Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Predicting pMHC-I Binding from LC-MS/MS Data Using Hidden Markov Models

Jordan Force

August 23, 2017

Table of Contents

Table of Contents

MHC-I Function

Nature Reviews | Immunology

A More Memorable Diagram

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Wor

Figure: The function of the MHC-I, with chicken

Measuring Affinity

Disadvantages to this Approach

Work in Progress

is a work in progress!

Predicting pMHC-I Binding from LC-MS/MS Data	
Jordan Force	
Background	
Data	
Prediction Methods	Note: This
Future Work	

Table of Contents

MS/MS Data Source

3 Sequenced presented peptides (from endogenous proteins) using LC-MS/MS

Improvements

Figure: Improvement

How MS/MS Works

Figure: How Mass Spec Works

Table of Contents

PWM

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Construct a matrix with frequency of amino acid at each position
Compute likelihood of a given peptide under this matrix

HMM Structure

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Left-to-right HMM, with n rows, and w columns. w is length of peptides.

Figure: HMM with w = 4 and n = 2

HMM Training

Jordan Force

Background

Data

Prediction Methods

Future Work

- 1 Train HMM *only* on the binder dataset
- 2 Used EM algorithm included in *hmmlearn* package
- 3 Ran EM algorithm 10 times, picked parameters that gave highest likelihood.

HMM Scoring

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Compute probability log₂(P(x₁x₂...x_w)) of sequence under HMM model
Adjust classification threshold and generate ROC curve

(some) Results

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

1 Generated random peptides, uniform distribution of amino acids

Result for peptides of length 9, HLA-A0101

(some) Results

Jordan Force

Background

Data

Prediction Methods

Future Work

1 Selected random peptides from human proteome

Result for peptides of length 9, HLA-A0101

(some) Results

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

- 1 Used peptides that were presented by HLA-A0201, HLA-A0203, HLA-A0204 and HLA-A0207, but not HLA-A0101, as negative
- 2 Still performed very well

Result for peptides of length 9, HLA-A0101

Table of Contents

Generate data for mouse MHC

Flanking Residues

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Upstream									
U10	U9	U8	U7	U6	U5	U4	U3	U2	U1
+4	-4	-1	-7	-1	+2	*3	+12	+18	-10
+8	+7	+7	+2	+2	+1	-4	+13	+24	+9
-6	-1	-6	-2	-8	-5	-2	+4	+10	-16
-10	-10	-10	-9	-6	-10	-11	-9	+8	*8
-4	-5	-3	-2	-8	+2	+2	+25	+2	+28
+11	+13	+6	+11	+7	+12	+7	+13	+8	+30
-11	-1	-3	*0	+1	-3	0	+7	+3	-8
-13	-8	-6	-11	-7	-20	-22	-45	-62	-70
+6	+3	-1	-2	+4	+4	+14	+5	+21	+31
-1	+1	-1	-2	+2	+0	-13	-22	-1	-1
+5	+3	+5	+2	+0	+3	+2	+1	+5	-5
+11	+13	+8	+7	+2	-4	-9	-1	+3	+12
-11	-13	-24	-9	-11	-14	-12	+6	+9	+7
-3	+10	+4	-3	+13	+9	+9	+9	+11	+9
-1	0	+1	+4	-1	+6	+4	+3	-4	+12
+1	+4	+6	+8	+9	+6	+10	+9	-7	-24
+12	+5	+9	+12	+2	+5	+18	-1	-29	-25
0	-2	+10	-2	+7	+9	+13	+10	+14	+14
+6	-6	+4	+4	+6	+2	+3	-6	-5	-6
-11	-10	-1	-15	-5	-13	-11	-22	-11	-5
-13	-13	-12	-10	-8	-10	-12	-11	-10	-31

Q NTSRKHPAGEDOZL Ý F W

. . ..

Flanking Residues (continued)

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

0	
Q.	
N	
т	
ė	
S	
к	
ĸ	
н	
н	
P .	
A	
G	
Ē	
5	
Ū.	
С	
M	
5	
v	
1	
Ý	
ċ	
.	
W	

Downstream									
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
+11	+2	0	+0	+1	-2	0	-1	*3	+0
+17	+16	+13	+9	+9	-4	+4	+7	+5	+4
-5	-8	+1	0	-4	+1	-4	-6	-8	-4
+18	-6	-4	-10	-7	-10	-7	-10	-7	-10
+27	+13	+0	+0	+1	+1	-2	-5	-2	-4
+51	+29	+13	+13	+11	+8	+10	+10	+9	+8
+21	-17	+4	+5	-1	-2	+0	0	-12	-3
-41	-24	-18	+1	-3	-6	-4	-7	-6	-8
+42	+2	+8	+6	-2	-1	-1	-1	-2	0
+6	+17	+8	+2	+4	+7	+5	-2	0	-2
-20	-10	+9	-1	+9	+2	+7	+6	+4	+7
-18	+7	+13	+6	+8	+15	+12	+9	+1	+12
+1	-12	-13	-14	-18	-17	-24	-17	-26	-17
+17	+16	-3	-1	-5	+3	+0	+5	+10	-2
-23	+3	-14	-12	-10	-5	-6	-5	+0	-2
-10	-8	-0	+7	0	-1	+4	+4	+6	+7
-41	-2	-15	-2	-1	+7	+2	+10	+5	+2
-19	-20	+6	+9	+3	-3	+3	+4	-2	+2
-27	-23	+3	-13	-6	-5	-8	+1	+3	-4
-55	-24	-13	-22	-19	-21	-23	-18	-5	-8
+271	+114	+79	+61	+47	+39	+30	+26	+21	+20

Higher Order Models

Jordan Force

Background

Data

Prediction Methods

Future Work

1 Allow for relationships between residues that are non-adjacent

Predicting pMHC-I Binding from LC-MS/MS Data

Jordan Force

Background

Data

Prediction Methods

Future Work

Jennifer G Abelin, Derin B Keskin, Siranush Sarkizova, Christina R Hartigan, Wandi Zhang, John Sidney, Jonathan Stevens, William Lane, Guang Lan Zhang, Thomas M Eisenhaure, et al.

Mass spectrometry profiling of hla-associated peptidomes in mono-allelic cells enables more accurate epitope prediction.

Immunity, 46(2):315–326, 2017.