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Abstract

Path delay fault testing becomes increasingly important due to
higher clock rates and higher process variability caused by shrink-
ing geometries. Achieving high-coverage path delay fault testing
requires the application of scan justified test vector pairs, cou-
pled with careful ordering of the scan flip-flops and/or insertion of
dummy flip-flops in the scan chain. Previous works on scan syn-
thesis for path delay fault testing using scan shifting have focused
exclusively on maximizing fault coverage and/or minimizing the
number of dummy flip-flops, but have disregarded the scan wire-
length overhead. In this paper we consider both dummy flip-flop
and wirelength costs, and focus on post-layout formulations that
capture the achievable tradeoffs between these costs and delay fault
coverage in scan chain synthesis.

1 Introduction

Scan-based path delay fault testing requires the application of two
test vectors: the first test vector, or initialization vector, initializes
the logic to a known state while the second vector, or activation
vector, activates the targeted fault, causing a transition to be prop-
agated along the path under test.1 It is well-known that at-speed
application of test vector pairs to the primary inputs has low path
delay fault coverage [4]. Improved coverage can be achieved by
using scan chaining, which has become the design-for-test (DFT)
technique of choice for stuck-at fault testing [1].

A scan chain is formed of scan flip-flops, which are some or
all of the flip-flops existing in a design. One end of the scan chain
appears as a primary input (PI) and the other end appears as a pri-
mary output (PO). Standard scan-based delay fault testing involves
justifying a test vector by giving clocks to the circuit placed in test
mode, giving one (scan shifting) or two (functional justification)
clock(s) to the circuit in normal mode, then shifting out the result-
ing flip-flop values by giving clocks in test mode.

There are two techniques to produce the vector pairs for path
delay fault testing - functional justification and scan shifting. With
functional justification, the initialization vector not only sensitizes
the proper paths but also produces the activation vector. On the
other hand, with scan justification the activation vector is produced
by a single shift of the initialization vector. Some pros and cons of
the two techniques are as follows.
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1More general tests, such as validatable non-robust tests [22], require the appli-
cation of a set of test vector pairs. Our algorithms can handle such tests after minor
modifications.

• It is known that test generation complexity using scan shift-
ing is typically lower than that using functional justification.
To save test generation time, vectors may be generated using
scan shifting first, and functional justification may be used for
faults that cannot be tested by scan shifting. This approach
was studied in [7] and a savings of 30% of test generation
time was reported.

• It has been argued that path delay faults which cannot be
detected by functional justification are likely to be function-
ally false paths, but identification of functionally untestable
paths is a hard problem [16]. Several faults that cannot be
detected using functional justification (by commercial ATPG
tools) may be detected by scan shifting.

• Vectors generated using functional justification have the ad-
vantage of being scan order independent. This allows scan
order to be driven by layout such that the wirelength is mini-
mized. However, there may be multiple equi-wirelength scan
chain orderings, some of which may be conducive to scan jus-
tification based path delay testing. It is therefore possible to
increase fault coverage with little or no impact on layout over-
head of scan.

The requirement that the activation vector must be obtained
from the initialization vector by one-bit shifting along the scan
chain [23] constrains scan chain synthesis for delay fault testing
using scan shifting. In general, not all activation vectors can be re-
alized in this way once we fix the order of the flip-flops in the scan
chain. Under the standard practice of using a single scan-enable
signal, with scan chain edges always linking the non-negated data
output pin of the source flip-flop to the data input pin of the desti-
nation flip-flop, we can capture the interdependence between test-
vector pairs and scan chain order as follows:

Definition 1 The scan chain edge between flip-flop i and flip-flop j
is forbidden by (or conflicts with) a test with initialization vector u
and activation vector v if either u(i) = 0 and v( j) = 1, or u(i) = 1
and v( j) = 0.

Note that this differs from the conflict definition given by Nor-
wood and McCluskey [21], which forbids an edge between flip-flop
i and flip-flop j whenever both i and j have defined values (i.e., ei-
ther 0 or 1), even if the two values are equal. The definition in [21]
leaves the freedom to arbitrarily select for each flip-flop the data
output pin driving the outgoing scan chain edge, but is excessively
restrictive from a coverage point of view.

Scan chain edge i→ j can be made compatible with all conflict-
ing tests either by “enhancing” flip-flop j to store an additional bit
or by inserting a separate 1-bit flip-flop between i and j. We will
refer to this operation as inserting a dummy flip-flop in the edge
i→ j.



