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Abstract— A Single Nucleotide Polymorphism (SNP) is a posi-
tion in the genome at which two or more of the possible four
nucleotides occur in a large percentage of the population. SNPs
account for most of the genetic variability between individuals,
and mapping SNPs in the human population has become the
next high-priority in genomics after the completion of the Human
Genome project. In diploid organisms such as humans, there
are two non-identical copies of each autosomal chromosome. A
description of the SNPs in a chromosome is called a haplotype.
At present, it is prohibitively expensive to directly determine the
haplotypes of an individual, but it is possible to obtain rather easily
the conflated SNP information in the so called genotype. Compu-
tational methods for genotype phasing, i.e., inferring haplotypes
from genotype data, have received much attention in recent years
as haplotype information leads to increased statistical power of
disease association tests. However, many of the existing algorithms
have impractical running time for phasing large genotype datasets
such as those generated by the international HapMap project.
In this paper we propose a highly scalable algorithm based on
entropy minimization. Our algorithm is capable of phasing both
unrelated and related genotypes coming from complex pedigrees.
Experimental results on both real and simulated datasets show
that our algorithm achieves a phasing accuracy worse but close
to that of best existing methods while being several orders of
magnitude faster. The open source code implementation of the
algorithm and a web interface are publicly available at http:
//dna.engr.uconn.edu/˜software/ent/.

Index Terms— Single Nucleotide Polymorphism, haplotype,
genotype phasing, algorithm.

I. INTRODUCTION

After the completion of the Human Genome Project has
provided us with a blueprint of the DNA present in each human
cell, genomics research is now focusing on the study of DNA
variations that occur between individuals and understanding
how these variations confer susceptibility to common diseases
such as diabetes or cancer. The most common form of genomic
variation are the so called single nucleotide polymorphisms
(SNPs), i.e., the presence of different DNA nucleotides, or
alleles, at certain chromosomal locations. Close to 12 million
common SNPs have been catalogued in the most recent build
(126) of the dbSNP database maintained by NCBI (http:
//www.ncbi.nlm.nih.gov/projects/SNP/).

In diploid organisms such as humans, there are two non-
identical copies of each autosomal chromosome, one inherited
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from the mother and one inherited from the father. The com-
binations of SNP alleles in the maternal and paternal chromo-
somes are referred to as the individual’s haplotypes. Although it
is possible to directly determine the haplotypes of an individual
by experimental techniques, such methods are prohibitively
expensive and time consuming. In contrast, there are many
cost-effective high-throughput techniques for determining the
conflated SNP information called genotype, which specifies the
identities of the two alleles at each SNP position, but does not
assign the alleles to specific chromosomes for heterozygous
SNP positions, i.e., SNP positions at which the individual has
two different alleles.

Since haplotypes determine the exact sequence (and hence
function) of proteins encoded by the genes, finding the haplo-
types in human populations is an important step in determining
the genetic basis of complex diseases. For this reason, compu-
tational inference of haplotypes from genotype data, known as
the genotype phasing problem, has received much attention in
the past few years, see, e.g., [2]–[5] for recent surveys.

Renewed interest in phasing algorithms is currently driven by
the need to handle increasingly larger datasets. High-end geno-
typing platforms from Affymetrix an Illumina already allow
typing over half a million SNP genotypes per experiment, with
one million SNP genotypes per experiment expected in the very
near future. Furthermore, due to decreasing genotyping costs,
future association studies are expected to comprise thousands
of typed individuals [6]. While many of the existing methods
achieve high haplotype reconstruction accuracy, their runtimes
do not scale well with the number of SNPs and the number
of typed individuals. In particular, all commonly used phasing
methods are vastly inadequate for handling datasets of the size
envisioned to be produced by next generation of genome-wide
association studies.

In this paper we propose a highly scalable algorithm based
on the entropy minimization principle that was previously pro-
posed in the context of genotype phasing and haplotype missing
data recovery by Halperin and Karp [7]. As shown in Section
II, entropy minimization can be viewed as the maximization
of phasing likelihood under a simple count-based estimate
of haplotype frequencies. Unlike the simple greedy algorithm
employed in [7], we use a local optimization algorithm, which
in practice results in genotype phasings with lower entropy. For
phasing long genotypes, the local optimization algorithm is ex-
tended using a novel overlapping-window approach. Combined
with a simple batched implementation, this results in a run-
time that grows linearly with the number of SNPs, and nearly
linearly with the number of typed individuals. Comprehensive
experiments on both real and simulated datasets show that the



entropy minimization algorithm is orders of magnitude faster
than existing phasing methods, while still maintaining a phasing
accuracy close to that of the best existing methods.

We also describe in the paper the extension of our entropy
minimization algorithm to genotype data coming from complex
pedigrees. As genotyping costs decrease, association studies are
likely to increasingly rely on analyses of genotype data from
related individuals. Indeed, parent-child relationships can be
exploited to reliably infer haplotype phase for a substantial frac-
tion of the SNPs based on the no-recombination assumption [6].
Consider for example a nuclear family (trio) composed of two
parents and a child. Under the no-recombination assumption
each parent passes an entire chromosome to the child. That is,
the child shares one haplotype with the mother and the other
one with the father. The only situation when there is phasing
ambiguity for a given SNP is when all three genotypes are
either heterozygous or missing at that SNP. For example, in the
CEU and YRI trio datasets of HapMap Phase I [8], the phase
of only around 15% of the SNPs is ambiguous, while the phase
of the remaining 85% of the SNPs can be inferred based on
the no-recombination assumption. We believe that the ability to
exploit the entire available pedigree information gives a distinct
advantage to our algorithm. Simulation experiments reported
in Section IV-D show that incorporating increasing amounts of
pedigree information improves not only the absolute accuracy
of the entropy minimization algorithm (which is to be expected
since the number of ambiguous sites is decreasing), but also
its relative accuracy (meaning that a smaller percentage of
ambiguous sites is incorrectly resolved). In fact, the results
show that, for complex pedigrees the accuracy of our algorithm
may exceed that of much slower methods which cannot take
into account the full pedigree information.

