences. Primers are selected such that they

efficiently amplify any one of the target sequences, and none of the non-target

sequences. PrimerHunter ensures the desired amplification properties by using ac-

curate estimates of melting temperature with mismatches, computed based on the

nearest-neighbor model via an efficient fractional programming algorithm. Valida-

tion experiments with 3 Avian influenza HA subtypes confirm that primers selected

by PrimerHunter have high sensitivity and specificity for target sequences.

Genomes research has been boosted by recent advances in high-throughput se-

quencing (HTS) technologies such as the Roche 454, Illumina, ABI SOLiD, and

Helicos HeliScope. This advances have led to orders of magnitude higher through-

put compared to classic Sanger sequencing (see [37] for a review). Indeed, at full

capacity each one of these HTS sequencers is capable of producing approximately

1Gb of read data per day. Coupled with continuously decreasing prices, HTS has

profoundly transformed genomics research, enabling a host of novel HTS appli-

cations like individual genome resequencing [86] and deep sequencing of mRNA

[61, 64]. This last application is of particular interest for cancer research because a

deeper understanding on human transcriptomes can lead to a better differentiation

between normal and cancer cells. In particular, we expect to show that mRNA

sequencing can improve methods for immunotherapy, which is a promising cancer

treatment approach that relies on awakening the immune system to the presence
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of antigens associated with tumor cells. The success of this approach depends on

the ability to reliably detect immunogenic cancer mutations, the vast majority of

which are expected to be tumor-specific [76].

Standard analysis of RNA-seq data includes reads mapping to a reference

genome and variants discovery. We studied both problems and contributed with

novel strategies and models for these tasks. We map mRNA reads against both

a reference genome [77] and a database of consensus coding sequences (CCDS)

[74] and defined a set of rules to combine mapping results. We also implemented

a bayesian model for Single Nucleotide Variants (SNV) detection and genotyp-

ing that chooses the genotype with highest posterior probability based on counts

and base quality scores. Validation against known SNP genotypes of a Hapmap

individual shows that the combined mapping strategy yields improved SNV geno-

typing accuracy compared to performing genome or CCDS mapping alone. We

also show that our bayesian model for genotyping achieved improved accuracy for

our testing dataset compared with other widely used bayesian methods as Maq

[53] or SOAPsnp [54]. We finally discuss how different data curation and filtering

strategies affect sensitivity and specificity.

As a tumor accumulates more and more mutations, phasing of close SNVs be-

comes critical to achieve an accurate prediction of translation to proteins. Since

common statistical methods for SNPs phasing like fastPHASE [84] are not suit-

able for this settings, we studied the single individual haplotyping problem [78]

and we proposed a heuristic algorithm to solve it. We defined a new problem

formulation which tries to find the haplotype origin of each fragment before as-

sembling the haplotypes and then we reduced our formulation to the well known

Max-Cut problem. We performed a comprehensive set of simulation experiments

to show that our algorithm is significantly faster than other heuristic methods like

HapCUT [6] achieving the same accuracy.
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We combined standard and novel techniques in a bioinformatics pipeline for de-

tection of immunogenic cancer mutations from high throughput mRNA sequencing

data. We map reads, discover and phase SNVs following the techniques described

above and we also integrated Primer3 [42, 80] to find primers to validate mutations

experimentally by performing PCR experiments on genomic DNA. Finally, after

predicting how phased SNVs affect translation to proteins, we integrate two com-

mon epitope prediction tools as NetMHC [57] and SYFPEITHI [75]. We tested the

whole pipeline on MethA cell lines and spontaneous prostate cancer tumor samples

and we found that our pipeline is able to detect tens of immunogenic mutations

for each dataset. We also were able to find cases of variants close enough to each

other to make phasing relevant and in which the coocurrance of two close muta-

tions in a single haplotype increases the translated peptides score according with

the NetMHC predictions. Epitopes found for these datasets are currently under

experimental validation.

This document is organized as follows: In Chapter 2 we introduce and formal-

ize the discriminative primers selection problem, we describe the algorithm im-

plemented in PrimerHunter, and we show validation results on experiments with

Avian Influenza subtypes. In Chapter 3 we present our improved mapping and

SNV genotyping strategies, and we present accuracy results under different settings

from experiments with publicly available mRNA reads. In Chapter 4 we present

our novel single individual haplotyping algorithm, including results of simulations

under different settings. In Chapter 5 we propose an immunotherapy approach

for treatment of cancer tumors which relies on detection of immunogenic cancer

mutations. We combine all previous methods to present the pipeline deveolped to

find such mutations from high throughput mRNA sequencing data, and we show

results and validation procedures for identified mutations. Finally, we summarize

the current status and present directions for future work in Chapter 6.
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Chapter 2

Primer Design for Virus Subtype

Identification1

RNA viruses such as avian influenza, hepatitis C virus, and human immunodefi-

ciency virus are characterized by a extensive genetic heterogeneity, primarily due

to the lack of proofreading mechanisms in their RNA polymerase. As a result,

most RNA viruses can be subdivided into distinct taxonomic subunits referred to

as genotypes or subtypes. For example, over 100 avian influenza subtypes have

been identified in wild birds as the result of independent assortment of 16 subtypes

of the RNA segment encoding the Haemagglutinin (HA) protein with 9 subtypes

of the segment encoding for Neuraminidase (NA). Rapid virus subtype identifi-

cation is critical for accurate diagnosis of human infections, effective response to

epidemic outbreaks, and global-scale surveillance of highly pathogenic subtypes

such as avian influenza H5N1 [22].

The Polymerase Chain Reaction (PCR) has become the method of choice for

virus subtype identification, largely replacing traditional immunological assays due

to its high sensitivity and specificity, fast response time, and affordable cost [90].

1The results presented in this chapter are based on joint work with D.M. Kumar, E. Hemphill,
M. Khan, I.I. Măndoiu and C.E. Nelson [26]
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However, designing subtype specific PCR primer pairs is a very challenging task

[32]: on one hand, selected primer pairs must result in robust amplification in the

presence of a significant degree of sequence heterogeneity within subtypes, on the

other, they must discriminate between the subtype of interest and closely related

subtypes.

Unfortunately, existing primer design tools are not well suited for designing

PCR primers for subtype identification. Commonly used packages such as Primer3

[42, 80] seek to amplify a single known target nucleic acid sequence, and cannot

guarantee amplification sensitivity in the presence of high sequence heterogeneity

within a subtype. A widely-used approach to primer design for virus identification

relies on first constructing a “consensus gestalt” from a multiple alignment of

target virus sequences [30]. After masking regions that also appear in the genome

of related viruses, remaining “unique” regions are mined for primers using standard

tools such as Primer3. This approach can be quite successful at finding species-

specific primers, since virus genomes often include highly conserved genes and non-

coding regions that serve critical roles in replication, transcription, and packaging.

However, the approach has limited applicability when the goal is to discriminate

between virus subtypes, since most highly conserved regions are shared by all

subtypes. The same limitation applies to several suffix-tree based algorithms [4,

28, 73] that search for long substrings that appear exactly or with a small number

of mutations in all (or a large percentage) of the sequences of a given target set,

and in none of the sequences of a given non-target set.

Another common approach to ensuring amplification of heterogenous sets of

nucleic acid sequences is the use of primers with degenerate bases. Several meth-

ods have been proposed for selecting degenerate primers, including various greedy

algorithms [5, 56, 87] and heuristics based on multiple alignments of nucleic acid

[38] and protein sequences [99]. Unfortunately, all these methods ignore primer
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specificity (i.e., preventing amplification of related virus subtypes) which prevents

their use for direct viral subtyping assays.

A comparison of the main features provided by a selection of most relevant

existing primer and probe selection tools [28, 31, 38, 41, 73, 79, 80, 96, 99, 106] is

presented in Table 2.1. As it can be seen from the table, most existing tools miss

key features that make them inappropriate for use in designing PCR primers for

virus subtyping. Of the surveyed methods, only OligoSpawn [106] and SLICSel [96]

were successful at finding subtype specific probes when run on a large set of avian

influenza HA sequences. The other methods were either not available, could not

handle multiple target/non-target sequences, or simply did not find any subtype

specific primers or probes.

Design Multiple Non TM Salt Output

Tool Targets Targets Model Correction

Primer3 No Yes NN Yes Multiple
[80] (DB) primer pairs

Insignia Yes Yes None No Multiple
[73] (DB) (DB) signatures

QPrimer No No NN No Multiple
[41] (DB) primers

DePict Yes No None No Best
[99] (MSA) primer

PROBEMer Yes Yes NN No Multiple
[28] probes

Greene Yes No NN Yes Multiple
SCPrimer [38] (MSA) primer pairs
OligoSpawn Yes Yes NN No Multiple

[106] probes
SLICSel Yes Yes NN Yes Multiple
[96] probes

Primaclade Yes No NN No Multiple
[31] (MSA) primers

OligoArray Yes Yes NN No Multiple
[79] (DB) probes

PrimerHunter Yes Yes NN w/ Yes Multiple
mismatches primer pairs

Table 2.1: Features comparison between primer and probe selection tools most
similar to PrimerHunter. (DB: user can select targets from a pre-constructed
database; MSA: input must be provided as a multiple sequence alignment; NN:
nearest-neighbor model)
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We present a new tool, called PrimerHunter, that can be used for selecting

highly sensitive and specific primers for virus subtyping and is likely to find ap-

plications in other contexts that require discriminative probes/primers. As in

[28, 73, 106], our tool takes as input sets of both target and non-target sequences.

To guarantee high sensitivity, primers are selected such that they efficiently am-

plify any one of the target sequences representing different isolates of the subtype

of interest. High specificity is ensured by requiring that none of the non-target

sequences be amplified by selected primers; non-targets typically being sequences

representing isolates of closely related virus subtypes. Unlike previous methods,

which restrict the primer search space to the set of substrings shared by all target

sequences or to highly conserved regions in a multiple alignment, PrimerHunter

achieves a higher design success rate by generating an exhaustive set of candidate

primers from the target sequences and using accurate melting temperature com-

putations to ensure the desired amplification/non-amplification properties. Melt-

ing temperature computation is performed based on the state-of-the-art nearest-

neighbor model of [82]. Of critical importance in selective target amplification is

accurate prediction of primer-template hybridization with mismatches. Melting

temperature with mismatches is efficiently computed in PrimerHunter by using

the fractional programming approach of [49], modified to incorporate the salt cor-

rection model of [82].

PrimerHunter has been used to design specific primer pairs for all avian in-

fluenza HA and NA subtypes from complete sequences of North American ori-

gin in the NCBI flu database [8]. Validation experiments confirm that primers

selected by PrimerHunter are both specific and robust in the PCR amplifica-

tion of target sequences. The PrimerHunter web server, as well as the open

source code released under the GNU General Public License, are available at

http://dna.engr.uconn.edu/software/PrimerHunter/.
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2.1 Problem Formulation

Unless stated otherwise, we assume that all sequences are over the DNA alphabet,

{A,C,G, T}, and are given in 5′-3′ orientation. For a sequence s, we denote by

|s| its length, and by s(l, i) the subsequence of length l ending at position i, i.e.,

s(l, i) = si−l+1 . . . si−1si. We denote by T (p, t, i) the melting temperature of the

duplex formed by a primer p and the Watson-Crick complement of t(|p|, i). In order

to ensure sensitive amplification of target sequences, we require for each selected

primer p to have at least one position i within each target t such that T (p, t, i)

is greater than or equal to a user specified threshold Tmin
target. Since mismatches at

the 3′ end of the primer can significantly reduce amplification efficiency [44], we

additionally require that the 3′ end of p match perfectly t(|p|, i) at a set of bases

specified using a 0-1 perfect match mask M . For example, a mask M = 3′-1101-5′

specifies that the first, second, and fourth 3′-most bases of the primer must be

matched exactly. For a primer p and a target sequence t, we denote by I(p, t,M)

the set of positions i of t at which the 3′ end of p matches t(|p|, i) according to

M . Thus, in order to ensure sensitive PCR amplification of target sequences, we

require that a selected primer p have, for every target t, at least one position

i ∈ I(p, t,M) for which T (p, t, i) ≥ Tmin
target.

To avoid non-specific amplification, we further require for each selected primer

to have a melting temperature T (p, t, i) below a user specified threshold Tmax
nontarget

at every position i of every non-target sequence t. The problem of selecting target-

specific forward PCR primers is therefore formulated as follows:

Discriminative Primer Selection Problem (DPSP)

Given: Sets TARGETS and NONTARGETS of 5′-3′ DNA sequences, perfect

match mask M , melting temperature thresholds Tmin
target and Tmax

nontarget, and con-

straints on primer length, GC content, self-complementarity, etc.
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Find: Primers p satisfying given constraints on primer length, GC content, self-

complementarity, etc., such that:

• For every t ∈ TARGETS, there exists i ∈ I(p, t,M) such that T (p, t, i) ≥

Tmin
target, and

• For every t ∈ NONTARGETS, T (p, t, i) ≤ Tmax
nontarget for every i ∈ {|p|, . . . , |t|}.