An early approach to ensuring high-coverage delay fault testing
is the so-called “enhanced-scan” [19, 10], in which all scan flip-
flops are augmented by dummy flip-flops. Enhanced-scan makes
possible the application of any pair of initialization/activation test
vectors by interleaved scanning, but has a high cost in terms of
die area, test time, and circuit performance degradation. A differ-
ent approach, proposed in [20], is to use standard scan flip-flops
and order them in the scan chain so as to maximize the number
of applicable test vector pairs from the given set. Combining the
two approaches was first proposed in [7], which suggested to fol-
low coverage-driven flip-flop ordering by partial dummy flip-flop
insertion. More recently, [21] proposed algorithms for complete
path delay coverage by simultaneous flip-flop ordering and mini-
mal dummy flip-flop insertion, and [11] studied similar formula-
tions with additional consideration of scan chain routing costs.

Together with high fault coverage, a significant concern in scan
synthesis is the wirelength overhead, since excessive scan wire-
length can compromise the routability of the design and degrade its
performance. While this overhead has received considerable atten-
tion in the context of stuck-at fault testing [3, 5, 6, 8, 12, 15, 17, 18],
previous works on scan synthesis for delay fault testing have fo-
cused on maximizing delay fault coverage without regard to any
scan overheads [20], achieving a certain coverage factor with mini-
mum number of dummy flip-flops but without regard of wirelength
cost [7, 21], or achieving full coverage regardless of a potentially
high wirelength cost [11].

In this paper we consider both dummy flip-flop and wirelength
costs and focus on post-layout formulations that capture the achiev-
able tradeoffs between these costs and delay fault coverage in scan
chain synthesis. Layout information is beneficial to scan chain syn-
thesis in two important ways: (1) it enables higher ATPG selectivity
in the choice of paths to be tested due to the availability of accurate
path criticalities, and (2) it makes possible accurate estimation of
scan routing cost and impact on circuit performance, thus enabling
better informed coverage-cost tradeoff decisions.

Our contributions include:

• An efficient heuristic for maximizing delay fault coverage by
simultaneous layout-aware scan chain synthesis and insertion
of a bounded number of dummy flip-flops.

• A compact ILP formulation for the problem of optimally in-
serting a number of dummy flip-flops in a given scan chain.
This ILP is solved in practical runtime using the CPLEX com-
mercial optimizer for designs with up to tens of thousands of
scan flip-flops.

• A comprehensive empirical evaluation of the proposed algo-
rithms on industry testcases, including a detailed analysis of
the tradeoffs between delay fault coverage on one hand and
number of dummies and scan chain wirelength on the other
hand.

The rest of our paper is organized as follows. In Section 2, we
give an efficient heuristic for the problem of maximizing path delay
coverage by scan chain synthesis and simultaneous insertion of a
bounded number of dummy flip-flops. In Section 3 we prove the
NP-hardness of, and give a compact ILP formulation for, the prob-
lem of computing achievable tradeoffs between delay fault cov-
erage and the number of dummy flip-flops inserted in an already
routed scan chain. Finally, we present experimental results in Sec-
tion 4 and conclude in Section 5.

2 Formulations for Post-Layout Coverage Driven Scan Chain
Synthesis

In [11], the post-layout scan chain synthesis problem is formulated
as follows:

Scan Synthesis for Complete Delay Fault Coverage
(CompleteDFC-Scan)
Given:

• Set of n placed flip-flops F , scan-in/scan-out pins SI and SO
• Set of m delay fault tests T

Find:

• Scan chain ordering π of F ∪{SI,SO} starting with SI and
ending with SO

Such that:

• The number of dummy flip-flops needed to achieve complete
coverage (i.e., the number of edges in π that conflict with at
least one test of T ) is minimized

The above formulation is appropriate when complete fault cov-
erage is a design requirement. However, for most designs full cov-
erage is not required. Rather, designers decide on a design-by-
design basis the best tradeoff between delay fault coverage and scan
chain cost (wirelength, dummy flip-flops, impact on performance,
etc.). A formulation that captures this tradeoff is the following:

Scan Synthesis for Max Delay Fault Coverage
(MaxDFC-Scan)
Given:

• Set of n placed flip-flops F , scan-in/scan-out pins SI and SO
• Set of m delay fault tests T and positive weights wt , t ∈ T

(The weights wt represent the number – or possibly average
criticality – of faults tested by test t; multiple faults per test
vector pair are common due to the use of test vector com-
paction in ATPG.)