The rest of the paper is organized as follows. In Section II
we introduce some basic terminology and formalize the mini-
mum entropy phasing problem. In Section III we describe the
local improvement algorithm for entropy minimization and its
extensions to long genotypes and complex pedigrees. Finally,
we present experimental results in Section IV and conclude in
Section V.

II. PROBLEM FORMULATION

Following the standard practice, in this paper we restrict
our attention to bi-allelic SNPs, which form the vast majority
of known SNPs. In this case a haplotype can be represented
as a 0/1 vector – typically by representing the most frequent
allele as a 0 and the alternate allele as a 1. A genotype will
be represented as a 0/1/2/? vector, where 0 (1) means that
both chromosomes contain the 0 (1) allele, 2 means that the
two chromosomes contain different alleles, and “?” means that
allele identities are unknown. The allele at locus i of haplotype
h is denoted by h(i). Similarly, for a given genotype vector g,
the genotype at locus i is denoted by g(i).

We say that haplotype h is compatible with genotype g if
g(i) = h(i) whenever g(i) ∈ {0, 1}. A pair of haplotypes
(h1, h2) explains genotype g if h1(i) = h2(i) = g(i) whenever
g(i) ∈ {0, 1}, and h1(i) 6= h2(i) whenever g(i) = 2. For a
given pair (h1, h2) that explains g we say that h1 and h2 are
complementing each other with respect to g.

We call a set of genotypes unrelated if there are no parent-
child relationship between the individuals from which the geno-
types were obtained. We next formalize the minimum entropy
phasing problem for unrelated genotypes; phasing of related
genotypes is discussed in Section III-D.

A phasing of a set of unrelated genotypes G, each of length
k, is a function φ : G → {0, 1}k × {0, 1}k, such that, for
every g ∈ G, φ(g) is a pair of haplotypes that explain g. For
a haplotype h and a phasing φ, the coverage of h under φ,
denoted by cvg(h, φ), is the number of genotypes g ∈ G such
that φ(g) = (h, h′) or φ(g) = (h′, h) with h′ 6= h, plus twice
the number of genotypes g ∈ G such that φ(g) = (h, h). Notice
that, for a fixed phasing, the sum of all haplotype coverages is
equal to 2|G|. As in [7], [9], we define the entropy of a phasing
φ as

H(φ) =
∑

h:cvg(h,φ)6=0

−
cvg(h, φ)

2|G|
log

cvg(h, φ)

2|G|
(1)

Halperin and Karp [7] introduced the following

Minimum entropy phasing problem: Given a set G of unre-
lated genotypes, find a phasing φ of G with minimum entropy.

The use of entropy minimization in genotype phasing can
be motivated by the following connection with likelihood
maximization. For given haplotype probabilities ph, the log-
likelihood of a phasing φ is

L(φ) = log

(

∏

h

p
cvg(h,φ)
h

)

=
∑

h

cvg(h, φ) log ph

= −2|G|
∑

h:cvg(h,φ) 6=0

−
cvg(h, φ)

2|G|
log ph

If ph is estimated by simply counting the number of times
h appears in φ, i.e., ph = cvg(h,φ)

2|G| , it can be easily seen
that maximizing the log-likelihood L(φ) is equivalent with
minimizing H(φ).

III. ALGORITHM

Halperin and Karp [7] proposed a greedy algorithm for the
related minimum-entropy set cover problem, and showed that a
variant of this algorithm can be applied to unrelated genotype
phasing. However, the greedy algorithm cannot be applied
directly to phasing long genotypes, i.e., genotypes with large
numbers of SNPs. As the number of SNPs increases, each hap-
lotype becomes compatible with at most one genotype, and thus
all phasings result in the same entropy of − log 1

2|G| , rendering
the entropy minimization objective useless. Furthermore, even
for short genotypes, the entropy of phasings produced by the
greedy algorithm in [7] can be significantly improved. Indeed,
although greedy phasings are guaranteed to have an entropy
at most 3 bits larger than the optimum entropy, the optimum
entropy for short genotypes is typically very small. In this
paper we use the entropy minimization objective within a
local improvement framework. In Section III-A we describe
the local improvement algorithm for phasing short genotypes



Input: Set G of genotypes
Output: Phasing φ of the genotypes in G

1. Generate a random phasing φ for genotypes in G
2. Repeat forever

2.1 Find the pair (g, (h′
1, h

′
2)) such thatH(φ′) is

minimized, where φ′ is obtained from φ by
re-explaining g with (h′

1, h
′
2)

2.2 IfH(φ′) < H(φ), then φ← φ′

Else exit the repeat loop
3. Output φ

Fig. 1. ENT phasing of short genotypes.

of unrelated individuals. Then, in Sections III-B and III-C we
describe the extension to phasing of long unrelated genotypes
and discuss the time complexity of the algorithm. Finally, in
Section III-D we describe the extension of the local improve-
ment algorithm to the problem of phasing long genotypes of
related individuals.

A. Short genotype phasing

We have implemented a simple local improvement algorithm
for entropy minimization. Our algorithm, which we refer to as
ENT, starts from a random phasing, then, at each step, finds
the genotype whose re-explanation yields the largest decrease
in phasing entropy (see Figure 1). The use of random initial
phasings is justified by observing that a random phasing of
a genotype with i heterozygous positions matches the real
phasing with probability 2−i. E.g., when phasing the children
genotypes from the well-known Daly dataset [10], random
phasing results in an average of 46% correct haplotypes over
windows of 5 consecutive SNPs. We have also experimented
with a version of the algorithm in which the initial phasing
is obtained by running the greedy algorithm of [7], which
repeatedly chooses the haplotype h that explains the maximum
number of unexplained genotypes. Preliminary experiments on
simulated data [11] have shown that the use of random initial
phasings yields convergence to final phasings with same or
slightly lower entropy. This suggests that starting from the
greedy initial solution traps the local optimization algorithm
into a poorer local optimum.

We experimented with two tie-breaking rules in step 2.1 of
the algorithm: either picking the first, or a random pair among
pairs (g, (h1, h2)) that yield minimum H(φ′). Our experiments
showed that both approaches yield phasings with similar en-
tropy and accuracy. Also, the runtime of our algorithm was not
influenced by the tie-breaking rule. In all experiments reported
in this paper we used the first pair whenever we had to break a
tie.