2.2 Melting Temperature Calculation

PrimerHunter estimates the melting temperature of primer-target and primer-

nontarget duplexes using the nearest-neighbor model of [82], which is consid-

ered to be the most accurate melting temperature model to date [71]. However,

unlike most other primer design packages, which only require estimates of the

melting temperature between a primer and its perfectly complementary template,

PrimerHunter critically relies on accurate estimates of the melting temperature for

non-complementary duplexes. This requires finding the optimum thermodynamic

alignments for all evaluated duplexes, i.e., the alignments with minimum Gibbs

free energy. As in [49], optimum alignments are computed using the fractional

programming algorithm of [25]. In this section we describe our modification of

the algorithm to incorporate SantaLucia’s correction for the concentration of salt

cations in the PCR mix [82]. As shown below, incorporating this correction yields

significantly improved estimates compared to [49].

In SantaLucia’s nearest-neighbor model [82], the melting temperature of a spe-

cific alignment x between a 5′-3′ primer p with concentration cp and a 3′-5′ template

t with concentration ct is given by

TM(x) =
∆H(x)

∆S(x) + 0.368×N/2× ln(Na+) +R× ln(C)
(2.1)
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where ∆H(x) and ∆S(x) are enthalpy and entropy changes for the annealing reac-

tion resulting in a duplex with Watson-Crick pairings given by alignment x, N is

the total number of phosphates in the duplex, R is the gas constant, C is the total

DNA concentration calculated as cp− ct/2 if cp > ct and (cp/2) if cp = ct [82], and

Na+ is the the concentration of salt cations. For a given alignment x the enthalpy

and entropy changes ∆H(x) and ∆S(x) are computed by summing experimentally

estimated contributions of constitutive dimer duplexes (including internal mis-

matches and gaps), with additional terms for duplex initiation/termination and

(when applicable) symmetry correction.

The melting temperature between p and t is given by the most stable align-

ment x, i.e., it is taken to be the maximum TM(x) over all possible alignments x.

This maximum can be found using Dinkelbach’s fractional programming algorithm

[25], which relies on a simple iterative procedure to maximize the ratio between

two functions when linear combinations of the two functions can be maximized

efficiently. More specifically, given a finite set S and two functions f, g : S → R

with g > 0, the maximum ratio t∗ = maxx∈S
f(x)
g(x)

can be approximated arbitrarily

close via the following algorithm:

1. Choose t1 ≤ t∗; i← 1

2. Find xi ∈ S maximizing F (x) := f(x)− tig(x)

3. If F (xi) ≤ ε for some tolerance ε > 0, output ti

4. Else, set ti+1 ← f(xi)/g(xi) and i← i+ 1, and then go to step 2

As shown by Dinkelbach, this algorithm produces values t1 < t2 < t3 < . . .

converging to t∗. When using Dinkelbach’s algorithm to maximize (2.1) over

the set of alignments x, the function to be maximized in Step 2 is −∆G(x) =

ti[∆S(x) + (0.368) × N/2 × ln(Na+) + R × ln(C)] − ∆H(x). Since −∆G(x) is
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additively decomposable, the alignment x maximizing it can be found efficiently

by a standard dynamic programming algorithm, similar to [49]. As shown in [49],

the algorithm typically converges in a small number of iterations.

2.3 Algorithm

PrimerHunter works in two stages: in the first stage forward and reverse primers

are selected according to the problem formulation given above, while in the second

stage feasible primer pairs are formed using the primers selected in first stage.

The first stage starts with a preprocessing step that builds a hash table storing

all occurrences in the target sequences of “seed” nucleotide patterns consistent

with the given mask M . This is done by aligning the mask M at every position

i of every target sequence t, and storing in the hash table an occurrence of the

seed pattern created by extracting from t(|M |, i) the nucleotides that appear at

positions aligned with the 1’s ofM . For example, ifM = 3′-1101-5′ and t(4, i) = 5′-

GATC-3′, we store in the hash table an occurrence of seed GTC at position i of

t.

Once the hash table is constructed, candidate primers are generated by tak-

ing substrings with lengths within a user-specified interval [lm, lM ] from one or

more of the target sequences. Similar to the Primer3 package [80], PrimerHunter

filters the list of primer candidates by enforcing user-specified bounds on GC Con-

tent, 3′-end GC clamp, maximum number of consecutive mononucleotide repeats,

and self-complementarity. For each surviving candidate p, PrimerHunter uses the

hash table to recover for each target t the list I(p, t,M) of positions at which p

matches t according to M . It then computes the melting temperature of p with

the Watson-Crick complement of t at each of these positions, retaining p only if

maxi∈I(p,t,M) T (p, t, i) ≥ Tmin
target. Finally, PrimerHunter computes the maximum

12



melting temperature between p and the Watson-Crick complements of non-target

sequences, retaining p only if maxi∈{|p|,...,|t|} T (p, t, i) ≤ Tmax
nontarget for every non-

target sequence t.

The above process is repeated on the reverse complements of target and non

target sequences to generate reverse primers. Then, in the second stage of the

algorithm, the lists of selected forward and reverse primers are used to create

feasible primer pairs by enforcing the following constraints:

1. Product length: for each target sequence the total product length must fall

between user specified bounds.

2. Melting temperature similarity: for every target sequence, the difference

between the maximum and the minimum melting temperature of the two

primers must not exceed a user defined value.

3. Primer dimers: a criteria similar to that used for preventing primer self-

complementarity is used to avoid hybridization between the two primers of

the pair; the test is identical to that implemented in Primer3 [80].

2.4 Algorithm Extensions

Since degenerate bases at specific primer positions yield perfect matches at these

positions regardless of target variability, the use of degenerate primers is an effec-

tive technique for ensuring robust amplification of heterogenous targets. However,

degenerate primer design is a difficult problem due to the large space from which

degenerate primers can be selected [5, 56, 87]. To overcome this difficulty, we

adopted a simple pattern-based approach to degenerate primer design, based on

the observation that most of a virus’ sequence is coding for proteins and that

the vast majority of sequence heterogeneity is observed at synonymous positions.
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PrimerHunter uses a user-specified degeneracy mask, specifying the positions at

which fully degenerate nucleotides should be incorporated in candidate primers.

Formally, the degeneracy mask is a vector D of integers 1 or 4 in 3′ to 5′ orien-

tation. In each position i where Di = 4, a degenerate base N will be included

in every primer. For example, if D = 3′-114114-5′, every primer will end with

the pattern 5′-NxxNxx-3′. A degeneracy mask may be used in conjunction with a

complementary perfect match mask (M = 3′-110110-5′ for the above D), although

this is not required. The only required change to the primer selection algorithm

is in the computation of melting temperatures: the range of melting temperatures

fBioinformatics Methods for Diagnosis and Treatment of Human Diseasesor a de-

generate primer is obtained by computing the melting temperatures against the

given template for all compatible non-degenerate primers.

For target sets exhibiting a very high degrees of heterogeneity, or for overly

stringent design constraints, it may be impossible to find specific primer pairs that

amplify all targets. When detecting this situation, PrimerHunter automatically

seeks and reports a small set of primer pairs that collectively amplify all targets.

The set of pairs is constructed using the classic greedy set cover algorithm [16, 39],

where the elements to be covered are target sequences and the sets correspond to

pairs of compatible primers that amplify at least one of the target sequences and

none of the non-targets. From the well-known approximation guarantee in [16, 39]

it follows that the greedy algorithm yields a number of primer pairs within a factor

of 1 + lnmt of optimum for mt target sequences.

When multiple primer pairs are needed to cover all targets, the number of

primer pairs can be further reduced by relaxing the constraint that forward and

reverse primer candidates must amplify all targets. As in [28], this is achieved in

PrimerHunter by specifying a minimum percentage of target sequences to which

selected primers must hybridize. Similarly, the non-targets filtering can be re-
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laxed, allowing selected primers to hybridize to a small percentage of non-targets.

However, to maintain specificity, primer pairs that feasibly amplify one of the

non-target sequences are discarded before running the greedy set cover algorithm.

2.5 Results

2.5.1 Accuracy of Melting Temperature Predictions

We compared the accuracy of estimates obtained based on (2.1) to those obtained

as in [49] by using a simplified formula that does not include the salt correction

term 0.368×N/2 × ln(Na+) in the denominator. Figure 2.1 shows the mean and

standard deviation of the difference between the melting temperature determined

experimentally and that predicted by the two models for a set of 812 duplexes

of perfectly complementary oligonucleotides with lengths between 9 and 30 base

pairs, GC content between 8% and 80%, and salt concentrations between 0.069M

and 1.02M [68, 71]. The data has been stratified in four categories of salt concen-

tration, with ranges given in Table 2.2. Table 2.2 also includes the Mean Squared

Error (MSE) for each model and each salt concentration category. The results

show that predictions given by (2.1) have much lower MSE values for all salt con-

centration categories except 1−1.02M . Although the two models result in identical

predictions at 1M concentration, for salt concentrations larger than 1M applying

the salt correction produces slightly worse estimates. The difference between the

two models is statistically significant: within each salt concentration category the

null hypothesis that prediction errors of the two models have the same mean is

rejected by the Wilcoxon signed-rank test with a p-value smaller than 10−16.

Since duplexes involving primers with atypical length or GC content could

potentially skew the results, we repeated the above comparison by considering only

duplexes consisting of primers with length between 20 and 25 base pairs and GC
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Figure 2.1: Average and standard deviation of the difference (in degrees Celsius)
between experimental melting temperatures and predictions obtained by fractional
programming without salt correction [49] and with salt corrections performed using
the SantaLucia model (2.1) for 812 duplexes of perfectly complementary oligonu-
cleotides with lengths between 9 and 30 base pairs and GC content between 8%
and 80%

Primer length 9− 30 Primer length 20− 25
GC content 8%− 80% GC content 25%− 75%

Salt # MSE w/o MSE with # MSE w/o MSE with
Conc. (M) duplexes salt salt duplexes salt salt

correction correction correction correction
0.069− 0.15 351 150.03 2.30 158 148.91 2.25

0.22 152 47.44 2.71 72 43.14 3.18
0.62− 0.621 152 8.98 2.52 72 6.90 1.38
1− 1.02 157 4.75 4.97 74 2.61 2.76

Table 2.2: Mean Squared Error (MSE) for residuals calculated as the difference
(in degrees Celsius) between experimental melting temperatures and predictions
obtained by fractional programming without salt correction [49] and with salt
corrections performed using the SantaLucia model (2.1).
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content between 25% and 75%, which are typical values used in primer design and

the default ranges for PrimerHunter. The results shown in Supplementary Figure 1

and Table 2.2 show that the predictions given by (2.1) remain more accurate than

predictions based on [49] for salt concentrations below 1M even when disregarding

primers with extreme GC-content or length. In all categories, the null hypothesis

that prediction errors of the two models have the same mean is still rejected by

the Wilcoxon signed-rank test, with a p-value smaller than 10−14.

Unfortunately, experimental data on melting temperature of duplexes with mis-

matches is much more limited. We could collect only 110 duplexes with one mis-

match and 28 duplexes with two mismatches from [1, 2, 3, 72]. Duplexes with

one mismatch have lengths between 9 and 16 base pairs and GC content between

21% and 78%, while duplexes with two mismatches have lengths between 12 and

14 base pairs and GC content between 50% and 75%. Except for twelve duplexes

with one mismatch, the melting temperature of all these duplexes was experimen-

tally calculated at 1M of salt concentration. Since both prediction models produce

exactly the same answer for a salt concentration of 1M , we did not have enough

information to compare them for duplexes with mismatches. Table 2.3 gives the

mean and standard deviation for the prediction errors made by the SantaLucia

model (2.1). The results suggest that, although less accurate than in the case

of perfectly complementary duplexes, melting temperature estimates for duplexes

with mismatches still provide good approximations. (We have also implemented

the salt correction model of [68], but found the SantaLucia model to be slightly

more accurate.).

2.5.2 Design Success Rate

Primer Hunter has been implemented in C++ on a standard Linux platform. We

designed primer pairs for 14 HA subtypes using the complete Avian influenza HA
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# Length GC content # Average Standard
mismatches range range duplexes difference deviation

1 9− 16 21%− 78% 110 0.56 2.06
2 12− 14 50%− 75% 28 −1.25 2.70

Table 2.3: Average and standard deviation for the difference (in degrees Celsius)
between experimental melting temperature and predictions made by the SantaLu-
cia model (2.1) on duplexes with one and two mismatches.

sequences from North America available in the NCBI flu database [8] as of March

2008 (a total of 574 HA sequences). Figure 2.2 shows the unrooted phylogenetic

tree generated using the TREEVIEW program [69] from a multiple alignment of

a subset of these sequences constructed using ClustalW [47].

H1/4

H1/1

H1/2

H1/3

H2/1

H2/2H2/3H2/4

H5/4

H5/3
H5/1H5/2

H6/1

H6/2

H6/3H6/4

H3/4

H3/3

H3/1
H3/2

H4/4
H4/1

H4/2

H4/3

H7/4

H7/1

H7/2

H7/3

H10/1

H10/4

H10/2

H10/3

H8/1
H8/2

H8/3

H8/4

H12/4

H12/3

H12/1 H12/2

H9/1
H9/2

H9/3 H9/4H11/4
H11/3

H11/1

H11/2

H13/1

H13/4

H13/2H13/3

H16/4

H16/3

H16/1

H16/2

H4 H3

H6

H5

H2

H1

H16

H13

H11

H9

H12

H8

H10

H7

Figure 2.2: Phylogenetic tree of avian influenza HA sequences of North American
origin from the NCBI flu database (5 complete sequences selected at random for
each subtype).