• Upperbound D on the number of dummy flip-flops

Find:

• Scan chain ordering π of F ∪{SI,SO} starting with SI and
ending with SO

• Set of covered tests C ⊆ T

Such that:

• At most D scan chain edges πi→ πi+1 conflict with tests in C
• Subject to this constraint, the total weight of tests in C is max-

imized and the total length of the scan chain is minimized

MaxDFC-Scan generalizes various problem formulations in
[7, 11, 20, 21], and therefore is NP-hard. Thus, we cannot expect
to find polynomial-time algorithms that solve MaxDFC-Scan op-
timally in polynomial time [9]. We now present a MaxDFC-Scan
heuristic which can efficiently handle instances with tens of thou-
sands of scan flip-flops and thousands of test vector pairs arising in
today’s high-end designs.

The Three-Phase MaxDFC-Scan Heuristic. Our heuristic for
MaxDFC-Scan (Figure 1) runs in three phases. In the first phase
we construct a set of D + 1 scan chain fragments using a multi-
fragment greedy heuristic (Figure 2) similar to that used in the TSP
literature [14]. Since the edges within each of the k + 1 fragments
will not be augmented by dummy flip-flops, we want them to be
compatible with as many faults as possible. Therefore, the multi-
fragment greedy heuristic attempts to use the edges in the order of
decreasing number of conflicting tests. Note that the number of
conflicting tests changes during the algorithm, since once a fault



Input: Set of n flip-flops F, scan-in/scan-out pins SI and SO, set of m
delay fault tests T , maximum number D of dummy flip-flops
Output: Scan chain ordering π of F ∪{SI,SO} starting with SI and
ending with SO and set of covered tests C ⊆ T

Phase 1: Run the multi-fragment greedy algorithm (Figure 2) to get
scan chain fragments P0, . . . ,PD+1 and set of covered tests C .

Phase 2: Construct a complete graph G′ with vertex set
{SI,SO}∪{P0 , . . . ,PD+1} and edge-costs given by pin-to-pin
wirelength, then return the ATSP path from SI to SO computed by
running on G′, e.g., LKH [13] or ScanOpt [5]. Insert dummy
flip-flops on the edges of the path, then use these edges to stitch the
fragments P0, . . . ,PD+1 into a scan chain π.

Phase 3: Construct the auxiliary graph G′′ by adding to π the edges
compatible with all faults in C . Assign edge-costs given by
pin-to-pin wirelength, then return the ATSP path from SI to SO
computed by running on G′′, e.g., LKH [13] or ScanOpt [5].

Figure 1: The three-phase MaxDFC-Scan heuristic.

is made untestable by the inclusion of an edge into the chain frag-
ments, it should no longer be counted as conflicting with the re-
maining edges.

Simultaneously, the multi-fragment greedy heuristic also at-
tempts to keep the wirelength of the fragments as low as possi-
ble. It does so by growing the fragments as much as possible using
short edges before starting to use longer edges. To consider both
wirelength and coverage simultaneously, we rank the edges accord-
ing to a weighted combination of length normalized by the average
length, and number of incompatible faults (see Step 2 in Figure
1). First, the algorithm considers edges with a weighted combina-
tion value below a threshold value T (we use an initial threshold of
1.4 in our experiments). The parameter w determines the relative
weight of normalized length vs. lost coverage, and can be modified
to achieve different tradeoffs between the wirelength and the cover-
age of the final tour. In our experiments we use w = 2.0. The frag-
ments are then extended iteratively using these edges (edges with
least number of incompatible faults first, and breaking ties based
on wirelength). When no edges are left, we increase the threshold
T by a multiplicative factor (we use f = 1.2), and attempt to grow
the fragments in the same manner using the edges that now become
eligible, i.e., have a weighted combination of length and number
of incompatible faults below T . The experimental conclusions that
we report below are not very sensitive to the choice of the T and f
parameter values.

In the second phase, we combine the D+1 fragments into a sin-
gle scan chain with the help of D dummy flip-flops. Since the objec-
tive of this phase is to increase the wirelength of the scan chain by
the least amount possible, we perform this “fragment stitching” by
using a wirelength driven ATSP solver (even high-quality solvers
such as LKH [13] can be used in practice since the number of frag-
ments is small).