B. Long genotype phasing

A common approach to phasing long genotypes is to phase
short non-overlapping windows of the input genotypes and
then stitch the resulting haplotypes using various statistical ap-
proaches, see, e.g., [6], [12]. Recently, [13] proposed a method
that considers phasings over all possible short windows in

Input: Set G of genotypes
Output: Phasing φ of the genotypes in G

1. Divide the genotypes in groups of f consecutive SNPs
from left to right

2. For each group, add the preceding l SNPs to create a
window of size l + f SNPs (leftmost window has no
locked SNPs and is of size f )

3. Run the phasing algorithm in Figure 1 for each
window, in left to right order, where the haplotypes
over the locked l SNPs are not allowed to change

4. Output the resulting phasing φ

Fig. 2. ENT phasing of long genotypes.

conjunction with a dynamic programming algorithm that finds
a global phasing that minimizes the number of disagreements
with the local predictions.

We also adopt a window-based approach to phasing long
genotypes. Like [13], our algorithm employs a set of short over-
lapping windows. However, instead of using all short windows
as in [13], we use a much smaller set of overlapping windows
of fixed size. Specifically, each window consists of a set of
l “locked” SNPs, which have been previously phased, and a
set of f “free” SNPs, which are currently being phased. For
each window, the phasing algorithm proceeds as described in
the previous section, except that only re-explanations consistent
with the already determined haplotypes of the locked SNPs are
considered in the local improvement step (see Figure 2).

The basic implementation of the ENT algorithm takes l and
f as input parameters. We have also implemented variants of
the algorithm that dynamically compute the number of locked,
respectively free SNPs based on the input data. These variants
pick l and f as large as possible subject to the constraint
that the numbers of ambiguous (heterozygous or missing) SNP
genotypes in the locked, respectively free region of the current
window do not exceed twice the number of genotypes. The
number of free SNPs f is further constrained to disallow
having more than 7 ambiguous SNPs in the free region of any
genotype.

To assess the effect of the windowing strategy (number of
free and locked SNPs) on phasing accuracy, we conducted a set
of experiments on a well-known dataset from Daly et al. [10].
This dataset contains 129 trios from a European population.
Each individual was typed at 103 SNP loci in the 5q31 region of
chromosome 5. The trio genotypes were used to infer as much
as possible out of the “true” haplotypes of the children under
the no-recombination assumption. We used the genotypes of the
children as input to ENT and compared the obtained phase with
the partially recovered “true” haplotypes.

Figure 3(a) shows the Relative Switching Error (RSE) (see
Section IV-A for the definition) obtained by running ENT with
the number of locked SNPs varied between 0 and 9, and the
number of free SNPs varied between 1 and 9. As expected,
the RSE is 50% for l = 0 and f = 1, since for this setting
of parameters ENT simply produces a random phasing. As the
numbers of free and locked SNPs are increased, the entropy
minimization objective quickly becomes informative, and the
RSE decreases significantly, with best results (RSE of 6.18%)
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Fig. 3. Relative switching errors obtained on the Daly children dataset
by running the local improvement algorithm with overlapping-windows with
0-9 locked SNPs and 1-9 free SNPs and two optimization objectives: (a)
minimizing phasing entropy, (b) minimizing the number of distinct haplotypes.

being obtained for l = f = 5 (the RSE is changing very little
– within a 1% range – when setting f and l to higher values).
For this dataset, the version that dynamically chooses both l
and f yields minimal RSE as well. Experiments performed
on other datasets confirmed that automatically chosen f and
l parameters consistently yield phasings with RSE close to
that of the best variant. Therefore, we use this variant in the
experiments presented in following sections.

To better understand the significance of using entropy mini-
mization as optimization objective for phasing short windows,
we compared it with the objective of minimizing the number
of distinct haplotypes used in the phasing. This so called pure
parsimony objective was introduced in [14], which also pro-
poses an exponential-size integer linear program formulation. A
more scalable branch-and-bound algorithm for pure parsimony
was given in [15], and polynomial-size integer linear programs
were independently proposed in [16], [17]. Figure 3(b) shows
that, for the considered window sizes, the RSE obtained with
the pure parsimony objective is much worse than that obtained
with entropy minimization.

C. Time complexity

When phasing n unrelated genotypes over k SNPs, the
algorithm in Figure 1 is run on dk/fe windows. For each
window, the algorithm evaluates at most n× 2f candidate pairs
of haplotypes for finding the best pair in Step 2.1. Computing
the entropy gain for each candidate pair takes constant time.
Indeed, H(φ′) differs from H(φ) in at most four terms cor-
responding to the haplotypes that can change their coverages,
namely the haplotypes explaining g in φ and φ′. Empirically,
the number of iterations required in Step 2 of the algorithm in
Figure 1 is linear in the number n of genotypes (see Figure 4),
resulting in an overall runtime of O(n22fk/f).

To reduce the number of iterations, we implemented a
batched version of the algorithm in which multiple genotypes
are re-explained in each iteration. In this version of the al-
gorithm, an iteration starts by computing for each genotype
g a pair (g, (h′

1, h
′
2)) of compatible haplotypes that yield

the highest entropy gain. The resulting list of n such pairs
is then traversed in order of decreasing gain. For each pair
(g, (h′

1, h
′
2)), the genotype g is re-phased using (h′

1, h
′
2) if

the entropy gain is still positive with respect to the current
phasing. Empirically, the number of iterations required by the
batched variant is O(log3 n), resulting in an overall runtime of
O(n log3 n2fk/f).

Fig. 4. Total CPU runtime and average number of iterations per window for
the ENT algorithm with and without batching ran on the JPT+CHB HapMap
Phase II dataset.

Figure 4 gives experimental results comparing the ENT
algorithm with and without batching on the JPT+CHB dataset
of HapMap Phase II [8], consisting of 90 unrelated individual
genotypes with a total of over 3.7 million SNPs (all 22 auto-
somal chromosomes, see Section IV for more details on this
dataset). The two versions of the algorithm give very similar
phasing accuracy, with the batched variant being up to 2.5
times faster. As shown in the figure, the speed-up comes from
the reduction in number of iterations required by the batched
version. All remaining experiments use the batched version of
the algorithm.