When designing primers for each subtype Hi we used all available HA sequences

classified as Hi as targets, and all NCBI HA sequences labeled with different sub-

types as non-targets. Primer selection was performed using the following parame-

ters:
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1. Primer length between 20 and 25

2. Amplicon length between 75 and 200

3. GC content between 25% and 75%

4. Maximum mononucleotide repeat of 5

5. 3′-end perfect match mask M = 11

6. No required 3′ GC clamp

7. Primer concentration of 0.8µM

8. Salt concentration of 50mM

9. Tmin
target = Tmax

nontarget = 40◦C

We also attempted to design primer pairs for the 9 known NA subtypes based

on the 668 avian Influenza NA sequences available in [8], using the same set of pa-

rameters as for HA subtypes. An initial PrimerHunter run resulted in primer pairs

selected for all subtypes except N4 and N1. Upon inspection of the phylogenetic

tree (see Supplementary Figure 2) we detected an N1 sequence (GI:115278096)

that was mis-labeled as N4. After correcting the label of the sequence, Primer-

Hunter was able to select discriminative primer pairs for all NA subtypes (see

Supplementary Table 1).

The numbers of identified primer pairs using these parameters are summarized

in Table 2.4. For comparison, we also include in Table 2.4 the number of probes re-

ported by OligoSpawn [106] and SLICSel [96]. These were the only methods among

those listed in Table 2.1 that were available and could run successfully run on the

HA dataset. OligoSpawn and SLICSel were run using similar settings as Primer-

Hunter for the common parameters. Using these settings, all three methods were
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able to identify discriminative primers/probes for each subtype represented in the

NCBI flu database. The number of discriminative primers found by PrimerHunter

is consistently larger than the number of probes found by OligoSpawn and SLIC-

Sel. PrimerHunter identified at least a few tens of forward and reverse primers for

each subtype. With an amplicon length constrained to be between 75 and 200 base

pairs, PrimerHunter was able to always identify feasible primer pairs, i.e., pairs

of primers predicted to amplify all target sequences and none of the non-target

sequences when using an annealing temperature of 40◦C in the PCR reaction.

Identified primers typically have minimum primer-target melting temperature is

significantly higher than 40◦C, and maximum primer-non-target melting temper-

ature is significantly lower than 40◦C (see supplementary material). The large

number of feasible primers enables further optimizations such as selecting most

discriminative primers (based on the difference between minimum primer-target

TM and maximum primer-non-target TM) and TM matching the primers within

selected primer pairs.

Subtype # # Avg. % # # # # Probes # Probes
Targets Non-Targets Diss. FP RP PP SlicSel OligoSpawn

H1 48 526 8.4 51 52 70 20 2
H2 41 533 9.1 42 43 187 14 2
H3 72 502 11.1 41 61 135 7 1
H4 67 507 7.4 265 225 3724 18 2
H5 69 505 9.1 68 66 160 17 1
H6 100 474 15.4 36 27 3 4 3
H7 55 519 8.9 77 81 260 2 1
H8 9 565 6.3 489 482 14415 100 1
H9 23 551 8.7 140 152 1222 58 1
H10 16 558 6.8 243 302 3712 35 1
H11 45 529 5.9 267 262 4117 32 1
H12 15 559 7.1 472 494 12895 52 1
H13 10 564 14.4 41 33 98 1 2
H16 4 570 9.5 367 352 7629 68 1

Table 2.4: Primers found for each subtype of Avian influenza HA and comparison
with number of probes generated by related tools. The dissimilarity within a
subtype is calculated as the average pairwise Hamming distance in the multiple
sequence alignment expressed as percentage of the average sequence length. (FP:
Forward Primers; RP: Reverse Primers; PP: Primer Pairs)
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The number of discriminative primers and primer pairs found for a subtype is

positively correlated with the amount of variability within the subtype and neg-

atively correlated with the average similarity to closely related subtypes. Indeed,

for pairs of subtypes such as (H3,H4), (H7,H10), (H8,H12), and (H13,H16) which

are nearest neighbors in the NA phylogenetic tree in Figure 2.2, the subtype with

lower within-subtype dissimilarity (included in Table 2.4) always yields a larger

number of primer pairs. For our design parameters the number of suitable primer

pairs varies from 3 for the highly variable H6 subtype, which has an average within-

subtype dissimilarity of 15.4%, to 14,415 for the H8 subtype, which has an average

within-subtype dissimilarity of 6.3%.

2.5.3 Primer Validation

A total of 9 randomly selected primer pairs specific to H3, H5 and H7 subtypes (3

pairs per subtype, see the supplementary material) were ordered from Integrated

DNA Technologies (IDT). In a first experiment, triplicate Q-PCR reactions were

performed for each primer pair with 1 : 103 dilutions of each of the 3 plasmid

types as template. Triplicate reactions with no template (no template controls, or

NTC) were also performed. Figure 2.3 gives the amplification curves for a typical

experiment where 3 on-target and 6 off-target Q-PCR reactions were performed

with one of the H5-specific primer pairs. For each reaction, the threshold cycle

Ct is defined as the PCR cycle in which the fluorescent signal intensity passes

the self-calibrated detection threshold. When no detectable fluorescent signal is

present (e.g., in a NTC reaction), Ct is set to 40.

For each reaction, ∆Ct is computed as the difference between the respective

threshold cycle and the average threshold cycle of the 3 NTC reactions. The

minimum, maximum, and average ∆Ct values for all 9 primer pairs and both on-

and off-target templates are given in Figure 2.4. The results show a large difference
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Figure 2.3: Amplification curves using an H5-specific primer pair and H3, H5, H7
plasmids or no template (3 replicates each).

(15 cycles or more) between the average on-target and off-target ∆Ct values.

To assess the discriminative power over a range of template concentrations, 3

primer pairs (one specific to each of the 3 cloned subtypes) were used in triplicate

Q-PCR reactions performed using each of the on- and off-target plasmids at 10

different dilutions. As can be seen from these graphs, PrimerHunter primer pairs

showed template specific amplification over 5 to 7 orders of magnitude. Figure

2.5 shows ∆Ct values of these reactions plotted against approximate plasmid copy

numbers.

2.6 Discussion

We demonstrate the performance of PrimerHunter by designing thousands of primer

pairs specific to fourteen HA and nine NA Avian Influenza subtypes. For the HA

subtypes, the number of primers found by PrimerHunter is consistently larger than

the number of probes found by two probe design tools with closely related func-
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tionality [106, 96]. The number of discriminative primers and primer pairs found

for a subtype is positively correlated with the amount of variability within the

subtype and negatively correlated with the average similarity to closely related

subtypes. Indeed, for pairs of subtypes such as (H3,H4), (H7,H10), (H8,H12), and

(H13,H16) which are nearest neighbors in the HA phylogenetic tree in Figure 2.2,

the subtype with lower within-subtype dissimilarity (included in Table 2.4) always

yields a larger number of primer pairs. For our design parameters the number of

suitable primer pairs varies from 3 for the highly variable H6 subtype, which has an

average within-subtype dissimilarity of 15.4%, to 14,415 for the H8 subtype, which

has an average within-subtype dissimilarity of 6.3%. Degenerate primers were not

needed by PrimerHunter when designing primer pairs based on Avian Influenza

originating from North America. We expect that degenerate primers will become

useful when designing discriminative primer pairs based on world-wide subtype

isolates, and we plan to experiment with degenerate primers in the future.

In order to assess the specificity of these primers we tested 3 primer-pairs de-
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Figure 2.5: ∆Ct for triplicate Q-PCR reactions performed with H3-, H5-, and
H7-specific primer pairs at ten different dilutions of on- and off-target templates.
Lines connect triplicate means at each dilution. The legend in each graph indicates
the color for the primer (numerator) and target (denominator) combination.
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signed to amplify HA fragments from H3, H5, and H7. To avoid the possibility of

contaminated or non-clonal primary viral samples, fragments of the HA gene from

one isolate of each subtype were cloned into a plasmid vector. This allowed us to

test both the specificity of the PrimerHunter primers on defined on- and off-target

sequences, and to assess the performance of the primers over a very large range

of template concentrations. We found that in each of these experiments, Primer-

Hunter primers selectively amplified the targeted HA subtype over 5-7 orders of

magnitude of target concentrations and that the target sequence was first detected

at 104-106 fold lower concentrations than non-target templates. When template

concentrations of both targets are raised to detectable levels, the target is typically

amplified to concentrations > 215 fold greater than the off-target sequence.

In a typical field or clinical assay, target and off-target nucleic acid sequences

are likely to be present at low concentrations. In the case of retroviruses such

as influenza, the target nucleic acid will be viral RNA and any PCR assay will

perforce be preceded by a reverse transcription (RT) step resulting in a linear

DNA template. While the sensitivity of such an assay will be heavily dependent

upon the efficiency of the RT step, we have shown that PrimerHunter primers are

functional and specific under a wide range of template concentrations and thus

are likely to be robust under a variety of experimental conditions including viral

subtyping by RT-PCR in the clinic and in the field [14, 88, 101, 103].

By default, PrimerHunter seeks to select primer pairs predicted to amplify all

target sequences and none of the non-target sequences under specified reaction

conditions. When targets exhibit extremely large dissimilarity and such primer

pairs cannot be found, PrimerHunter automatically seeks and reports a small set

of primer pairs that collectively amplify all targets and none of the non-targets.

If the number of primer pairs required to cover all targets is large, the pairs may

need to be portioned into multiple multiplex PCR reactions due to limitations on
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the number of primers that can be used in a single reaction.

Complete classification of unknown viral samples into subtypes can be achieved

by using PrimerHunter to design a specific primer pair (or set of primers) for

each subtype, then running n parallel PCR reactions where n is the number of

subtypes. The number of PCR reactions can be further reduced by designing

primer pairs specific to sets of subtypes (e.g., superclades in the phylogenetic tree).

By employing such non-specific primer pairs and group testing methods similar to

those in [24] the number of reactions can potentially be reduced to log n, and we

plan to explore such methods in future work.

26



Chapter 3

Towards accurate expressed

variants detection and genotyping

on whole transcriptome

sequencing1

Second generation sequencing technologies have significantly increased our knowl-

edge about the structure and amount of variation within and among human genomes.

After publication of the first two human genome sequences [19, 51] and the estab-

lishment of the human reference genome [45], sequencing technologies based on

production of massive amounts of short reads have enabled completion of a grow-

ing number of individual genomes within the last two years, including two cancer

samples (See [86] for a review of current achievements and challenges). Drops

in sequencing costs will allow research groups like the thousand genomes project

(http://www.1000genomes.org/) to establish a database of thousands of individ-

ual genomes from different human populations in the near future.

1The results presented in this chapter are based on joint work with I. I. Mandoiu and P.
Srivastava
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As DNA sequencing has been used to get near to complete catalog of vari-

ants and individual genotypes, sequencing of mRNA transcripts (RNA-Seq) is be-

coming the method of choice to understand the functional implications of genetic

variability [60, 91, 94] and to study highly variable genomes like cancer tumors

[18, 63, 92, 95]. RNA sequencing promises to be an important source of informa-

tion to understand the effect of genetic variation on regulation mechanisms and

to establish causal relationships between mutations and diseases. For cancer re-

search, comparisons between different RNA-Seq experiments on normal tissues and

tumors can provide the information needed to discover driver mutations or to find

new targets for therapies [58].

RNA-seq introduces novel data analysis problems [21]. First, the DNA to

mRNA translation mechanism includes the junction of separate regions called ex-

ons delimited by splicing sites. This makes the default usage of tools for mapping

of DNA reads to the reference genome like Maq [53] or Bowtie [46] not suitable for

finding the right location of reads spanning splicing sites. Different methods based

on spliced alignments have been proposed to identify splicing sites and try to as-

semble full transcripts, at the cost of computational resources [11, 61, 64, 94, 104].

But even if this problem is solved, differences in transcription levels introduce un-

equal coverage depths in the sequencing data making it difficult to identify variants

in regions with low expression levels. One way to overcome this difficulty is to se-

quence both genomic DNA and mRNA and identify the variants from the genomic

DNA reads using standard methods. However, if the interest is in expressed vari-

ants, it is more cost effective to identify them directly from the mRNA reads using

bioinformatics approaches [17].

In this chapter we present a strategy for accurate and efficient mapping of

mRNA reads, and a new method for single nucleotide variants (SNV) detection and

genotyping. To improve the success rate and accuracy of read mapping, we map
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mRNA reads against both the reference genome used by the UCSC browser [77]

and the consensus coding sequences (CCDS) database [74] and introduce a rule set

to combine mapping results. We also present a bayesian model for SNV detection

and genotyping, that calculates for each locus conditional probabilities for each of

the ten possible genotypes given the allele calls and their quality scores and then

chooses the genotype with highest posterior probability based on the Bayes rule.

Unlike other bayesian methods [53, 54], we keep calls for the four possible alleles

and we do not apply a separate model to test heterozygosity. We instead assumme

independence among the reads and try to fully exploit the information included in

the base quality scores.