In the third phase, all edges compatible with surviving faults are
added to the tour, and an ATSP solver is called to further decrease
the length of the tour and possibly remove some of the dummy
buffers.
Extension to Multiple Scan Chains. Multiple scan chains are
known to reduce the testing time significantly. Our heuristics are
easily modifiable to take care of multiple scan chains. Assuming
that all flip-flops are labeled by the scan chain they belong to,2 the
modified heuristic considers only those edges which connect flip-
flops of the same scan chain. If up to D dummy flip-flops can be

2This may be done by a DFT tool like Synopsys DFT Compiler.

Input: Set of n flip-flops F, set of m delay fault tests T , upperbounds D,
weight w, threshold T and increment factor f
Output: D+1 scan chain fragments and set of covered tests C ⊆ T

1. Initializations:

For each t ∈ T , Et ← /0
For each e ∈ E, T e← /0
For each (i, j) ∈ E, `(i, j)← length of edge (i, j)

For each (i, j) ∈ E and t ∈ T , if t forbids (i, j) then
Et ← Et +(i, j) and T (i, j) ← T (i, j) + t

E ′← /0; C ← T

2. Distribute all edges (i, j) ∈ E with

w∗ `(i, j)

Average `(e), e ∈ E
+ |T e| < T

into buckets based on ∑t∈T e
wt

3. While |E ′|< |F |−D−1 do

If all buckets are empty then T ← f ∗T and goto 2
Else, select a shortest edge (i, j) from the lowest non-empty
bucket and delete it from E;

If (i, j) does not create a cycle or a vertex of degree greater than 2
with the other edges of E ′ then

For each t ∈ T (i, j) and each e ∈ Et remove t from T e and
update e’s bucket accordingly

E ′← E ′+(i, j)
C ← C −T (i, j)

3. Return C and the D+1 paths formed by the edges of E ′

Figure 2: The multi-fragment greedy algorithm - Phase 1

added, and there are k scan chains, then the algorithm stops with
D+k fragments. Such a modification is likely to speedup the multi-
fragment greedy heuristic since fewer edges are considered. Phase
2 inserts the dummy flip-flops in the scan chains and labels them
with the scan chain they belong to. Phase 3 is performed on each
scan chain independently.

3 Optimal Dummy Flip-Flop Insertion in a Given Scan Chain

In this section we consider minimum dummy flip-flop insertion in
a scan chain constructed in a previous design phase (possibly us-
ing the three-phase heuristic in Section 2). We assume that a set of
spare sites available for dummy flip-flop insertion have been iden-
tified, and this results in the identification of a subset of the scan
chain edges that are eligible for dummy flip-flop insertion. Clearly,
if there is no bound on the number of dummy flip-flops that can be
inserted then complete test coverage is optimally guaranteed by in-
serting one dummy flip-flop in each scan chain edge that conflicts
to at least one test; the required set of dummies can be computed
in O(nm) time. In practice it is useful to impose an upperbound on
the number of inserted dummies while maximizing path delay fault
coverage.3 This motivates the following problem formulation:

Maximum Coverage Dummy Insertion (MCDI) Problem
Given:

• Valid scan ordering π = (π0,π1, . . . ,πn+1) of F ∪ {SI,SO}
with π0 = SI and πn+1 = SO and set E of scan chain edges
eligible for dummy flip-flop insertion

3An alternate formulation seeks a minimum number of dummies that guarantee a
certain fault coverage [7].



Vector fu fu+1 fv fv+1 Case

Initialization 0 1 1 0 if fv = fu+1
Activation 1 1 1 0
Initialization 1 0 0 1 if fu = fv+1
Activation 1 0 1 1
Initialization 0 1 1 0 otherwise
Activation 1 1 1 0

Table 1: Flip-flop values used in proof of Theorem 1

• Set of m delay fault tests T and non-negative weights wt , t ∈
T

• Upperbound D on the number of inserted dummy flip-flops

Find:

• D scan chain edges (πi,πi+1) ∈ E in which dummy flip-flops
will be inserted

• Set of covered tests C ⊆ T
Such that:

• None of the scan chain edges conflicts with the tests in C after
dummy insertion

• The total weight of tests in C is maximum possible subject to
the above constraint

NP-Hardness. Cheng et al. [7] claim NP-hardness of MCDI based
on equivalence to the set covering problem. However, MCDI is not
equivalent to set covering, since the set of faults made testable by
inserting a dummy flip-flop cannot be determined independently of
the other inserted flip-flops. A correct NP-hardness proof is given
below:

Theorem 1 The MCDI problem is NP-hard.