D. Phasing related genotypes

We have also extended the ENT algorithm to handle datasets
consisting of related genotypes grouped into pedigrees. The
algorithm for phasing a short window of related genotypes is
similar to the one in Figure 1. For every window we restrict the
search to phasings that satisfy the no-recombination assump-
tion. To maintain this property throughout the algorithm, in



each local improvement step we re-explain all genotypes in a
pedigree rather than a single genotype.

If entropy is computed based on haplotype counts of all typed
individuals, when re-phasing a pedigree the algorithm may
introduce significant biases in haplotype transmission rates.
One way to avoid this problem is to compute the entropy
over an independent set of haplotypes, such as the “founder”
haplotypes, i.e., haplotypes inherited from individuals not in-
cluded in the pedigree. For example, in the case of a trio,
computing the entropy over all haplotypes uses six haplotypes,
while computing it over the founder haplotypes uses only the
four haplotypes of the parents. We implemented both entropy
computation methods, and compared their accuracy on CEU
and YRI trio datasets from HapMap Phase I. As shown in Table
I, for almost all chromosomes, computing the entropy over
founder haplotypes yields slightly better accuracy. Therefore, in
all remaining trio experiments we use the founder-only entropy
calculation.

Chr# CEU YRI
ALL Found. Decrease(%) ALL Found. Decrease(%)

1 1.42 1.35 4.93 2.42 2.27 6.20
2 1.09 1.07 1.83 1.50 1.42 5.33
3 1.11 1.10 0.90 1.59 1.50 5.66
4 1.24 1.21 2.42 1.81 1.76 2.76
5 1.14 1.11 2.63 1.62 1.54 4.94
6 1.12 1.07 4.46 1.58 1.54 2.53
7 1.38 1.36 1.45 2.09 1.99 4.78
8 0.85 0.83 2.35 1.21 1.13 6.61
9 1.02 0.98 3.92 1.36 1.33 2.21

10 1.34 1.30 2.99 1.86 1.81 2.69
11 1.27 1.21 4.72 1.68 1.52 9.52
12 1.34 1.32 1.49 2.02 1.98 1.98
13 1.34 1.26 5.97 1.77 1.66 6.21
14 1.34 1.35 -0.75 1.81 1.66 8.29
15 1.42 1.40 1.41 2.01 2.00 0.50
16 1.68 1.63 2.98 2.48 2.39 3.63
17 1.59 1.53 3.77 2.38 2.30 3.36
18 1.08 1.04 3.70 1.48 1.43 3.38
19 1.99 1.89 5.03 2.71 2.65 2.21
20 1.78 1.67 6.18 3.68 3.59 2.45
21 1.14 1.14 0.00 1.69 1.55 8.28
22 1.22 1.23 -0.82 1.74 1.70 2.30

Avg. 1.31 1.28 2.80 1.93 1.85 4.36

TABLE I

COMPARISON BETWEEN “ALL” AND “FOUNDERS-ONLY” HAPLOTYPE

COUNTING STRATEGIES ON HAPMAP PHASE I TRIO POPULATIONS.

An implicit representation of zero-recombination phas-
ings for a fixed window can be found in O(mn2 +
n3 log2 n log log n) time using a system of linear equations and
an efficient method for eliminating redundant equations [18].
However, since the number zero-recombination phasings can
be exponential, we chose to generate these phasings iteratively
using a backtracking strategy. Each pedigree is represented as
a directed acyclic graph with nodes representing genotypes and
directed edges connecting parents to children. Nodes that have
no incoming edges will be referred to as founder nodes. Two
variants of backtracking were implemented. In the top-down
variant we generate the phasing for a pedigree starting from the
founder nodes and then following a topological order. This as-
sures that, when visiting a node, its parents are already visited.
At each node, we only generate phasing compatible with the

Input: Mendelian consistent genotype data for a pedigree P
together with haplotype inheritance pattern
Output: List L of feasible phasings of P

1. Let g1, . . . , g|P | be the genotypes of P indexed in
reverse topological order

2. L ← ∅; i← 1; Lk ← ∅ for k = 1, . . . , |P |
3. While i > 0 do

If Li = ∅ then
If gi has descendants and their haplotypes are
incompatible under the given inheritance
pattern then

i← i− 1

Else
Set Li to the list of phasings of gi

compatible with existing descendents (if
any)
ji ← 1; i← i + 1

Else // Li 6= ∅

If ji > |Li| then
Li ← ∅; i← i− 1

Else
If i = |P | then

Add to L the phasing in which each
genotype gk is explained using Lk(jk)
ji ← ji + 1

Else
ji ← ji + 1; i← i + 1

3. Output L

Fig. 5. Bottom-up enumeration of feasible phasings for short related geno-
types.

existing parent haplotypes. Once the last node in a pedigree is
phased, we compute the entropy gain and backtrack to previous
nodes to explore other feasible phasings. The bottom-up variant
(Figure 5) iterates through feasible phasing in a similar manner,
but starts the traversal from the nodes that have no outgoing
edges, corresponding to individuals that have no children, and
works its way up towards the founder nodes.

To speed-up the enumeration of feasible phasings, for each
node in the pedigree graph we generate two templates repre-
senting the maternal and paternal haplotypes. These templates
are incomplete haplotypes, containing only the alleles that can
be unambiguously inferred from the genotype data (possible
Mendelian inconsistencies are detected and reported when con-
structing these templates). Furthermore, after phasing the first
window, we determine the grand-parental status of the two
haplotypes of each non-founder node, and allow in subsequent
windows only phasings consistent with this haplotype inheri-
tance pattern. If the algorithm encounters a window for which a
phasing consistent with this pattern cannot be found (either due
to the presence of a recombination event or poor initial choice
of haplotype inheritance pattern) we repeatedly decrease the
number of free SNPs by one unit until a feasible phasing can
be found. The algorithm is then restarted with no locked SNPs
and the computed phasing is used to infer a new haplotype
inheritance pattern.