We performed validation of new and existing methods by reanalyzing publicly

available Illumina mRNA reads taken from blood cell tissue of an individual in the

CEU population of the International Hapmap project [20]. We used as gold stan-

dard more than three million validated SNP genotypes available in the Hapmap

database. Our results indicate that the combined mapping strategy yields im-

proved genotype calling accuracy compared to performing genome or CCDS map-

ping alone and that our SNV detection and genotyping method is more sensitive

than existing methods for equal levels of specificity. We also show how sensitivity

and specificity are affected by commonly used data curation strategies like reads

trimming, filtering of copies to correct for variable transcription levels and PCR

artifacts and allele coverage thresholds.

3.1 Materials and Methods

3.1.1 Mapping strategy for mRNA reads

Mapping mRNA reads against the reference genome using standard mapping pro-

grams such as Bowtie [46] or Maq [53] does not require gene annotations but leaves
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reads spanning exon junctions unmapped. Spliced alignment methods such as [11]

could theoretically overcome this difficulty but in practice they are computationally

intensive and not well suited for very small read lengths. On the other hand, map-

ping against a reference transcript library like the Consensus Coding Sequences

Database (CCDS) [74] allows to recover reads spanning known splicing junctions

but fails to recover reads coming from not annotated genes.

We decided to map reads both against the reference genome and CCDS tran-

scripts and to implement a custom rule set for merging the two resulting datasets.

We implemented two approaches that we called hard merging and soft merging.

For hard merging, we require unique alignments against both reference sequences

and agreement between them while in soft merging we relaxed the uniqueness

constraint by requiring a unique alignment to at least one reference and keeping

that alignment. For both approaches we keep reads that map uniquely to one

reference and do not map to the other one. Table 3.1 summarizes the decision

rules applied to each read by each approach, depending on how the read mapped

on each reference and on the concordance between the two alignments. For tran-

scripts mapping, multiple alignments can be reported for some reads not because

there exist different genomic locations where the read could come from but because

the same genomic location is shared by many transcripts. Our merging approach

checks for each read with multiple alignments if that is the case, and if so, we keep

the best alignment as unique.

3.1.2 SNV detection and genotyping

To discover expressed SNVs in the sample we experimented with SOAPsnp [54]

and Maq [53], which are two widely used bayesian methods implemented in the

SAMtools package [52]. We also tried the SNV detection method for mRNA reads

called PMA[15], which is based in careful filtering of alignmed reads and a binomial

30



Genome CCDS Agree? Hard Soft
Mapping Mapping Merge Merge
Unique Unique Yes Keep Keep
Unique Unique No Throw Throw
Unique Multiple No Throw Keep
Unique Not Mapped No Keep Keep
Multiple Unique No Throw Keep
Multiple Multiple No Throw Throw
Multiple Not Mapped No Throw Throw
Not Mapped Unique No Keep Keep
Not Mapped Multiple No Throw Throw
Not Mapped Not Mapped No Throw Throw

Table 3.1: Decision rules for mapped reads merging. Unique, Multiple and Not
Mapped mean that the read was respectively mapped uniquely, mapped in multiple
places or not mapped at all to the corresponding reference.

test equivalent to set up a minimum coverage threshold to make a varian call

relative to the total locus coverage. The trade between sensitivity and specificity

of this method is controled by the maximum p-value required to discard the null

hypothesis of absence of a variant allele. In terms of outcome, both SOAPsnp

and Maq have the apriori advantage of not just point out the loci with alleles

different than the reference but also infer which is the most likely genotype of each

locus. The bayesian methods are also able to calculate for each locus both the

probabilities of having an allele different than the reference and of the genotype

itself.

We also implemented a custom bayesian method named SNVQ which calculates

for each locus the posterior probability of each of the ten possible genotypes given

the reads. Given a locus i, let Ri be the set of mapped reads spanning this locus.

In all bayesian methods, the posterior probability of each genotype is calculated

from its prior and conditional probabilities by using the bayes rule:
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P (Gi|Ri) =
P (Ri|Gi)P (Gi)

P (Ri)

The main difference between models lies in the way conditional probabilities

are calculated [23]. Both Maq and SOAPsnp use a different model to calculate

probabilities of homozygous and heterozygous genotypes. Maq uses a binomial

distribution on the alleles having the two highest counts while SOAPsnp uses a

rank test to determine heterozygosity. SOAPsnp also assumes as prior information

that the homozygous reference genotype is the most likely one and calculates con-

ditional probabilities based on Illumina specific knowledge about the reads [54].

We decided instead to use the same assumptions to calculate conditional probabili-

ties for homozygous and heterozygous genotypes. Assuming independence between

the reads the conditional probability of Gi can be expressed as a product of read

contributions as follows:

P (Ri|Gi) =
∏

r∈Ri

P (r|Gi)

For a mapped read r ∈ Ri let r(i) be the base spanning locus i and εr(i)

be the probability of error sequencing the base r(i), which we estimated from

the quality score q(i) calculated during primary analysis using the Phred formula

εr(i) = 10−q(i)/10 [29]. We discarded allele calls with quality scores zero and one. Let

Hi and H ′
i be the two real alleles in the locus i, or in other words, let Gi = HiH

′
i.

The observed base r(i) could be read from either Hi or H
′
i. If there is an error in

this read, we assume that the error can produce any of the other three possible

bases to be observed with the same probability, so the probability of observing
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a base r(i) given than the real base is different is εr(i)/3 while the probability of

observing r(i) without error is 1− εr(i).

Assumming a heterozygous genotype Gi = HiH
′
i, Hi 6= H ′

i if the observed

allele r(i) is equal to Hi (H
′
i) it could be due to two possible events. Either r(i)

was sampled without error from the haplotype H (H ′) or r(i) was sampled from

the haplotype H ′ (H) but an error turned it to be equal to Hi (H
′
i). Assuming

that both haplotypes are sampled with equal probability, the first event happens

with probability (1 − εr(i))/2 while the second happens with probability εr(i)/6.

Since for homozygous loci, the probability of observing each possible base does not

depend on the haplotype from which the reads were sampled, the following equation

summarizes how to calculate the probability of r for each possible genotype:

P (r|Gi = HiH
′
i) =































1− εr(i) , if Hi = H ′
i = r(i)

εr(i)
3

, if Hi 6= r(i) ∧H ′
i 6= r(i)

1
2
−

εr(i)
3

, otherwise

We complete the model by calculating prior probabilities based on the expected

heterozygosity rate h in the following way:

P (Gi = HiH
′
i) =















1−h
4

, if Hi = H ′
i

h
6

, otherwise

In our experiments, we assumed a heterozygosity rate h = 0.001. Finally, a

variant is called if the genotype with highest posterior probability is different than

homozygous reference. In the next section we show a comparison of results among

these methods by reanalyzing a publicly available dataset.
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3.1.3 Software and performance issues

We implemented the merging methods and SNVQ in Java 1.6 and we packed both

programs with a few additional utilities in a single jar file. In order to enable

integration with other analysis tools we chose the SAM format [52] both as input

and as output format for the code implementing the mapping strategies. We also

sorted alignments by chromosome and absolute position to enable efficient process-

ing in the subsequent modules and fast merging with results from different lanes

if available. SAM files produced by the merging module can be used directly as

input for the SAMtools package [52] to produce run statistics, pileup information,

and for variants detection. We recommend to run the merging process lane by lane

because it needs to load all unique alignments in memory in order to sort them at

the end of the process. We used space efficient structures that allow us to process

more than ten million reads in a few minutes, using up to 16Gb of memory. More

reads can be processed at the expense of memory. The code implementing SNVQ

is able to receive as input either aligments in SAM format or pileup information in

the format described in the SAMtools package. The pileup format is recommended

because it enables faster processing and reduces the memory requirements. Our

experiments indicate that SNVQ is able to process a whole transcriptome pileup

file in about 20 minutes using a single processor and up to 4Gb of memory. The

open source code released under the GNU General Public License, is available at

http://dna.engr.uconn.edu/software/NGSTools/.
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3.2 Results

3.2.1 Methods validation with mRNA reads

We tested the performance of the mapping calling strategies and SNV detection

methods on 33 bp long publicly available Illumina mRNA reads generated from

blood cell tissue of the Hapmap individual NA12878 [20] (NCBI SRA database

accession numbers SRX000565 and SRX000566). We used Bowtie [46] to map

the reads against both the hg19 reference genome available at the UCSC genome

database [77] and the CCDS database [74]. Table 3.2 shows results in terms of

reads uniquely mapped using each considered method. We used as gold standard

for comparison purposes 3, 371, 552 Hapmap genotype calls for NA12878 on known

SNPs of the CEU population. We classified them by their genotype as 2, 008, 415

homozygous reference, 802, 472 heterozygous and 560, 665 homozygous non refer-

ence.

Sample Raw Transcripts Genome Hard Soft
Id Reads Mapping Mapping Merge Merge
SRR002052 12.6 2.9 4.3 4.5 4.7
SRR002054 12.9 3.9 5.7 5.9 6.2
SRR002060 25.7 4.4 6.7 7.0 7.3
SRR002055 11.4 3.7 5.5 5.6 5.9
SRR002063 23.0 3.5 5.6 5.8 6.0
SRR005091 13.9 3.3 4.9 5.0 5.2
SRR005096 14.4 0.6 1.0 1.1 1.1
Total 113.9 22.4 33.8 34.9 36.4

Table 3.2: Number of initial reads (Millions), and reads after mapping to the
reference genome and to the CCDS transcripts and selecting unique alignments
either separately or using the merging strategies presented in the methods section

We measured accuracy of genotype calling for each method in the following

way: We defined as true positive a correctly called heterozygous or homozygous

non reference SNP and as false positive an incorrectly called homozygous SNP.

We did not consider as error a heterozygous SNP called homozygous or not called
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because this can be due to lack of expression of one or the two alleles. We consider

that one method is more accurate than other when it is able to detect more true

positives for the same amount of false positives, or conversely if it is able to detect

the same amount of true positives with less false positives.

To assess the accuracy of our mapping strategies, we ran SNVQ on the datasets

of unique reads after transcripts mapping, after genome mapping and after the

two merging strategies explained in the methods section. Since after transcripts

mapping it is only possible to detect SNVs in transcripts included in the CCDS

database, we filtered out for this comparison the Hapmap SNPs in regions different

than the exons in CCDS. Figure 3.1 shows that our merging strategies produced

more accurate results than just genome or transcripts mapping for this dataset.

Although in this comparison it seems like genome mapping could be more sensitive

for some specificity levels, we confirmed by performing the same comparison on the

full dataset of Hapmap SNPs and also calling variants using SOAPsnp and Maq

that merging methods dominate for all levels of specificity (See supplementary

material). Since we could not find a clear sensitivity advantage for the soft merge

method over hard merging, we decided to keep hard merge as our method of choice

for further experiments.

In order to perform comparisons between bayesian methods and PMA, which

just performs SNV detection, we redefined our accuracy measures as follows: We

defined as true positive a detected heterozygous or homozygous non reference SNP,

no matter which is the actual genotype call, and as false positive a homozygous

reference SNP marked as having a variant. The main difference between the two

measures is that calling heterozygous a homozygous not reference SNP is a true

positive for SNV detection, because the variant was detected, but a false positive

for genotype calling because an inexistent reference allele is called. Figure 3.2

shows that bayesian methods performed better for SNV detection purposes than
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Figure 3.1: Accuracy comparison among the datasets of reads aligned uniquely to
the reference genome, reads aligned uniquely to the CCDS transcripts, hard merged
alignments, and soft merged alignments. This comparison was done over 41,961
Hapmap SNPs in CCDS exons using SNVQ for SNV detection and genotyping

PMA and that SNVQ was more accurate than SOAPsnp and Maq for different

thresholds on the probability of having an allele different than the reference. We

also compared the genotyping accuracy among the three bayesian methods. Figure

3.3 shows that SNVQ also achieved better accuracy than both SOAPsnp and Maq

on this dataset for different specificity levels obtained by varying the threshold on

the genotype probability reported by each method. We confirmed this behavior on

the dataset of reads mapped uniquely to the genome reference and even after ap-

plying some of the data curation mechanisms presented below (See supplementary

material).

3.2.2 Comparison of strategies for data curation

In practice SNV detection is the problem of separating allele calls that are different

from the reference because of sequencing errors from calls that are different from

the reference because they were sampled from a variant locus. With the current

sequencing error rates, if sequencing errors were randomly distributed, it is not
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Figure 3.2: Accuracy comparison among four different SNV detection methods on
the Hard Merged dataset. A total of 3,371,552 Hapmap SNPs with known geno-
types for the individual NA12878 were used as gold standard for comparison. The
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Figure 3.3: Accuracy comparison among three different bayesian methods for geno-
typing on the Hard Merged dataset. A total of 3,371,552 Hapmap SNPs with
known genotypes for the individual NA12878 were used as gold standard for com-
parison
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Figure 3.4: Percentage of aligned reads with a mismatch with the reference genome
per read position from 5’ end to 3’ end

difficult to show that any of the discussed methods would have high accuracy.

Unfortunately, each sequencing technology has different error patterns which can

break the randomness assumption. In this section we describe three common issues

related with Illumina sequencing and we show how common ways to solve these

issues performed in our testing data.