Proof. We will show that the NP-hard CLIQUE problem re-
duces in polynomial time to MCDI. Given a graph G = (V,E) and
a positive integer k, the CLIQUE problem asks if G has a com-
plete subgraph of size k. Without loss of generality, assume that
V = {1, . . . , |V |}. We construct a MCDI instance with n = |V |+ 1,
F = { f1, . . . , fn}, and πi = fi for every i = 1, . . . ,n. For each edge
(u,v) ∈ E construct a test vector pair t(u,v) which conflicts with
edges fu → fu+1 and fv → fv+1 but no other edges of π. The test
pair t(u,v) can be constructed by assigning don’t care values to all
flip-flops except fu, fu+1, fv, and fv+1, for which the values are set
as in Table 1. It is easy to see that G has a clique of size k if and
only if D = k dummies can be inserted on the edges of π such that
k(k−1)/2 tests become testable, i.e., deciding CLIQUE reduces to
optimizing MCDI. ut

ILP Formulation. In the following we present an integer linear
program (ILP) formulation for the MCDI problem. This formula-
tion can be optimally solved in practical running time using com-
mercial general-purpose ILP solvers such as CPLEX even for very
large testcases (scan chains with tens of thousands of flip-flops).
Let Et be the set of scan chain edges conflicting with test t. MCDI
can be formulated as an integer linear program (ILP) by using two
sets of 0/1 variables:

• xi, i = 1, . . . ,n, where xi is set to 1 if edge πi→ πi+1 ∈ E and
a dummy flip-flop is inserted between πi and πi+1, and to 0
otherwise, and

• yt , t ∈ T , 0 < |Et | ≤ D, where yt is set to 1 if test t does
not forbid any of the scan chain edges after inserting the D
dummy flip-flops, and to 0 otherwise.4

4Tests which conflict with no scan chain edge (|Et | = 0) are always going to be
covered, while tests that conflict with more than D edges (|Et | > D) cannot be made
testable by inserting D or fewer dummies. Consequently these tests are not considered
in ILP (1).

The ILP formulation is the following:

Max ∑
t∈T , 0<|Et |≤D

wtyt (1)

s.t.
n−1

∑
i=1

xi ≤D (2)

|Et |yt ≤ ∑
i∈Et

xi ∀ t ∈ T , 0 < |Et | ≤ D (3)

xi = 0 if πi→ πi+1 6∈ E
xi ∈ {0,1} if πi→ πi+1 ∈ E
yt ∈ {0,1} ∀ t ∈ T , 0 < |Et | ≤ D

It is easy to see that ILP (1) is equivalent to MCDI: constraint
(2) ensures that no more than D dummies are inserted, while con-
straints (3) make sure that a test t is counted by the objective
function as covered only if dummies have been inserted on all
scan edges conflicting with it. ILP (1) has compact size (at most
n + |T | − 1 binary variables and at most |T |+ 1 constraints), and,
as shown by the results in Section 4, can be solved to optimal-
ity in practical running time by the commercial solver CPLEX. If
needed, significant speedups can be achieved in practice by instruct-
ing CPLEX to stop as soon as it finds feasible solutions known to
be within a small cost of the optimum.

4 Experimental Study

In this section we describe our experimental setup and results. The
testcases used in our experiment are described in Table 2. Reported
ILP runtimes are obtained using CPLEX 7.0 on a 300MHz Sun
Ultra-10 with 1GB RAM. The three-phase MaxDFC-Scan heuristic
and ScanOpt were run on a 2.4GHz Intel Xeon server with 2GB
RAM.