Enumerating all feasible phasings of a pedigree P for a



fixed window with f free SNPs requires O(2f |P |) time in
the worst case for both backtracking variants. This bound is
achieved when all SNP genotypes are missing, and cannot
be improved since there are O(2f |P |) feasible phasings in
this case. However, on typical data the number of feasible
phasings and the runtime are much lower than suggested by
the worst case bound. Despite having the same worst case
runtime, the bottom-up implementation was empirically found
to be faster than the top-down variant. We compared the two
variants on datasets containing between 6 to 60 trios from the
combined CEU and YRI HapMap Phase II consensus datasets.
These datasets contain approximately 3.5 million SNPs that
are present in both CEU and YRI populations. Genotypes for
these SNPs were created by combining the reference phasing
given on the HapMap website, and therefore contain no missing
data. The runtimes for the top-down and bottom-up versions
of the ENT algorithm are summarized in Figure 6. While both
runtimes increase nearly linearly with the number of trios, the
bottom-up variant is over 10 times faster for each instance
size tested. Since the two variants yield phasings with similar
accuracy, all remaining experiments use the bottom-up variant
of the algorithm.

Fig. 6. Runtime of bottom-up and top-down ENT variants on 6-60 trios from
the combined CEU+YRI HapMap Phase II consensus datasets.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The ENT algorithm was implemented as described in previ-
ous section using the C++ language. The experiments presented
in this paper were conducted on a 2.8GHz Pentium Xeon
machine with 4Gb of memory running the Linux operating
system.

For our experiments we used several datasets:

• HapMap Phase I datasets. HapMap [8] is a large interna-
tional project seeking to develop a haplotype map of the
human genome. We used two trio panels (CEU and YRI)
consisting of 30 trio families each from the HapMap Phase
I release 16a. Since the HapMap genotypes for this release
were not consistent with the reference haplotypes, we ran
the compared methods on genotypes reconstructed from
reference haplotypes, which resulted in genotypes with no
missing data.

• HapMap Phase II datasets. We used all three panels avail-
able in HapMap Phase II release 21: the two trio panels
(CEU and YRI) and a combined panel consisting of the all
90 individuals from JPT and CHB populations. For these
datasets we ran the compared methods on the genotypes
available on the HapMap website. Unlike genotypes re-
constructed for Phase I datasets, these genotypes contain
a small percentage of missing data. Table II shows the
number of SNPs, and the percentages of heterozygous and
missing SNP genotypes for each of the 22 autosomes in
the HapMap Phase II datasets.

• HapMap-based synthetic datasets. To allow comparisons
of methods that are too slow for handling full chromosome
genotype data, Marchini et al. [6] have used the HapMap
data to generate a large number of smaller simulated
datasets (referred to as “real” in [6]). RT-CEU and RT-
YRI trio datasets were obtained by selecting at random
100 1-Mb regions from each one of the HapMap trio
populations, CEU and YRI. For each region, 30 new
datasets were created by switching the allele transmission
status in parent genotypes of one of the trios (thus creating
a plausible child genotype, while introducing a minimal
amount of missing data). A similar set of 100 datasets of
unrelated genotypes (RU) were generated from random 1-
Mb regions from the CEU population by simply removing
children genotypes.

• Real dataset from [19]. Datasets for which the haplotypes
have been directly determined through molecular tech-
niques such as cloning or strand-specific PCR are the ideal
testbed for comparing accuracy of haplotype inference
methods. To test if conclusions drawn from synthetic
datasets remain applicable to real datasets we used the
dataset from [19], consisting of 9 SNPs and 80 phased
genotypes collected from unrelated individuals.

Since the true haplotypes are not available for the HapMap
datasets, we used as reference the haplotypes inferred by
HapMap researchers using the PHASE haplotype inference
program [20]. A haplotype inference method can disagree with
PHASE reference haplotypes in two ways. For a missing SNP
genotype, the alleles inferred by the method can be different
from those inferred by PHASE. For non-missing SNP geno-
types, the inferred alleles must necessarily agree, but they may
be assigned to different haplotypes. We measure the first type
of errors using the Relative Genotype Error (RGE), defined
as the percentage of missing SNP genotypes that are inferred
differently than PHASE. In the case of trio data, a SNP geno-
type is not considered to be missing if it can be unambiguously
inferred from the genotypes of the other members of the trio.

A commonly used measure for the second type of error is
the switching error, which, for a given genotype, measures the
ratio between the number of times we have to switch between
the inferred haplotypes to obtain the reference haplotypes. A
SNP genotype is called ambiguous if its phase cannot be fully
inferred from available data. In real data a large fraction of
SNP genotypes are non-ambiguous, e.g., homozygous SNPs, or
heterozygous SNPs for which other trio members are homozy-
gous. Therefore, in this paper we assess phasing accuracy using



Chr# CEU YRI JPT+CHB
#SNPs %2’s %?’s #SNPs %2’s %?’s #SNPs %2’s %?’s

1 296976 18.84 1.74 294798 20.79 1.95 300972 17.32 2.04
2 319350 20.74 1.46 311083 23.02 1.69 319895 18.59 1.60
3 249090 21.35 1.90 242356 22.88 1.85 248329 18.85 2.07
4 238489 20.33 1.84 231439 22.46 2.30 237828 18.14 2.32
5 242566 20.90 1.76 236120 22.43 1.88 242834 18.83 1.96
6 262657 20.56 1.71 259628 21.37 1.77 266737 18.72 1.73
7 207892 20.67 1.86 202386 21.95 2.11 207619 18.52 2.07
8 209456 21.48 1.41 207762 23.07 1.52 212608 19.91 1.74
9 177479 20.58 1.50 175609 22.00 1.62 178892 18.89 1.87