One well known consequence of the way Illumina reads are produced is that

base calling errors tend not to be totally random but they tend to accumulate

toward the 3’ end of the reads [10]. To test if this effect was happening in our

dataset, we developed a module which calculates for a set of aligned reads the

mismatches distribution per read position from the 5’ to the 3’ end. In absence of

biases, this distribution should be close to uniform. However, as shown in Figure

3.4, the proportion of mismatches increases towards the 3’ end of the reads.

After observing this pattern in the mismatches rate, we decided to apply a filter

on the aligned reads by disregarding the first base and the last 10 bases of each

aligned read for SNV detection. Although this trimming strategy is equivalent to

throw away one third of the aligned bases for this dataset, figure 3.5 shows that

this correction improves the specificity of the final calls without loosing sensitivity.

Trimming aligned reads instead of raw reads is better because the bases sampled
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Figure 3.5: Accuracy comparison among three different strategies to filter infor-
mation for SNV detection and genotyping on the Hard Merged dataset. Results
for the dataset without filters are included as reference

correctly in the trimmed region are useful to locate uniquely the place where the

read must be aligned.

Another common source of false positive results is PCR amplification artifacts

which produce large copies of the same read introducing biases for variants de-

tection [43]. One usual way to deal with this issue is to allow just one read to

start at each possible locus. This filter eliminates artificial high coverages on every

locus, which is apriori desirable not just for disregarding reads coming from PCR

artifacts but also in mRNA sequencing to normalize for biases produced by vari-

able transcription levels. The main drawback of this strategy is that it can throw

away a lot of information affecting sensitivity. An intermediate approach consists

on allowing a small number x of different reads per start locus as it is described

in [15]. We implemented the two filtering strategies and we compared the results.

Figure 3.5 shows that selecting just one read per start locus is indeed too restric-

tive for this dataset but the three reads filter of [15] did not affect sensitivity and

even improved it for high specificity levels. Although the improvement is not as

consistent as the one obtained by trimming aligned reads, we consider that this

40



8000

10000

12000

14000

16000

18000

No Filter

Two lanes

Three Lanes

Four Lanes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300

No Filter

Two lanes

Three Lanes

Four Lanes

Five Lanes

Six Lanes

All Lanes

Variant coverage ! 2

Figure 3.6: Accuracy comparison among different thresholds on the number of
lanes where each alternative allele must be seen. Results for the SNPs without
filtering and with a simple coverage minimum threshold of at least two reads per
alternative allele are also included as reference

filter is worth to be used in general to disregard coverage biases without loosing

sensitivity.

Finally, to control for potential lane specific biases, since the same sample is

normally sequenced in many lanes to increase coverage, one potentially useful rule

to increase specificity is to require each called variant allele to be seen in at least

x different lanes. We analyzed reads coming from seven different lanes and hence

we were able to observe how sensitivity and specificity are affected by this kind of

filter. Figure 3.6 shows that after requiring a minimum of three lanes out of seven,

the loss of sensitivity is larger than the improvement in specificity. We compared

also the simple rule of keeping variants passing the threshold of observing at least

two times the non reference allele with the more restringent rule of observing the

non reference allele in at least two different lanes. We found that the first filter

produced slightly better accuracy for this dataset.
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3.2.3 Accuracy for different expression levels

One of the most important facts to take into account while sequencing messenger

RNA is that transcripts are sampled according with their relative expression levels.

Hence, it is expected to have better genotyping accuracy for variants in transcripts

with higher expression levels. To check if that was the case for our dataset we

calculated RPKM (Reads per Kilobase per Million Reads) values for every exon in

the CCDS database according with the hard merged alignments. For each exon,

we counted the number of reads that span it partially or totally and then we

normalized the count, to account for different exon lengths, dividing it by the size

of the exon in kilobases. We finally divided that number by the total number of

reads in millions (34.9 for the hard merged dataset). We defined the RPKM of

each heterozygous and homozygous non reference Hapmap SNP in a known exon

as equal to the RPKM of the exon where it belongs. We finally took bins on the

RPKM values and grouped variants according with their bin membership to check

if there was any relation between SNV detection accuracy and the RPKM values.

Figure 3.7 shows that, as expected, the sensitivity is very low for variants with

low RPKMs. The average RPKMs for the second and the second to last bins are

2.6 and 70.23 respectively, so, a direct estimation based on these results suggests

that the sample should be sequenced approximately 27 more times to be able to

detect more than 80% of the variants for all exons with RPKMs greater than 1.

The total number of mapped bases after hard merging is 1.15Gb, so this estimate

corresponds to 31Gb in mapped bases, which is less than one third of the number of

mapped bases needed to achieve similar percentages for genomic DNA [98]. Larger

read lengths increase the percentage of mapped bases for the same initial coverage

lowering down this estimate.
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different bins on the RPKM values of the CCDS exons

3.3 Conclusion

Second generation sequencing of messenger RNA is becoming the method of choice

to investigate the behavior of human cells and to reveal the functional effects of

variation. In this paper we performed a comparison among different commonly

used mapping, SNV detection and genotyping strategies with the aim to select the

most effective methods to identify, as accurately as possible, the expressed single

nucleotide variants in a sample from mRNA sequencing data. We also introduced a

mapping strategy for mRNA reads which fully utilizes the information contained in

the reference sequence and in a database of known transcripts like CCDS. Finally,

we presented a bayesian model for SNV detection and gentyping called SNVQ that

seeks to improve genotype calls by fully exploiting the information contained in

base quality scores.

The availability of the Hapmap genotypes database and the short reads archive

(SRA) allowed us to make direct accuracy assessments of different SNV detection

methods and mapping and filtering strategies. Our experiments indicate that the

double reference mapping and merging strategy yields to improved accuracy on
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SNV calls compared with methods based on mapping to a single reference file.

We also observed that SNVQ achieved improved accuracy over existing models.

We tested different data curation and filtering strategies and we found that reads

trimming after mapping improved the accuracy for our testing dataset and that

controling for highly covered regions as described in [15] does not significantly

affect sensitivity.

As future work, we plan to make further improvements in genotype calling by

adapting our model to differential allelic expression events [95]. We also plan to use

our methods on mRNA from cancer tumors to generate the variants information

needed to look for new targets for different kinds of treatments like immunotherapy.
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Chapter 4

ReFHap: A Reliable and Fast

Algorithm for Single Individual

Haplotyping1

DNA sequencing is at the cornerstone of current advances in genetics, enabling

breakthroughs in medical and biological research [10]. The first complete human

genome sequence was in fact a “representative” genome sequence based on the DNA

of several individuals [45]. Advances in sequencing technology and computational

methods are resulting in increasingly cost-effective, high-throughput sequencing,

making the sequencing of genomes from individuals possible [10, 51, 62, 85, 98, 100].

This allows the identification of common patterns of human genetic variation be-

tween individual genomes that may affect health, disease, and individual responses

to medications.

Human somatic cells are diploid, containing two sets of chromosomes, one set

derived from each parent. Differences between the two copies of each chromosome

1The results presented in this chapter are based on joint work with T. Huebsch, G. McEwen,
E. Suk and M.R. Hoehe [27]. c©2010 Association for Computing Machinery, Inc. Reprinted by
permission. See the original version at http://doi.acm.org/10.1145/1854776.1854802
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are called heterozygous variants and for each variant the sequences that differ

are called alleles. Most of the variation comes in form of single nucleotide variants

(SNV) where the alleles are base pairs that differ between the two copies. However,

alleles can also be identified in other types of variations, for example, structural

variations and insertion and deletion events (indels).

The process of grouping alleles that are present together on the same chromo-

some copy of an individual is called haplotyping [35, 78]; reconstruction the two

sequences of each chromosome is the most advanced type of haplotyping. Besides

getting the full structure of the genome, complete haplotype sequences enable im-

proved predictions of changes in protein structure produced by mutations in coding

regions and increase power for genome-wide association studies [83]. It will also

allow insights into the complex interplay of alleles of genes and their regulatory

elements.

At present, published sequences may be considered “mixed diploid” [36]; be-

cause they actually represent a composite of the two underlying haploid sequences.

Although each study presents preliminary haplotyping results, complete construc-

tion of the ”true” molecular sequences for each of the chromosome pairs remains

a challenge towards full genome completion [51, 62]. This is mainly due to the

fact that current sequencing technologies do not provide enough information to

reliably separate alleles originating from each of the two copies of a chromosome

unless parental or population information is available [6, 97, 102]. However, this

situation is likely to change in the near future with improvements in second-

generation sequencing methods such as longer read lengths, mate-pairs and in-

creased throughput, and also the development of new experimental approaches.

This work is part of a currently productive approach towards molecular haplotype

determination which relies upon fosmid-based sequencing [13, 40]; Details about

resources and approaches we have developed towards this aim are available at
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http://www.molgen.mpg.de/~genetic-variation/Projects.html.

Algorithms for haplotyping can be grouped in three categories depending on the

type of source information: (i) population information, (ii) parental and individual

genotype information and (iii) evidence of co-occurrence of alleles. Population

information takes genotype information for a group of individuals known to come

from the same population and uses an evolutionary model to phase all genotypes at

the same time [34, 84, 89] whereas parental and individual genotype information

enables alleles to be grouped into loci where either parent is homozygous and

hence there is no doubt on deciding which allele comes from which parent [12,

59]. A combination of these approaches is used by the International HapMap

Project [20] to generate haplotypes for each population. These two categories

have the advantage that they require genotype information which is easy to acquire

for certain loci. However, acquiring parental or population information may not

feasible for all heterozygous variants of the individual of interest. In algorithms

based on evidence of the allele co-occurrence, this information has so far come

from reads or mate-pairs spanning at least two heterozygous variant loci but in

general the evidence can come from any source. DNA sequences showing co-

occurrence of two or more alleles are usually called fragments. The computational

problem of haplotyping based on this kind of information is called single individual

haplotyping and many formulations and algorithms have been proposed to solve

it [78, 70]. Although absence of real data has been always an issue, the problem

has been carefully studied from both theoretical and practical points of view and

simulated data has been used to make comparisons between different approaches

[6, 97, 102]. The algorithm presented here is a contribution to this approach.

Previous studies on single individual haplotyping have established different

problem formulations seeking for different optimization objectives. Computational

properties of these formulations have been studied and it has been shown that most
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of them are NP-hard [78, 70]. Proposed algorithms can be divided into exact, ge-

netic, probabilistic and heuristic. Due to the NP-hardness of the formulations,

exact algorithms require an exponential dependency on at least one input param-

eter so they do not scale well as the size of the input gets large [97]. Genetic

and probabilistic algorithms have the advantage of searching within a large set of

possible haplotypes at the expense of time [7, 97]. Heuristic algorithms try to find

efficiently a haplotype as close to the optimum as possible according to a specific

optimization criterion. One of the most accurate of these algorithms is HapCUT

[6], which starting from a random solution, builds a graph and uses max-cut to

find loci that should be flipped to improve the current haplotype based on the

input data. Our experiments indicate that although the algorithm is reliable, its

running time is too large for whole genome haplotyping.

We present a novel problem formulation for single individual haplotyping and a

heuristic algorithm called ReFHap. Like in [6] our formulation allows us to reduce

the problem to max-cut but here we design a graph that enforces separation of

fragments rather than variant loci. Our approach initially attempts to find the cut

that groups together fragments coming from the same copy of each chromosome to

subsequently build haplotypes consistent with the best cut found by our heuristic

algorithm. We show through extensive simulation experiments that ReFHap rep-

resents an improvement in running time compared to previous algorithms without

loss of accuracy. Simulations indicate that ReFHap is more accurate and scalable

than the model of [102] and that it has comparable accuracy and higher efficiency

than HapCUT [6]. Moreover, we tested both ReFHap and HapCUT with prelim-

inary real data from fosmid-based sequencing. Results indicate that ReFHap is

able to efficiently perform whole chromosome haplotyping with good accuracy.
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4.1 Methods

4.1.1 Problem Formulation

Informally, the objective of single individual haplotyping is to reconstruct the

two haplotypes of an individual from a set of partial readings called fragments.

Each fragment provides evidence of coocurrance of two or more alleles of different

SNPs in the same haplotype. The usual strategy to predict the true haplotypes

is to define a real function on the input data and an arbitrary pair of haplotypes,

hoping that the real haplotypes will correspond with the result of an optimization

objective on this function.

As in previous works [6, 70], we represent the input of the problem as a matrix

M of size mxn where m is the number of fragments and n is the number of variant

loci. Each row of M encodes the information for one fragment as a string on the

alphabet {0, 1,−}. Here, M [i, j] 6= − means that fragment i calls allele M [i, j]

in locus j while M [i, j] = − means that fragment i does not cover locus j. This

problem definition inmposes a restriction of at most two alleles per locus, which

is sufficient for most of the variation in many diploid organisms. There is no

restriction on the type of variations considered as long as they can be mapped to

a specific locus and the two alleles can be identified. Usually, the reference allele

is encoded as a zero and the alternative allele as a one but this is not required by

ReFHap. As in [6] ReFHap assumes that all input loci are heterozygous. If this

is not the case, a preprocessing step like the one in [70] can be implemented to

call genotypes and remove homozygous loci and fragments covering at most one

heterozygous locus.