Test Source # Cells # Scan # Paths Functional
Case FFs Coverage

eth Industry 19575 9841 2792 0%
s38417 ISCAS’89 6291 1564 806 48.76%
s13207 ISCAS’89 1648 627 1563 45.68%
s9234 ISCAS’89 529 145 456 35.31%
AES opencores.org 10465 554 441 76.19%
DES3 opencores.org 3912 128 1078 73.75%

Table 2: Test Case Parameters

Since vectors using functional justification can be used to test
faults irrespective of the scan order, we separate the paths that are
testable by functionally justified vectors. We use a commercial
ATPG tool, Synopsys TetraMAX to generate robust vectors using
functional justification for the testcases. We obtain a scan order us-
ing each of three different flows, and compare the final coverages
and scan chain wirelengths.

For each of the testcases we conducted the experiments in the
following way:

1. The Verilog RTL design is synthesized using Synopsys Design
Compiler in an Artisan TSMC 0.13 µm library.

2. The most critical paths and their sensitizing test patterns were
found using Synopsys PrimeTime. We select the top 5000 crit-
ical paths or the paths that have a slack less than 30% of the
clock period, whichever is less. Then the true paths (as de-
tected by PrimeTime) are selected and used for testing.



3. Robust vectors using functional justification are generated for
the synthesized netlist using Synopsys TetraMAX.5 We con-
sider only robust tests in our experiments since this type of
test is guaranteed to detect excessive delay on the given path
irrespective of timing on other paths. Robust tests can also be
useful for characterizing the timing of a particular path, or for
better diagnostic resolution of a failing path delay test. Note
however that requiring only robust path delay fault tests will
result in lower overall coverage.

4. Path sensitization vectors from Synopsys PrimeTime are used
to construct robust vectors to be applied using scan justifica-
tion. The paths tested using functional justification in the pre-
vious step are excluded. Only this set of test vectors is passed
on to the scan chain ordering flows.

5. The synthesized design is placed with Cadence PKS to gener-
ate a placed DEF netlist.

6. We do the scan chain ordering using each of the following:

• Flow I: Placement driven scan chain ordering flow.
Cell-to-cell distances from the placed netlist are used
to drive the ScanOpt TSP solver [5]. If there are un-
covered critical paths among those not robustly testable
via functional justification, we perform optimal dummy
flip-flop insertion by solving ILP (1) for the ScanOpt
order.

• Flow II: Test driven scan chain ordering flow.
We use ScanOpt as the TSP solver to solve the 0/1 TSP
generated as in [11] based on 100% coverage of the crit-
ical paths that are not robustly testable via functional
justification.

• Flow III: Layout aware test driven scan chain ordering.
We run our multi-fragment greedy heuristic using the
robust tests returned by PrimeTime for critical paths
that are not robustly testable via functional justification.
Placement information is used to generate the required
number of ordered fragments, then the fragments are
stitched into a single tour by inserting dummy flip-flops
as described in Section 2.

7. We calculate the coverage by finding the number of faults
compatible with the generated scan order and report it. The
scan chain wirelength is estimated in all flows by summing
up cell-to-cell Manhattan distances between FF locations.

Table 3 gives the path coverage and wirelength of the compared
flows for zero dummies inserted. The scan coverage rows show how
many of the critical paths received as input by the 3 flows (i.e., of
the critical paths that are not robustly testable using functional jus-
tification) can be robustly tested by using the scan order produced
by each flow. The total coverage rows show how many of the crit-
ical paths for which TetraMAX generates robust tests are testable
using either scan or functional justification. On the reported test-
cases, all runtimes for ScanOpt range from 200 to 600 seconds, but
are in some sense not comparable directly since alternative flows
either read in and solve, or simply solve, the ATSP instance; the
read-in time is a substantial portion of total runtime in the former
case. MFG runtimes range from 0.5 to 440 seconds.

As expected, Flow I has shortest wirelength, but poorest fault
coverage. Flow II has 100% total fault coverage in all testcases,
but uses as much as 25× more wirelength than Flow I. Flow III

5The options set delay -diagnostic propagation and add pi
constraints 0 test se are used to get robust vectors using functional justi-
fication.