10 204417 19.54 1.85 202678 21.40 1.92 206647 17.88 2.08
11 199243 19.40 1.80 193287 20.60 2.16 200395 17.72 2.03
12 187332 19.52 1.99 185132 20.67 2.06 187078 17.76 2.20
13 152612 20.02 1.87 151963 21.86 1.78 154977 18.21 1.97
14 120565 20.54 1.59 117442 22.30 1.75 121046 19.33 1.69
15 104384 20.64 1.76 101443 22.70 1.86 104757 19.45 1.82
16 106411 19.78 1.87 103113 21.87 2.26 106229 18.01 2.18
17 86495 20.20 1.89 83996 21.62 2.04 86199 17.96 2.06
18 116802 19.75 1.46 115056 22.22 1.85 117288 17.94 1.97
19 53738 20.15 1.88 52078 22.13 1.88 53675 18.90 2.09
20 117417 15.75 1.41 114764 17.49 1.52 117155 14.69 1.47
21 48635 21.14 1.70 48770 23.10 1.62 50484 20.10 1.85
22 53463 18.44 1.58 54302 19.71 1.50 55206 16.86 1.71

Total/Avg. 3755469 20.01 1.72 3685205 21.71 1.86 3776850 18.30 1.93

TABLE II

PROPERTIES OF THE HAPMAP PHASE II DATASET.

the Relative Switching Error (RSE), defined as the number
of switches needed to convert the inferred haplotype pairs into
the reference haplotype pairs, expressed as percentage of the
total number of ambiguous SNPs. The positions where the SNP
genotypes are missing are ignored in the computation of RSE
since errors at these positions are separately accounted for by
RGE.

B. Comparison with other methods

The first set of experiments was run on the HapMap Phase
II datasets, comprising three panels of 90 individuals each,
typed at approximately 3.7 million SNPs (see Table II). On
these datasets, we compared ENT with two recent phasing
methods, 2SNP and ILP, that are capable of (at least partially)
handling such large datasets with reasonable time and memory
requirements. 2SNP [21] is a phasing method based on geno-
type statistics collected for pairs of SNPs. ILP [22] employs
a window based approach, for each window minimizing the
number of distinct haplotypes used for phasing by using an
Integer Linear Programming approach. 2SNP handles unrelated
genotypes and trio data, while the ILP method is only able to
handle trio data.

Table III gives the accuracy measures and the runtime of
ENT, 2SNP and ILP on the two trio populations from HapMap
Phase II. ENT has the lowest RGE and RSE error rates. Using
PHASE haplotypes as ground truth, ENT accurately recovers,
on the average, more than 94% of the missing SNP genotypes
for the CEU population and more than 90% for the YRI popu-
lation. On the average the RSE of ENT is 1.51% for the CEU
population and 1.94% for the YRI population, compared to over
20% RSE for 2SNP and over 6% RSE for ILP. ENT is orders
of magnitude faster than the other two methods, requiring about
half an hour for phasing the two trio datasets, compared to over

20 hours for 2SNP and over 16 days for ILP.1

Table IV gives the accuracy measures and the runtime of
ENT and 2SNP on the unrelated population (JPT+CHB) from
HapMap Phase II. The missing entries in the table are due to the
fact that the 2SNP method was unable to complete the phasing
of larger chromosomes due to memory constraints. In the case
of unrelated genotypes, ENT retains the speed advantage over
2SNP, but yields phasings with slightly lower accuracy.

Similar results were obtained on the HapMap-based syn-
thetic datasets from [6]. Table V gives phasing accuracy results
on these datasets for ENT and the widely-used phasing pro-
grams PHASE [20], [23], [24], fastPHASE [25], HAP [26], and
HAP2 [27]. These methods are based on a variety of statistical
and combinatorial techniques, including Bayesian inference,
Expectation Maximization, Hidden Markov Models, Markov-
Chain Monte Carlo, and perfect phylogeny. (For a description
of how the original methods were extended to handle trio
data see [6]). The accuracy on these datasets was measured
using three criteria introduced in [6]: switching error, incorrect
genotype percentage, and incorrect haplotype percentage. The
first measure is similar to RSE, except that it is computed only
for SNP loci for which real haplotypes could unambiguously be
inferred from the original HapMap data. The incorrect genotype
percentage is defined as the percentage of ambiguous single
SNP genotypes (heterozygous or missing) that had their phase
incorrectly inferred, while the incorrect haplotype percentage
measures the percentage of ambiguous individuals whose in-
ferred haplotypes are not completely correct.

For all types of synthetic datasets ENT produces phasings
with accuracy that is worse but close to that of the much

1For comparison, the PHASE algorithm was reported to take months of CPU
time on two clusters with a combined total of 238 nodes when phasing the much
smaller Phase I release 16a dataset; no PHASE runtimes have been reported for
HapMap Phase II data.



CEU Population
Chr# ENT 2SNP ILP

RGE RSE Runtime RGE RSE Runtime RGE RSE Runtime
1 4.82 1.63 68.12 13.24 20.76 2599 21.62 6.48 59425
2 5.26 1.24 83.40 13.99 17.86 3340 21.45 5.51 77702
3 4.68 1.41 71.72 13.94 20.72 2616 21.05 5.91 41613
4 4.52 1.48 59.17 13.61 20.08 3020 20.83 6.08 38347
5 4.73 1.36 63.10 13.83 20.23 2175 20.86 5.86 40191
6 4.81 1.40 66.21 13.90 20.56 2418 21.28 5.85 66559
7 4.82 1.52 53.70 14.15 21.12 1785 21.50 6.28 52677
8 4.85 1.20 50.16 13.57 17.69 1888 21.22 5.37 52393
9 5.04 1.35 40.22 13.14 18.25 1453 21.19 5.94 38291
10 4.80 1.47 51.96 13.14 20.39 1707 21.72 6.22 55728
11 4.68 1.51 48.89 13.64 20.58 1647 21.21 6.33 28324
12 4.96 1.61 50.92 13.25 21.42 1568 21.79 6.51 28758
13 4.83 1.47 46.65 13.54 20.85 1187 21.32 6.28 18886
14 4.78 1.43 27.45 14.19 19.89 884 21.49 6.00 12852
15 5.74 1.57 27.90 14.52 19.74 705 23.07 6.23 11466
16 5.45 1.67 25.72 14.19 20.28 700 23.48 6.86 12665
17 5.43 1.70 21.50 13.97 19.99 516 22.21 6.60 11906
18 4.72 1.42 22.16 31.91 35.51 1270 20.97 6.06 19570
19 5.62 1.88 12.66 14.54 21.17 356 22.54 6.78 8910
20 4.97 1.49 23.91 12.24 18.72 977 22.19 6.95 29658
21 6.57 1.65 10.51 13.43 16.79 395 22.53 6.13 4548
22 5.93 1.73 12.17 12.46 17.38 314 22.94 6.97 4142