Given two strings f1, f2 of length n, we say that f1 = f2 if and only if for every

1 ≤ j ≤ n, f1[j] = −, f2[j] = − or f1[j] = f2[j]. In absence of errors, the problem

reduces to find two haplotypes h, h̄ such that every fragment fi is equal to either
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h or h̄ according with the definition of equality given above. This problem can be

solved just by separating the fragments in two groups such that for any pair of

fragments f1, f2 inside a group f1 = f2 and then building the haplotypes by taking

the consensus allele for each locus inside each group. This is equivalent to solve

max-cut on a graph G = (V,E) where V is the set of fragments and e = 〈f1, f2〉

if and only if f1 6= f2. In absence of errors, G is bipartite and hence max-cut can

be solved in polynomial time for G. However, the solution is not unique if the

graph is not connected. The connected components of G are called in this setting

haplotype blocks. The number of these blocks affects the quality of the output

haplotypes because in absence of additional inputs, there is no information to

decide how to connect two consecutive blocks and hence the probability of joining

them consistently is 0, 5.

If fragments contain errors, G may not be bipartite anymore and conflics are

created between fragments. A simple example of a conflict happens when there are

two loci j1, j2 covered by two fragments f1, f2 for which f1[j1] = f2[j1] and f1[j2] 6=

f2[j2]. Clearly one of the entries must be wrong if both loci are heterozygous.

Different strategies to remove conflicts lead to optimization objectives studied in

previous works like finding the minimum number of fragments to remove (MFR),

the minimum number of loci to remove (MSR) or the minimum number of allele

calls to correct (MEC). Computational properties of these problems have been

analyzed by [78, 70] and several algorithms have been proposed for MEC [6, 33,

97, 101]. If weights are available for each allele call on each freagment, the model

called (WMLF) described by [102] tries to minimize the sum of weights of corrected

alleles.

Our approach is to reduce the problem to max-cut as in the case without errors

but adding weights to the edges of G in such a way that the cut that maximizes the

sum of the weights of crossing edges resembles as accurate as possible the actual
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origin of each fragment. Weights are calculated based on the following scoring

scheme. Given two allele calls a1, a2, the score s(a1, a2) is given by:

s(a1, a2) =































−1 if a1 6= − ∧ a2 6= − ∧ a1 = a2,

1 if a1 6= − ∧ a2 6= − ∧ a1 6= a2,

0 otherwise.

Now, given two rows i1, i2 of M , the score s(M, i1, i2) is just the sum of the

contributions for each pair of alleles at each locus:

s(M, i1, i2) =

n
∑

j=1

s(M [i1, j],M [i2, j])

Note that if two fragments do not cover any common locus then their score is

zero but the opposite is not necessarily true. Given a fragments matrix M we can

define a cut of fragments as a set of rows I ⊆ {1, . . .m}. Given a matrix M , the

score of the cut I is given by:

s(M, I) =
∑

i∈I

∑

k/∈I

s(M, i, k)

We use this scoring function to state the following problem definition:

Maximum Fragments Cut (MFC): Given a mxn matrix M of m fragments

covering n loci, find a cut I such that s(M, I) is maximized.

Theorem 1 Maximum Fragments Cut is NP-Hard.

Proof. Max-Cut can be reduced to MFC in the following way. Given an instance

G = (V,E) for max-cut, build M by creating a row for each element of V and for

each edge 〈i1, i2〉 ∈ E make a column j and set M [i1, j] = 0, M [i2, j] = 1 and

M [k, j] = − for every row l different than i1 or i2. The score s(M, i1, i2) for any
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pair of rows is equal to 1 if and only if 〈i1, i2〉 ∈ E otherwise, it will be zero because

the two rows cover at most one common locus. Now, given a cut on G represented

by a subset V ′ ⊆ V , the weight of this cut will be equal to the score s(M, I) of the

cut I made by selecting the rows corresponding with the vertices in V ′. Hence, any

algorithm that can calculate the maximum of the function s(M, I) will calculate

also the max-cut value for G and conversely, any algorithm that can calculate the

max-cut value for G will also calculate the maximum of the function s(M, I). �

4.1.2 Algorithm

To solve MFC we build a graph G = (V,E, w), where V = {1, . . . , m}, 〈i1, i2〉 ∈ E

if and only if s(M, i1, i2) 6= 0 and for all e = 〈i1, i2〉 ∈ E, w(e) = s(M, i1, i2).

Then, we solve the weighted version of Max-Cut on G. We implemented a heuristic

algorithm similar to the one used by [6] that iterates over the edges and for each one

builds an initial greedy cut and then tries to improve it through local optimization.

The main steps are the following:

ReFHap(M, k)

1. Build G = (V,E, w) from M

2. Sort E from largest to smallest weight

3. Init I with a random subset of V

4. For each e in the first k edges of E

(a) I ′ ← GreedyInit(G, e)

(b) I ′ ← GreedyImprovement(G, I ′)

(c) If s(M, I) < s(M, I ′) then I ← I ′
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The procedure GreedyInit finds a cut I ′ in which e crosses from I ′ to V \ I ′

and the procedure GreedyImprovement tries to improve I ′ by local optimization.

The parameter k controls how many edges are considered for the initialization step

and hence allows to make a compromise between accuracy and speed. Unlike the

algorithm in [6] in which initial edges are chosen at random, we decided to sort

the edges because edges with large weight are more likely to be part of the best

cut. The maximum value that k can take is |E| but we can achieve good accuracy

in many cases with a small value of k. In our current implementation k =
√

|E|.

To show how we implemented the greedy procedures we need to expand the

score function to subgraphs. Given a graph G = (V,E, w) and two disjoint subsets

I1, I2 of V we define:

s(G, I1, I2) =
∑

i∈I1

∑

k∈I2

w(〈i, k〉)

and for each vertex v ∈ V \ (I1 ∪ I2) we can define:

s(G, I1, I2, v) = max(s(G, I1 ∪ {v}, I2), s(G, I1, I2 ∪ {v}))

As in [6], to avoid high negative edges crossing the cut, we build a cut from an

input edge 〈i1, i2〉 by initializing I1 with i1 and I2 with i2 and then adding either

to I1 or I2 the edge that locally maximizes s(G, I1, I2, v):

GreedyInit(G, 〈i1, i2〉)

1. Init I1 ← {i1} and I2 ← {i2}

2. While I1 ∪ I2 6= V

(a) Find v ∈ V \ (I1 ∪ I2) maximizing s(G, I1, I2, v)

(b) If s(G, I1 ∪ {v}, I2) > s(G, I1, I2 ∪ {v}) add v to I1 else add v to I2
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3. return I1

For local optimization we implemented the classical greedy algorithm of [81],

which calculates for each vertex v ∈ I ′ the score s(G, I ′ \ {v}, V \ (I ′ \ {v})) and

for each vertex w /∈ I ′ the score s(G, I ′ ∪ {w}, V \ (I ′ ∪ {w})) and flips the vertex

with maximum score if it is larger than the current score s(G, I ′, V \ I ′). We also

implemented a local optimization step flipping edges rather than vertices, which is

equivalent to check the improvement after flipping every possible pair of vertices

at the same time. We iterate these two optimizations until neither of them can

achieve any improvement.

After finding the cut I, the algorithm uses the input matrix to find the haplo-

type h that minimizes the number of entries to be corrected assuming that rows

in I belong to h and rows in V \ I belong to h̄. Since we assume that all loci are

heterozygous, the output of ReFHap is just one haplotype h and h̄ is just the hap-

lotype obtained by flipping every allele call in h. The haplotype h can be inferred

by making a single traversal of M as follows:

1. For each column j

(a) Ij,0 ← {i : (i ∈ I ∧M [i, j] = 0) ∨ (i /∈ I ∧M [i, j] = 1)}

(b) Ij,1 ← {i : (i ∈ I ∧M [i, j] = 1) ∨ (i /∈ I ∧M [i, j] = 0)}

(c) If |Ij,0| ≥ |Ij,1| then hj ← 0 otherwise hj ← 1

2. output h

The complexity of this algorithm depends on the number of fragments m, the

number of different starting edges k, the maximum number of loci covered by a

single fragment and the maximum number of fragments covering a single locus,

which as in [102] we call respectively k1 and k2. First note that the maximum

degree of a vertex in G is bounded by k1(k2 − 1). To prove this note that one
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fragment f calls alleles for at most k1 loci. Each of these loci is covered by at most

k2 − 1 fragments different than f . Therefore, each locus contributes with at most

k2−1 edges to the vertex associated with f . In the worst case, there are no shared

edges between loci and then the total number of edges is k1(k2 − 1).

Since k1k2 is typically much smaller than m, the total number of edges of G is

O(mk1k2). The sorting step takes then O(mk1k2 log(mk1k2)) and, as shown below,

it is dominated by the iterations step. For fixed G, I1, I2 and v, s(G, I1, I2, v)

can be calculated just by inspecting the edges of v, so, for each of the k edges

considered, GreedyInit takes O(m2k1k2). Although the local optimization in theory

could take a time equivalent to the sum of the positive edge weights which would

be exponential on the input size, in practice the number of iterations is small

enough to be considered a constant, so the time needed for each local optimization

is O(mk1k2 + mk2
1k

2
2) = O(mk2

1k
2
2). The total time is O(k(m2k1k2 + mk2

1k
2
2)).

Comparing this result with the complexity of the algorithm designed by [102],

which includes an exponential dependency on k2, and the algorithms designed by

[6] and [33], which need at least O(mn2) time, we can predict that ReFHap will

perform faster especially as the number of loci covered by each fragment increases

and hence less fragments are needed to achieve the same coverage. In the next

section we will show simulation experiments confirming this hypothesis.

4.2 Results

4.2.1 Experimental Setup

We performed several simulation experiments to test the behavior of ReFHap under

a wide range of circumstances. We generated instances varying over five different

criteria: number of loci n, number of fragments f , mean fragment length l, error

rate e and gap rate g. For each instance, we created a random haplotype h of
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size n and then we created f fragments. For each fragment we selected its length

li drawing from a normal distribution centered at l and with standard deviation

equal to 1. We then selected its starting position j as a random integer in the range

from 1 to n− li+1. The fragment fi is then the substring of h starting at position

j with length li. We flipped the whole fragment with probability 0.5, assuming

that real fragments are equally likely to come from either of the two haplotypes.

Finally, we introduce errors by flipping each allele call of fi with probability e and

we also introduced gaps by deleting each allele call of fi, except for the first and

the last position, with probability g.

We performed one experiment for each combination of selected values of the

simulation parameters. For each experiment, we generated 100 random instances

following the procedure described above. We implemented ReFHap in Java 1.6

and we compared it with the public available implementation of HapCUT [6] and

with the implementation of the WMLF model kindly provided by the authors of

[102]. Both HapCUT and WMLF were implemented in C. We ran all experiments

on a RedHat Linux 64 bit server.

Before checking the performance of ReFHap we investigated how the number of

haplotype blocks changes for different number of fragments and fragment lengths.

As shown in section 4.1, the number of blocks heavily influences the quality of

the haplotype no matter which model is used to solve the problem. Figure 4.1

shows how as the fragment length increases, less coverage is needed to connect

every locus with each other. Although the simulation assumes that variants are

evenly distributed in the genome (in real organisms that is not always the case)

this result means that for the same coverage, few large fragments produce fewer

blocks than many short fragments.
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Figure 4.1: Number of blocks as a function of coverage for different fragment
lengths.
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4.2.2 Simulation Results

For each experiment we calculated means for three measures. The first one is

the Minimum Error Correction (MEC), which is the minimum number of changes

within the matrix to make it consistent with the answer haplotypes. This measure

divided by the total number of allele calls in the input matrix is a good estimator of

the allele calling error rate. The algorithm implemented in HapCUT assumes that

the true haplotype is the one that minimizes this measure. The second measure

is the switch error (SE) which is calculated by traversing the resulting haplotypes

from left to right and computing the number of times needed to jump from one

haplotype to its complement to reconstruct the real haplotype. Assuming absence

of genotyping errors, this is the true measure of quality for any solution. However,

this measure can not be calculated for real instances unless a gold standard hap-

lotype is known. For our simulations we can calculate the number of switch errors

because we know the true haplotype for each instance. The third measure is the

running time of the algorithm measured by running it on a single processor.

The upper panel of figure 4.2 shows the distribution of differences between the

WMLF model and ReFHap in MEC, switch errors and running time for experi-

ments varying coverage by increasing the number of reads and fixing the number

of loci to 200, the fragment length to 6 and with no errors or gaps. ReFHap con-

sistently produces lower MEC and switch errors. WMLF has a better runtime for

small instances but that changes when coverage increases and even after 10x, the

limit on the maximum coverage for one locus of 23 is often achieved. This limit is

required by WMLF because the algorithm has an exponential dependency on this

parameter.

The lower panel of figure 4.2 shows the distribution of differences between

HapCUT and ReFHap for the same criteria as above for experiments with the
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Figure 4.2: Distribution of differences between values reported by WMLF and
HapCUT and values reported by ReFHap for experiments varying coverage by
increasing the number of fragments. Markers above and below the mean correspond
to the mean plus and minus one standard deviaton respectively. The upper panel
shows the differences between WMLF and ReFHap in (a) MEC , (b) switch errors
and (c) running time. The lower panel shows the differences between HapCUT
and ReFHap in (d) MEC , (e) switch errors, and (f) running time
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same number of loci and fragment length but adding an error rate of 5% and a gap

rate of 10%. While the difference in switch errors between HapCUT and ReFHap

is almost zero on average, ReFHap performs consistently faster than HapCUT.