Testcase Measure Flow I Flow II Flow III

eth Scan Coverage (%) 38.50 100.00 100.00
Total Coverage (%) 38.50 100.00 100.00
Wirelength (mm) 74.33 852.98 77.69

s38417 Scan Coverage (%) 0.00 100.00 19.61
Total Coverage (%) 48.76 100.00 58.81
Wirelength (mm) 13.06 365.12 13.95

s13207 Scan Coverage (%) 68.90 100.00 100.00
Total Coverage (%) 83.12 100.00 100.00
Wirelength (mm) 5.05 80.13 5.27

s9234 Scan Coverage (%) 33.22 100.00 100.00
Total Coverage (%) 56.80 100.00 100.00
Wirelength (mm) 1.22 10.09 1.46

AES Scan Coverage (%) 100.00 100.00 100.00
Total Coverage (%) 100.00 100.00 100.00
Wirelength (mm) 5.78 123.07 5.78

DES3 Scan Coverage (%) 86.57 100.00 100.00
Total Coverage (%) 96.47 100.00 100.00
Wirelength (mm) 1.39 11.75 1.43

Table 3: Scan coverage and wirelength of the compared flows for 0
dummies inserted.

#Dummy Flow I Flow III
Coverage(%) Time(s) Coverage(%) Time(s)

0 0.00 0.04 19.61 2.94
5 0.97 0.05 41.40 2.97

10 3.39 0.31 66.10 2.88
15 9.69 3.10 75.30 2.91
20 13.32 70.70 84.02 2.90
25 16.22 330.64 88.86 2.86
30 22.52 623.88 94.67 2.85
35 34.38 361.89 97.58 2.84
40 45.28 135.92 98.31 2.81
45 53.75 176.80 99.76 2.84
50 67.55 25.19 100.00 0.51

Table 4: Fault coverage using scan shifting on testcase s38417 as
function of added dummies. Time reported for flow I is the time
taken by the CPLEX ILP implementation for dummy insertion.

achieves an excellent tradeoff between coverage and wirelength: it
achieves 100% total fault coverage in 5 of the 6 testcases, with a
wirelength comparable to that of Flow I (see also Figure 3).

We put special emphasis on the zero dummies case since we
are able to achieve reasonably high coverages, and also since ECO
insertion of a large number of dummies implies significant over-
heads.6 In some cases, dummy insertion results in drastic improve-
ment in coverage as shown by the results of our heuristic for the
testcase s38417 in Table 4.

The quality of flip-flop orderings produced by Flows II and III
is reflected by the fact that 100% coverage for testcase s38417 is
achieved after inserting only a small number of dummies. In con-
trast, the purely wirelength-driven Flow I needs over 100 dummy
flip-flops to achieve 100% total coverage, and the classic enhanced-
scan methodology would indiscriminately enhance all 1564 flip-
flops. Note that, as the number of dummies increases, the wire-
length of scan chains produced by Flows I and II remains constant,
while the wirelength cost incurred by Flow III is slightly decreasing
due to the second-phase optimization.

Table 4 also shows the runtime needed by CPLEX to solve the

6When used, dummy flip-flops are typically inserted at spare sites available in the
design. Spare sites are selected for each dummy flip-flop by solving a classic minimum
cost assignment problem [2], in which the cost of assigning a spare site to a scan chain
edge selected for dummy insertion is equal to the detour wirelength (recall that Phase
2 of the MaxDFC heuristic in Figure 1 relies on point-to-point distances).



Figure 3: Scan chains generated by Flows I, II & III on testcase s9234.

ILP in Section 3 for testcase s38417. The table shows that CPLEX
runtime is dependent on the bound on the number of dummies. For
very small or very large bounds the ILP is easy to solve and the
branch and bound algorithm needs few iterations. For intermediate
bound values the branch and bound tree grows larger and more it-
erations are needed to prove optimality. However, even in this case
the runtime remains acceptable.

5 Conclusions

In this work we have proposed algorithms for computing the achiev-
able tradeoffs in scan chain synthesis between number of dummy
flip-flops, scan chain wirelength, and path delay fault coverage.
With our layout and test-aware scan chain ordering methodology,
we see up to 200% improvement in path delay coverage with just
20% increase in wirelength overhead compared to a layout-driven
scan chain ordering approach. Also, up to 25x improvement in
wirelength is achieved on the testcases compared to a test-driven
scan chain ordering approach.

Ongoing work seeks to extend these algorithms to redundant
test-vector pairs, to exploit additional degrees of freedom such as
selection of the flip-flop data output pins used to connect scan chain
edges, and to improve routability of resulting scan chains by using
the available congestion information. As discussed above, exten-
sions to multiple scan chains are also possible. We are also inte-
grating our methods with dummy flip-flop placement and detailed
routing to confirm that estimated wirelength savings reported in
Section 4 correspond to actual (post-detailed routing) wirelength
savings.
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