Avg./Total 5.09 1.51 938.20 14.47 20.45 33520 21.75 6.24 714611
YRI Population

Chr# ENT 2SNP ILP
RGE RSE Runtime RGE RSE Runtime RGE RSE Runtime

1 8.86 2.03 89.32 18.52 23.98 2970 26.47 7.12 61277
2 8.75 1.67 88.34 19.82 22.80 3658 27.11 6.19 68751
3 8.33 1.72 72.36 19.40 23.56 3778 26.90 6.52 39690
4 8.71 2.05 76.35 19.02 24.61 3261 26.23 6.98 35405
5 8.80 1.81 68.01 19.35 23.50 3009 27.14 6.54 37308
6 8.06 1.73 73.51 17.98 23.18 2544 26.31 6.54 67301
7 8.54 1.98 63.66 19.55 24.90 1856 27.44 7.12 49580
8 8.78 1.55 50.34 19.27 21.10 2013 27.59 5.99 49396
9 8.78 1.74 48.49 19.29 21.65 1553 27.25 6.60 36810
10 8.91 1.91 60.74 19.12 23.52 1963 27.33 6.99 55004
11 8.38 2.03 66.54 18.71 24.74 1703 26.69 7.30 26510
12 9.06 2.16 54.44 19.06 24.67 1640 28.04 7.50 27524
13 8.58 1.74 41.02 18.69 22.98 1380 26.89 6.56 18261
14 8.79 1.76 30.69 19.29 22.88 910 27.52 6.53 12229
15 9.60 2.02 27.44 20.24 23.51 757 28.76 7.00 10868
16 10.32 2.37 31.34 20.68 25.39 814 28.85 7.75 12454
17 9.96 2.29 22.56 20.54 24.65 662 28.53 7.56 11226
18 8.79 1.87 29.00 37.13 38.44 1420 25.86 6.61 19568
19 10.48 2.47 14.26 20.15 23.02 449 28.58 7.72 8538
20 9.20 1.98 24.83 34.33 39.02 1069 28.68 7.70 28871
21 8.73 1.75 11.30 18.45 20.89 430 26.78 6.54 4589
22 10.09 2.10 12.39 18.86 19.89 404 28.02 7.47 4212

Avg./Total 9.02 1.94 1056.93 20.79 24.68 38243 27.41 6.95 685372

TABLE III

COMPARISON RESULTS ON HAPMAP PHASE II CEU AND YRI DATASETS.

slower methods included in the comparison. We remark that
Table V reflects the latest results available at http://www.
stats.ox.ac.uk/˜marchini/phaseoff.html. Ac-
curacies reported for some methods and datasets are slightly
different from those published in [6] due to inconsistencies
discovered by the authors after the publication of the paper.

In Table VI we present accuracy results for PHASE, fast-
PHASE, 2SNP, HAP, and ENT on the real dataset from [19],
consisting of 80 unrelated genotypes for which the real hap-
lotypes have been experimentally determined. For this dataset,
we report the same accuracy measures as in Table V, computed
using as reference both the real haplotypes and the haplotypes
inferred by PHASE. With respect to all three measures, the

accuracy of ENT is worse than that of PHASE, fastPHASE,
and HAP, but better than that of 2SNP. Although PHASE is
not 100% accurate, using the haplotypes inferred by it as a
reference does result in the correct relative ranking of the
other methods. However, the results in Table VI do suggest
that using PHASE haplotypes as ground truth leads to a slight
underestimation of true error rates.

C. Effect of missing data

In a second set of experiments we assessed the accuracy of
the four most scalable methods (ENT, 2SNP, ILP, and HAP) in
the presence of varying amounts of missing genotype data. For
these experiments we used the trio populations of the HapMap



JPT+CHB Population
Chr# ENT 2SNP

RGE RSE Runtime RGE RSE Runtime
1 8.63 5.26 735.96 - - -
2 7.84 4.48 780.27 - - -
3 8.11 4.81 642.04 - - -
4 8.47 4.97 619.17 - - -
5 7.88 4.63 617.75 - - -
6 8.59 4.75 656.95 - - -
7 8.30 5.12 534.75 - - -
8 9.09 4.43 571.12 - - -
9 9.47 5.02 464.30 - - -

10 8.66 5.17 514.10 4.93 3.13 254960
11 9.77 4.92 491.08 5.50 2.82 227630
12 8.79 6.00 475.08 5.51 3.79 221245
13 8.04 4.94 390.07 4.69 2.90 138481
14 8.39 4.77 290.93 5.18 2.98 46741
15 9.83 5.33 257.82 6.07 3.57 37166
16 9.58 5.89 255.55 6.23 3.99 35300
17 8.98 5.97 208.62 5.64 4.16 20886
18 9.27 5.22 286.31 5.37 3.23 28576
19 9.97 6.75 136.46 6.82 4.96 6886
20 8.40 5.90 222.29 5.17 3.57 22463
21 9.53 4.96 133.49 5.57 3.34 6422
22 10.94 6.09 128.03 6.37 3.95 6681

Avg./Total 8.93 5.24 9412.13 5.62 3.57 857495

TABLE IV

COMPARISON RESULTS ON HAPMAP PHASE II JPT+CHB DATASET.

Sample PHASE v2.1 fastPHASE HAP HAP2 ENT

Switch error
RT-CEU 0.53 - 2.05 2.95 5.88
RT-YRI 2.16 - 4.44 - 9.29

RU 8.41 9.21 10.72 12.56 13.46
Incorrect genotype percentage

RT-CEU 0.05 - 0.40 0.33 1.40
RT-YRI 0.16 - 0.33 - 0.93

RU 7.47 - 8.04 8.17 8.31
Incorrect haplotype percentage

RT-CEU 6.20 - 20.78 20.42 40.40
RT-YRI 15.7 - 29.25 - 48.92

RU 77.66 83.57 87.96 87.67 91.61

TABLE V

COMPARISON RESULTS ON HAPMAP-BASED SYNTHETIC DATASETS FROM

[6].