We performed a statistical test for each experiment to see if the differences are

on average significanly different from zero and we found that this is the case in

general for the time differences, in favor of ReFHap and for the MEC differences

in favor of HapCUT. HapCUT provides lower MEC values because that is its

optimization objective. However, switch errors are the true measure of quality, not

MEC. Table 4.1 shows that we could not find evidence of a significant difference

between HapCUT and ReFHap in switch errors for most of the experiments carried

on, which means that the reliability of the two methods is similar. This table

also shows that results in Figure 4.2 are replicated consistently by experiments

increasing the mean fragments length up to 12 and the number of loci up to 1000.

We finally examined how the haplotype quality decreases as the error rate

increases. Figure 4.3 shows that the number of switch errors increases at the same

pace for both HapCUT and ReFHap as the error rate increases to an extreme

value of 50%. These experiments were performed on 200 loci with 296 fragments

of length 6 and a gap rate of 0.1, achieving a mean coverage of about 8x and a

mean number of blocks of 1.06. These parameters were set up to ensure that most

of the switch errors are produced by the error rate and by the behavior of the

algorithms and not by the number of blocks.

4.2.3 Results with Real Data

We tested ReFHap and HapCUT on data resulting from the experimental fosmid

based sequencing approach introduced by [13] and that we are currently devel-

oping (See http://www.molgen.mpg.de/~genetic-variation/Projects.html).

We built a test case by sequencing and aligning fosmids generated from chromo-
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Input HapCUT ReFHap p-values
l n f %MEC %SE Time %MEC %SE Time p-value p-value

MEC SE
200 200 2 3.57 12.35 0.28 3.62 12.45 0.22 6 ∗ 10−6 0.32
200 200 4 4.62 5.29 1.81 4.69 5.95 0.26 6 ∗ 10−11 0.0001
200 200 6 4.89 1.46 10.54 4.9 1.55 0.39 9 ∗ 10−4 0.16
200 200 8 4.94 0.75 19.06 4.94 0.74 0.58 0.02 0.4
200 200 10 4.91 0.34 24.55 4.91 0.29 0.68 0.16 0.12
200 200 12 5.0 0.21 29.27 5.0 0.2 0.73 0.5 0.29
200 222 6 4.94 1.17 12.72 4.95 1.27 0.51 5 ∗ 10−4 0.09
200 259 6 5.08 0.7 14.49 5.1 0.82 0.67 7 ∗ 10−4 0.05
200 296 6 4.97 0.43 16.74 4.97 0.42 0.91 9 ∗ 10−3 0.44
200 333 6 4.93 0.22 17.58 4.93 0.27 1.29 0.04 0.06
200 370 6 4.91 0.14 18.65 4.91 0.15 1.79 0.02 0.35
200 700 2 4.75 1.75 10.72 4.8 1.87 3.58 2 ∗ 10−13 0.09
400 700 5 4.89 0.46 79.12 4.91 0.58 4.97 2 ∗ 10−6 0.002
600 700 7 4.98 0.48 300.63 4.99 0.51 4.70 4 ∗ 10−4 0.15
800 700 10 5.01 0.35 1064.62 5.01 0.35 5.47 0.05 0.48
1000 700 12 4.98 0.38 2279.25 4.98 0.45 5.89 0.16 0.002
200 296 6 4.95 0.4 16.72 4.95 0.48 0.88 0.01 0.05
400 592 6 4.98 0.38 94.95 4.98 0.395 4.34 3 ∗ 10−3 0.33
600 888 6 5.02 0.4 273.87 5.02 0.46 8.05 5 ∗ 10−5 0.03
800 1185 6 4.97 0.4 595.47 4.98 0.43 13.4 6 ∗ 10−4 0.10
1000 1481 6 4.98 0.35 1019.78 4.98 0.36 20.8 3 ∗ 10−3 0.30

Table 4.1: Minimum Error Correction (MEC), Switch errors (SE) and running time
for HapCUT and ReFHap for simulation experiments varying haplotype length (l),
number of fragments (n) and mean fragment length (f). Each reported p-value is
the probability that HapCUT and ReFHap report on average the same value for
MEC and SE on each set of input conditions. Time p-values were also calculated
but, except for the first row, they are always less than 10−32
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Figure 4.3: Switch error rate for HapCUT and ReFHap for experiments varying
error rate

ReFHap HapCUT (1 It) HapCUT (50 It)
%MEC 6.32% 6.26% 6.24%
Time 73.04 Sec 0.99 Hours 50.4 Hours

Table 4.2: MEC percentage and running time of ReFHap and HapCUT for a real
instance with 32347 SNPs and 13905 fragments in chromosome 22

some 22 of a caucasian individual. The input for this test case is a matrix of 32347

SNPs covered by 13905 fragments. The total number of allele calls is 178191.

Hence, each SNP is covered on average 5.51 times and each fragment covers on

average 12.81 SNPs. The total number of haplotype blocks is 102. Table 4.2 shows

MEC percentage and running time values for both ReFHap and HapCUT. We

included HapCUT results for its first iteration and after 50 iterations. ReFHap

clearly performed faster than HapCUT by solving this test case in about one

minute while even one single iteration of the heuristic implemented in HapCUT

takes about one hour.

Unfortunately for this data we do not have the true haplotype so we can not

calculate the exact switch error rate. However, we did several quality control steps

to verify the accuracy of the assembled haplotypes. First, we estimated the switch
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error rate by running a simulation experiment with the same number of variants

and fragments as in the real instance (l = 32347 and n = 13905), mean fragment

length f = 13, gap probability g = 0.1 and error rate e = 0.063. Even though the

total number of allele calls is on average 178004, which is less than the total for

the real data, the mean switch error rate is 1.86%.

We also had access to Affymetrix 1000k chip genotypes for one hundred indi-

viduals coming from the same population as our indvidual. We ran fastPHASE

[84] on these genotypes to obtain a phasing of 3158 SNPs on chromosome 22 for

the same individual. This haplotype can not be considered a gold standard but

we can compare it with other haplotypes by defining a measure of concordance.

Given two haplotypes, we calculate the switch error rate of the first as if the second

were the gold standard and then we call percentage of concordance the result of

one minus this rate. We achieved a 92.89% concordance between ReFHap and

fastPHASE on 2941 SNPs shared between the two haplotypes. The percentage of

concordance between HapCUT and fastPHASE was 93.30%.

Finally, we used the same measure of concordance to compare ReFHap, Hap-

CUT and fastPHASE haplotypes with 89 haplotypes from individuals in the the

CEU population of the HapMap project [20] assembled by trio phasing. We se-

lected these haplotypes for comparison because the information provided by trios

makes them more reliable and because the true haplotype of our individual should

be similar to CEU haplotypes. Figure 4.4 shows the proportion of CEU haplotypes

for different percentages of concordance, or in different words, the distribution of

percentages of concordance for each assembled haplotype with the CEU haplo-

types. The average percentages of concordance for HapCUT and ReFHap are

87.55% and 87.21% respectively, while the average percentage of concordance for

fastPHASE is 84.67%. This comparison was done over an average of 2065 com-

mon SNPs for ReFHap and HapCUT and an average of 989 common SNPs for
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fastPHASE.

4.3 Discussion

Current advances in sequencing technologies will increase the amount and types

of variation discovered for individual genomes and will provide the information

needed to assemble the true pair of haplotype sequences underlying each human

chromosome through single individual haplotyping [40]. However, the increase in

throughput, accuracy and completeness of sequencing technologies will not be re-

flected in improved haplotype construction if algorithms are not suitable to handle

efficiently genome-wide scale data. Full haploid sequences are the ultimate goal to

achieve a complete understanding of the structure of the human genome.

We have contributed to this field by introducing a novel problem formulation for

single individual haplotyping and a heuristic algorithm to solve it. Our approach

tries first to predict the actual separation of the input fragments into two groups,

one for each chromosome copy. To this aim, we introduced a scoring scheme that

allows us to build a graph of fragments and assign a weight to the relation between

each pair of overlapping fragments based on their calls for common loci. After

solving max-cut on this graph, we build the consensus haplotypes based on the

best cut found. Since this approach resembles the well known max-cut problem, a

heuristic algorithm for this problem is used as the base for our algorithm.

We compared our algorithm with HapCUT[6], which is the most accurate

heuristic algorithm that we found available and with the WMLF model [102] which

is the only solution including error probabilities for the input alleles. We have

shown through extensive simulations that ReFHap computes haplotypes faster

than these solutions without loosing accuracy. We also used experimental data to

show that ReFHap scales better than other solutions for chromosome wide input,
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phasing
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for which ReFHap finds reliable haplotypes within seconds while HapCUT takes

one hour to make one iteration. We also performed comparisons with a statisti-

cal phasing approach and with high quality haplotypes from the CEU HapMap

population [20].

It is difficult to establish a fair comparison between statistical phasing and

phasing based on evidence of coocurance of alleles because the input information

for both methods is too different to be comparable. However, we have shown that

haplotypes assembled with single individual haplotyping can be more accurate

than haplotypes inferred by statistical phasing if the region to assemble has enough

coverage. Our simulations also help to get an idea of the coverage needed to achieve

different levels of confidence.

In general, the biggest disadvantage of heuristic algorithms is that unlike exact

algorithms, they do not provide the best solution for every instance. However,

for this particular problem, formulations seek to optimize objective functions that

are not fully correlated with the switch error rate. In that sense, even an exact

algorithm cannot claim to provide the true haplotype sequences in every instance.

In this scenario, an efficient heuristic algorithm with low error rates will be a better

option from a practical point of view than an exact algorithm that can not ensure

to have zero switch error rate.

In the near future, we intend to make further accuracy improvements by taking

into account quality scores of fragment allele calls and by including other types of

information like parental or population information within a single framework.
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Chapter 5

Bioinformatics pipeline for

detection of immunogenic cancer

mutations by high throughput

mRNA sequencing1

Immunotherapy is a promising cancer treatment approach that relies on awakening

the immune system to the presence of antigens associated with tumor cells. In most

of the cells, the proteasome breaks complex proteins into small peptides and some

of these peptides are able to bind to MHC molecules. The main function of MHC

molecules is to present attached peptides on the surface of the cell. Killer T-cells

generated in the bone marrow are trained by negative selection in the thymus to

ignore self peptides and attach just to MHC molecules presenting foreing peptides,

usually called epitopes. When a T-cell binds to a foreign peptide presented by a

host cell, it releases cytotoxins that induce apoptosis in the host cell. Figure 5.1

shows an schematic of this process [105].

1The results presented in this chapter are based on joint work with P. Srivastava and I. I.
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Figure 5.1: MHC class I antigen presentation: the basics. Cytosolic and
nuclear proteins are degraded by the proteasome into peptides. The transporter
for antigen processing (TAP) then translocates peptides into the lumen of the
endoplasmic reticulum (ER) while consuming ATP. MHC class I heterodimers
wait in the ER for the third subunit, a peptide. Peptide binding is required for
correct folding of MHC class I molecules and release from the ER and transport
to the plasma membrane, where the peptide is presented to the immune system.
TCR, T-cell receptor. [105]
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Provided that cancer cells accumulate mutations and some of these mutations

can be translated to foreign peptides, killer T-Cells should be able to recognize and

kill cancer cells. Although there is evidence that this actually happens for some

tumors[65], sometimes the tumor grows fast enough to create barriers that block

the immune system. The main assumption for an immunotherapy solution involv-

ing killer T-Cells to deal with these cases is that killer T-Cells can be “trained”

to go over the tumor barriers and look for specific epitopes. Several therapy ap-

proaches have been proposed in previous works, but most of them look for self

peptides overexpressed in cancer cells, which are easier to find than foreign pep-

tides. The main risk of immunizing with self peptides is that they can produce

autoimmunity disease on the individual.

Our approach is to combine next generation sequencing technologies with epi-

tope prediction tools to reconstruct the tumor transcripts from mRNA reads and

find a large amount of tumor specific epitopes. Then, we immunize the individ-

ual with a combination of such epitopes to induce clonal amplification on specific

killer T-Cells that hopefully will find and attach to cancer cells presenting those

epitopes, achieving tumor remission. Figure 5.2 shows an schematic of this cancer

immunotherapy that we are currently evaluating on a mouse model before applying

it to human tumors.

The success of this approach depends on the ability to reliably detect immuno-

genic cancer mutations, the vast majority of which are expected to be tumor-

specific [75].

Mandoiu
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Figure 5.2: Cancer immunotherapy applied to a mouse model. MRNA reads are
taken from tumor cells and are sequenced to find epitopes presented by the tumor
cells. This epitopes are synthesized and injected in a normal tissue to awake the
immune system. Killer T-cells clonally amplify and look for the same epitopes in
other tissues and induce tumor remission

5.1 Analysis pipeline

We present a bioinformatics pipeline for detection of tumor specific epitopes from

high throughput mRNA sequencing data. A schematic representation of our anal-

ysis pipeline is given in Figure 5.3. The pipeline consists of four main stages.

First, sequencing reads are mapped separately against a reference transcript li-

brary (CCDS) and the reference genome using Bowtie [54]. Second, reads mapped

by the two methods are merged as explained in chapter 3. Third, merged reads

are used to call single nucleotide variants (SNV) and to predict haplotype con-

figurations for detected close SNVs. In the last stage, discovered mutations are

translated into mutated peptides, which are tested for immunogenic response.

We integrated the reads mapping and merging strategy presented in chapter 3

to increase the number of correctly and uniquely mapped reads. Although aligned

reads are generated in SAM format and then any SNV detection and genotyping
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Figure 5.3: Analysis pipeline to identify antigenic mutations from mRNA sequenc-
ing reads

algorithm can be applied after this step, we chose to use SNVQ as our method to

identify expressed SNVs taking into account the results comparison presented in

chapter 3. Since peptides binding to killer T-Cells are usually up to 15 aminoacids

long, two non synomymous SNVs must be at most 45 bp apart in a transcript and

their alternative alleles must be in phase to be able to produce a double mutated

epitope. This is a rare event for most of the genes in normal tissue but in cancer

tissues good epitope candidates can result out of tumor specific close variants. The

proximity requirement allows to use mapped reads as source information to predict

the right phasing in most of these events. We integrated ReFHap (See Chapter

4) by building an input matrix for each chromosome with as many columns as

heterozygous SNVs and as many rows as reads spanning at least two heterozygous

SNVs. We sort the SNVs with the same order criteria used to sort the reads to build

the matrix in a single parallel traversal linear to both the number of alignments and

the number of heterozygous SNVs. From this input matrix, ReFHap finds blocks

of close SNVs and provides an accurate phasing prediction for each one based on
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the reads information. The full list of SNVs along with this phasing information

is used as input for epitope predictions.

For each identified non-synonymous SNV or block of phased non synonymous

SNVs, reference and alternative aminoacid sequences are generated using CCDS

transcript annotations. Both peptides are then tested by either querying the

NetMHC-3.0 program [57, 67] or SYFPEITHI database [75]. For each MHC al-

lele, both approaches base their predictions on a Profile Weight Matrix (PWM),

calculated from peptides that are known to bind to the allele. This matrix can be

applied as a function that for each possible peptide produces a score that is sup-

posed to be correlated with the strength of the binding between the MHC molecule

and the peptide. The main assumption is that binding is mainly determined by a

few highly conserved anchor aminoacids normally located toward the ends of the

peptide. The final result of the analysis is the list of epitopes for which either the

reference or the mutated peptide exceeds a user defined threshold.

Finally, we implemented a module to design primers for SNVs validation from

genomic DNA using Primer3 [42]. This module locates each variant in the reference

genome and produces the input needed to design primers for two PCR experiments.

The objective of the first experiment is to amplify 500 bp around the SNV locus, so

Primer3 is asked to find primers in the 150 bp before and after the selected region

with a desired product length between 500 and 800 bp. The objective of the second

experiment is to perform Sanger sequencing on the amplified region, so we instruct

Primer3 to design primers in the first and the last 150 bp of the amplified region

with a desired product length between 200 and 500 bp. This design enables to

sequence at least the 200 bp surrounding the target SNV and hence improving

the chances of running a succesful PCR validation. We use the lowercase masked

versions of the reference genomes provided by UCSC [77] to know in advance which

experiments are likely to fail due to repeated regions and also to filter out SNVs
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in regions marked to be repetitive.

5.2 Results

We have run our pipeline with RNA Sequencing data from six different mouse

cancer samples: a MethA cell line, a CMS5 cell line and four spontaneous prostate

tumors. For each sample we built a modified reference genome and transcriptome

depending on the original strain from where the cancer evolved. While MethA

and CMS5 tumors evolved from a BALBC strain, spontaneous prostate tumors

evolved from a C57BL strain. To build each reference we took the UCSC assem-

bly [77] and the CCDS CDNA sequences [74] and we modified them according

with the homozygous non reference SNPs released by the Sanger Mouse Genomes

Project (http://www.sanger.ac.uk/resources/mouse/genomes/). We built a

custom module that takes a reference and the set of homozygous non reference

SNPs, for each SNP it goes to the reference and sets the alternative base of the

SNP in the corresponding locus, and finally prints the modified reference. This

module is available as part of the NGSTools package. The objective of modifying

the references from the beginning is to make them as close as possible to the cor-

responding normal tissue for each sample to find the mutations aquired during the

cancer development.

Table 5.1 shows statistics on reads analyzed for each dataset and number of

variants found in each sample. To find these SNVs we ran Bowtie both against the

assembly and the transcriptome, we performed hard merging, we filtered out two

bases from the 5’ end and ten bases from the 3’ end, we ran SNVQ and we finally

filtered out SNVs with genotype quality score less than 20 and less than 3 reads

supporting the alternative allele.

We designed primers to perform PCR validation on each discovered SNV as
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Sample Initial Aligned and Total Total Het Total
Reads Hard Merged Aligned SNVs SNVs Epitope
(M) Reads (M) Bases (Gb) Hits

MethA 105.79 67.15 4.03 29945 18063 32656
CMS5 42.31 19.52 0.94 8122 3789 9830

Prostate1 78.93 30.30 1.45 15992 6406 9756
Prostate2 38.36 10.60 0.51 3147 769 707
Prostate3 37.44 17.50 0.84 11281 3800 7980
Prostate4 21.49 12.11 0.58 9256 3549 6704

Table 5.1: Mapping and merging statistics, number of total and heterozygous SNVs
discovered and total number of epitope hits for six different mouse cancer samples

described in the previous section. We validated 20 variants identified in the MethA

dataset and we were able to confirm 18 of these 20 mutations. Moreover, we were

able to confirm that some of these mutations were absent from normal tissue and

hence were product of the cancer development. Figure 5.4 shows an example of a

mutation shown to be absent in liver tissue and present in the MethA tissue.

Liver

Ascites

Figure 5.4: Validation using DNA Sanger sequencing shows no mutation on normal
(liver) tissue and a predicted heterozygous mutation on the MethA cancer cell line

For each heterozygous variant in each dataset we predicted the protein transla-

tion of both the haplotype with the reference allele and the one with the alternative

allele by modifying the reference according with the phasing information if there are

SNVs close enough to the SNV under consideration and then performing cDNA to
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protein translation according with the frameshift annotated in the CCDS database.

We then performed class I epitope predictions on the two peptides associated with

each SNV and we reported hits with a NetMHC score higher or equal than 5 for

the alleles H2-Dd, H2-Kd and H2-Ld. Table 5.1 shows the total number of hits for

each dataset. We also calculated for the MethA sample the distribution of scores

and the distribution of differences between the peptide with the reference allele

and the peptide with the alternative allele. Figure 5.5(a) shows that, as expected,

the number of cases decreases as the score threshold increases but that there are

still more than a hundred cases with scores higher than 13, which according with

the NetMHC predictions corresponds to a high binding probability. Figure 5.5(b)

shows that there are more than a thousand cases where the peptide corresponding

with the alternative allele scored 10 or more points higher than the peptide with

the reference allele. We found also that phased mutations help to find peptides

with larger positive differences. While the average difference for cases with one

aminoacid change was 2.65, the same average for cases with multiple aminoacid

changes was 5.22.
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Figure 5.5: Distribution of number of predicted epitopes per NetMHC score (a) and
NetMHC score difference bins (b) for predicted epitopes from the MethA mouse
cancer tumor cell line.
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Chapter 6

Conclusion

Continuous development and improvement of methods to analyze genetic samples

has boosted a dramatic increase in the understanding of the mechanisms governing

the behavior of living organisms within just a few years. This detailed knowledge is

fundamental for medical research to create new vaccines, diagnoses and treatments

for different kinds of diseases such as viral or bacterial infections, brain disorders,

and even cancer tumors. Bioinformatics methods for analysis of genomic data have

become a cornerstone within this research due to the large amount of new data

produced everyday and to the complexity of the questions to be answered.

We have contributed to this effort by developing PrimerHunter, a primers

design tool for identification of virus subtypes from PCR experiments. Primer

Hunter has been designed to deal with the complexities related with the high

rates of variability within and among subtypes produced by high mutation rates

in the reproductive cycle of a virus strain. Compared to existing tools based on

exact matches or multiple sequence alignment, PrimerHunter achieves a higher

design success rate by relying on accurate melting temperature computations al-

lowing for mismatches based on the nearest-neighbor model of [82] and the frac-

tional programming approach of [49]. Using this approach, PrimerHunter can
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design primers that will selectively amplify target sequences from a complex back-

ground of related targets. The PrimerHunter web server, as well as the open

source code released under the GNU General Public License, are available at

http://dna.engr.uconn.edu/software/PrimerHunter/.

We plan to explore the potential application of PrimerHunter to design PCR

assays for identification and subtyping of pathogens other than influenza, includ-

ing bacteria, parasites and fungi. Another potential application for PrimerHunter

is designing specific probes for gene expression and genome enrichment microar-

rays. For large eukaryotic genomes these applications would require very large

numbers of melting temperature computations which can be feasibly performed by

parallelizing the testing of candidate primers.

Second generation sequencing of messenger RNA (RNA-Seq) is becoming the

method of choice to understand the functional effects of genetic variability and

establish causal relationships between genetic variants and diseases. For cancer re-

search, RNA-Seq provides most of the data needed to understand how the tumor

evolves and discover new targets for treatment strategies such as immunother-

apy. We presented a bioinformatics pipeline for detection of immunogenic cancer

mutations from high throughput mRNA sequencing data. Within our pipeline we

contributed to the research of methods for analysis of RNA-Seq data by developing

a reads mapping strategy that seeks to fully exploit the information included in the

genome reference sequence and the CCDS transcripts database to deal efficiently

with the difficulties of mapping reads spanning exon junctions. We also proposed

a bayesian model for SNV discovery and genotyping based on quality scores, which

we called SNVQ. To assess the performance of our methods, we reanalyzed data

from seven RNA-Seq lanes taken from blood cell tissue of a Hapmap individual to

show that presented methods increase accuracy of the results under a wide veriety

of circunstances. We released open source code implementing these techniques un-
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der the GNU General Public License, as part of our NGSTools package available

at http://dna.engr.uconn.edu/software/NGSTools/.

As accurate prediction of peptides presented by the MHC molecules requires

phasing of close variants, we investigated the single individual haplotyping problem

looking for an accurate and efficient alternative to obtain the phasing configuration

for close SNVs. We presented a novel problem formulation for single individual

haplotyping and a heuristic algorithm for this formulation. We started by assigning

a score to each pair of fragments based on their common allele calls and then we

used these score to formulate the problem as the cut of fragments that maximize

an objective function, similar to the well known max-cut problem. Our algorithm

initially finds the best cut based on a heuristic algorithm for max-cut and then

builds haplotypes consistent with that cut. We have compared both accuracy and

running time of ReFHap with other heuristic methods on both simulated and real

data and found that ReFHap performs significantly faster than previous methods

without loss of accuracy.

We finally integrated in our pipeline Primer3 to design primers for validation

of predicted mutations through Sanger sequencing and NetMHC to predict im-

munogenic response for the peptides related with heterozygous mutations. We

sequenced six different tumor samples at different coverage levels to test the ac-

curacy of our predictions on real data. We confirmed through Sanger sequencing

validation that we can identify single nucleotide variants with high accuracy even

in cancer samples. We generated hundreds of epitope candidates for each sample

which are currently under experimental validation. We finally verified that phasing

of close variants allows to generate promising epitope candidates with larger score

differences between the wild type and the mutated peptides.

As future work, we plan to extend the pipeline for detection of more kinds of

transcriptome variations like indels in coding regions. Small indels make a promis-

78



ing source of epitopes because they may change the reading frame, producing

peptides with larger differences from the wild type than those produced by SNVs.

We also plan to integrate isoform reconstruction algorithms to find tumor specific

transcripts [66].

Recent approaches to gene fusion detection in cancer [58] use mixed technol-

ogy transcriptome sequencing, combining Illumina mRNA reads with longer (200-

500bp) mRNA reads generated by 454 sequencing. However, sensitivity of this

approach is limited by the relatively low sequencing depth afforded by the 454

technology. To overcome this limitation, we plan to use the Illumina platform

to perform deep pair end sequencing of the cancer transcriptome, and identify

gene fusion events using techniques similar to those developed for detecting large

structural variation in cancer genomes [9, 50], which rely on detecting unexpected

distances and/or orientations between pairs of mapped reads.

For prediction of CD8+ CTL epitopes presented by the MHC class I pathway

we will use methods that integrate prediction of MHC I binding, TAP transport

efficiency, and proteasomal cleavage [48, 93], which have been shown to be more ac-

curate than prediction of MHC I binding alone. We will also predict tumor-specific

CD4+ T cell epitopes, which have been shown to play a critical role in regulating

immune responses, by employing the latest MHC II peptide binding prediction

methods (reviewed in [55]). Since we are also performing mass spectrometry on

the proteins presented on the surface of the cell, we plan to estimate the mass and

charge of our predicted epitopes to match them with the data generated by mass

spectrometry. This will increase confidence on existence and presentation of our

predicted epitopes. Finally, we are adjusting the protocols to perform immuniza-

tion experiments with promising peptides.
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