Reference PHASE v2.1 fastPHASE 2SNP HAP ENT

Switch error
True haps 2.60 5.84 13.64 6.49 11.04

PHASE haps 0.00 4.55 11.04 5.19 9.74
Incorrect genotype percentage

True haps 0.56 1.25 2.92 1.39 2.36
PHASE haps 0.00 0.83 2.36 0.97 1.94

Incorrect haplotype percentage
True haps 5.00 11.25 20.00 11.25 15.00

PHASE haps 0.00 7.50 15.00 7.50 11.25

TABLE VI

COMPARISON RESULTS ON THE REAL DATASET FROM [19].

Phase I release 16a from which we randomly deleted 0-20%
of the SNP genotypes. The results obtained for chromosome
22 are summarized in Table VII. For low amounts of missing
data, ENT accuracy is similar or better than that of the other
three methods. For all methods, the error rates increase with
the percentage of missing SNP genotypes. ENT error rate does
seem to degrade faster than that of 2SNP and HAP, with HAP
being the most accurate for 20% missing genotypes. 2SNP
and ILP runtimes seem to be insensitive to the amount of
missing data, while ENT and HAP runtimes increase with the
percentage of missing SNP genotypes. ENT remains much
faster than the other methods even for 20% missing genotypes.

D. Effect of pedigree information

In a third set of experiments we assessed improvements in
accuracy due to the availability of pedigree information. Two
synthetic datasets were created based on the HapMap Phase
I CEU and YRI haplotype data for chromosome 22. Families
with two parents and two children were created for each trio
in these populations by starting from the reference phasing of
parent genotypes and then creating two children genotypes by
randomly pairing parent haplotypes. The resulting genotypes
were used to create three different datasets incorporating vary-
ing degrees of knowledge about true inheritance patterns (see
Figure 7):

• Children genotypes treated as unrelated individuals;
• Two independent parents-child trios for each family (this

allows parent genotypes to be phased differently in the two
trios); and

• One pedigree per family describing the full inheritance
pattern between the four members.

Fig. 7. Full-sibling experiment: (A) children treated as unrelated individuals;
(B) independent trio decomposition; and (C) full inheritance pattern.

Table VIII gives child genotype phasing accuracy obtained
by running the fastPHASE, 2SNP, HAP, ILP, and ENT algo-
rithms on the three datasets, using each method with default
parameters. Since there is no missing data in our MapMap
Phase I genotypes, RGE is always equal to 0. To enable a
meaningful comparison across the three scenarios, which result
in different numbers of ambiguous SNP genotypes, in addition
to RSE we also report the average number of switches required
to transform the inferred haplotypes of a child into the reference
ones. The performance of ENT compared to that of the other
methods is consistent with the results presented in Section IV-
B. As expected, for all methods that can be run on multiple
datasets (ENT, 2SNP, and HAP) the absolute accuracy (as
measured by the number of switches per child) is improving
with the amount of pedigree information. Interestingly, the
relative accuracy measured by RSE is also improving with
the amount of pedigree information for ENT and HAP, but



Deleted ENT 2SNP ILP HAP
CEU YRI CEU YRI CEU YRI CEU YRI

RGE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0% RSE 1.23 1.66 4.98 8.97 3.85 4.77 1.35 1.58

CPU 1.94 2.01 1248 1380 855 887 942.43 1168.76
RGE 4.89 7.05 6.01 10.51 18.46 23.56 5.25 6.28

1% RSE 1.51 2.05 5.06 9.06 4.50 5.56 1.39 1.66
CPU 2.89 3.03 1298 1445 863 895 991.22 1255.70
RGE 5.18 7.69 6.02 10.58 18.75 23.86 5.36 6.43

2% RSE 1.82 2.48 5.12 9.15 5.04 6.28 1.40 1.79
CPU 3.97 4.16 1306 1397 860 912 1116.14 1293.91
RGE 5.97 8.95 6.54 11.28 18.58 24.12 5.87 7.00

5% RSE 2.76 3.72 5.33 9.39 6.72 8.44 1.67 2.17
CPU 7.95 8.28 1318 1423 828 906 1211.81 1431.53
RGE 7.43 11.11 7.26 12.70 19.48 25.61 6.76 8.18

10% RSE 4.32 6.05 5.62 9.90 9.25 12.04 2.21 3.06
CPU 16.77 17.40 1322 1425 824 919 1394.27 1648.70
RGE 10.65 15.51 9.66 15.99 22.66 29.53 8.42 10.66

20% RSE 8.13 11.66 6.39 10.91 14.58 19.27 3.38 5.29
CPU 44.47 47.03 1294 1460 832 995 1800.33 2289.53

TABLE VII

COMPARISON RESULTS FOR HAPMAP PHASE I CHROMOSOME 22 (15,548 SNPS FOR CEU AND 16,386 SNPS FOR YRI) WITH 0-20% DELETED SNPS.

not for 2SNP. The ENT version that uses the full pedigree
information outperforms all other methods. Including the full
pedigree information also speeds up the ENT algorithm, as it
reduces the number of zero-recombination phasings that need
to be enumerated in each local improvement iteration.

V. CONCLUSIONS

In this paper we have presented a highly scalable algorithm
for genotype phasing based on entropy minimization. Exper-
imental results on large datasets extracted from the HapMap
repository show that our algorithm is several orders of mag-
nitude faster than existing phasing methods while achieving
a phasing accuracy close to that of best existing methods. A
unique feature of our algorithm is that it can handle related
genotypes coming from complex pedigrees, which can lead
to significant improvements in phasing accuracy over methods
that do not take into account pedigree information. The open
source code implementation of our algorithm and a web inter-
face are publicly available at http://dna.engr.uconn.
edu/˜software/ent/.

In ongoing work we are integrating the ENT algorithm
with Hidden Markov Models of haplotype diversity to obtain
scalable methods for genotype error detection, haplotype fre-
quency estimation, and haplotype-based whole-genome disease
association.
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