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ABSTRACT 

Structural Variations (SVs) are genomic rearrangements that include both copy-number 

variants, such as insertion, deletions, duplications and balanced variants like inversion 

and translocations. These SVs   are getting more attentions for research and investigation 

because of their role on human phenotype, genetic diseases and genomic rearrangements. 

Evolution of Next-generation Sequencing has provided golden opportunities to 

investigate these variants and make their wider and clear spectrum in human genome. 

This investigation includes identification of type of SVs and their breakpoints at base pair 

level. For their effective identification and breakpoint resolution, many techniques are 

devised mainly based on paired end read. With relatively low cost and high efficiency 

different platforms including ION TORRENT, Illumina can generate high throughput 

Single End reads. In this thesis we provide a novel approach based on Single End reads to 

detect genomic inversions in human genome. We also compare our approach with 

existing methods based on paired end reads and show that our approach is competitive in 

terms of sensitivity and precision at relatively low coverage for detection of breakpoints 

of genomic inversion. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

The successful completion of Human Genome Project opened up a new avenue for the 

comparative study of human genome by providing '3 billion bases' reference genome. 

After this, several comparative genomic studies are conducted which have shown that 

there are large scale of different type of Structural Variations (SV) in human genome 

ranging from single base to several megabases. These SV may cause the copy-number to 

be varied with respect to reference called Copy Number Variant like deletions, 

duplication (tandem duplications and interspersed duplication)and Insertions(novel 

sequence insertion and mobile element insertion) or  may not change copy-number but 

change the order and orientation of sequences with respect to reference  called Copy 

Number Invariants. This includes Inversion and Trans-location of gene sequence. 

Similar to other human genomic alterations, SV can have impact on human phenotype   

by disrupting the usual DNA. Diseases can be a consequence of this ability to interfere 

with gene function, protein function, and gene expression. Therefore, identifying the type 

of SV and finding their precise location of occurrence (breakpoints) is cardinal in 

genomic research. If there exists problem  in resolving breakpoints even with few bases it 

will be highly ambiguous to make a conclusion whether SVs falls  in regulatory region or 

in overlapping exons which leads to delusion of functional impact of SVs. These SVs can 

be detected only when DNA sequences are compared with standard sample called 

reference. Two techniques have been used to identify SVs in the human genome: 

Technique based on hybridization (array comparative genomic hybridization (aCGH) and 
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Single Nucleotide Polymorphism array technology) and Technique based on end 

sequence profiling (ESP), also called paired-end mapping [5].  

Hybridization techniques test the relative frequencies of probe DNA segments between 

two genomes [6]. Although by considering allelic ratios at heterozygous sites, they are 

able to detect CNVs like insertions and deletions, they can only detect handful of 

balanced variant like, inversions [7]. Newer techniques and methods are being devised 

for detection of Structural Variations (CNV and Inversion and trans-location) with 

emergence of cost effective and high throughput sequencing technologies where two 

paired reads are generated at an approximately known distance in the donor genome 

containing SV. Although Sequencing of SV allows us to identify their location of base-

pairs and type, finding proper resolution of their breakpoints are still challenging. All the 

approaches defined and developed to find breakpoints of SV to date basically rely on 

Pair-End reads. Unfortunately, methods based on Pair-End reads have limitation in 

breakpoint resolution because of uncertainty in distance between sequenced ends. In this 

context, we have put forth a novel method for detection of genomic inversions that relies 

on Single End (SE) reads. 

To implement our method, we map SE reads generated from donor genome containing 

genomic inversion enabling ungapped alignments with reference genome. If a SE read is 

hovering a junction of inversion in one direction, we get the partial alignment of same 

read over other corresponding junction of inversion in opposite direction. Alignments of 

all such reads are processed based on their mapping location, orientation, number of 

softclipped bases, and number of mapped bases to infer the candidate breakpoints of 

inversions. The list of candidate breakpoints is filtered in the second phase to remove 
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false positives and final list of breakpoints are generated.  In this thesis we present our 

pipeline, results analysis based on simulated data and comparison with existing methods 

that are being used for the inversion detection in the sections 3.3, 3.4 and 3.5
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. 

CHAPTER 2 
 

BACKGROUND 
 
 

2.1 Basic Definition 

DNA: Deoxyribose nucleic acid or DNA is the most fascinating molecule in the entire 

world. Its massive amount of base pairs consisting of a varying number of genes (per 

organism) contains hereditary information that is used in the development and 

functioning of an entire organism. In fact, it is hard to imagine life or living without DNA 

being involved. The double helix structure that Watson and Crick discovered in the 

nineteen fifties holds many more mysteries than any other molecule could ever do; 

mysteries that are in need of elucidation [8]. This is probably what inspires us every day, 

in our quest of understanding DNA [1]. 

Structural Variations:  Structural variations used to be defined as all genomic 

rearrangements that are bigger than one thousand base pairs (>1 kb) [11, 12]. Since our 

detection techniques have further developed, the current definition can be adjusted to 

include all variations bigger than 50 base pairs [11].  Structural   variations in its broadest 

sense can even simply be defined as all genomic variations in an organisms genome that 

are bigger than one base pair [9]. Several different types of mutations fit these two last 

definitions: deletions, insertions (novel sequence insertions and mobile-element 

insertions), inversions, duplications (tandem duplications and interspersed duplications), 

and translocations [9]. The type of rearrangement can be identified by comparing the 

sequence of someone’s DNA sample to the sequence of another DNA sample. Usually, a 
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reference genome is used in this comparison. However, when trying to identify de novo 

rearrangements, the DNA sequence of the parents is used. De novo (or new) 

rearrangements are structural variations that a child has, but the parents of that child do 

not have. They are often a result of a rearrangement in the paternal chromosome of the 

germ cell during meiosis [14]. 

 Structural variations can be divided into several categories. Firstly, they are either 

recurrent or non-recurrent. Sometimes, rearrangements occur more often in a certain 

DNA fragment, due to favorable circumstances. They are therefore present in many 

individuals. These are recurrent structural variations, meaning that they happen more 

often. Non-recurrent structural variations on the other hand occur on rare spots in the 

DNA. Sometimes an individual can even seem to be the only one with a certain structural 

variation at a certain spot. Secondly, structural variations are either intrachromosomal or 

interchromosomal. Rearrangements in one chromosome are named intrachromosomal, 

while rearrangements between two chromosomes are called interchromosomal. Finally, 

structural variations can either occur in somatic cells or in germ cells. A rearrangement in 

a somatic cell only affects the organism in which the rearrangement has happened in. A 

mutation in a germ cell on the other hand will only have effect on the offspring [1].  
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Figure1:  figure showing Basic Structural Variations [11] 

Deletion: Deletion is a type of structural variation which causes loss of bases with respect 

to reference genome. 

Insertion: This type variation occurs when there are extra bases in donor genome with 

respect to reference genome. 

Duplication 

Segmental duplication or low-copy repeat: A segment of DNA >1 kb in size that occurs 

in two or more copies per haploid genome, with the different copies sharing >90% 

sequence identity. They are often variable in copy number and can therefore also be 

CNVs [15]. 
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Inversion:A segment of DNA that is reversed in orientation with respect to the rest of the 

chromosome. Pericentric inversions include the centromere, whereas paracentric 

inversions do not [15]. 

Translocation: A change in position of a chromosomal segment within a genome that 

involves no change to the total DNA content. Translocations can be intra- or inter-

chromosomal [15]. 

Indels: Abbreviated combination of insertions and deletions. Indels refers to DNA 

mutations. Indels involving one or two base pairs can have devastating consequences to 

the gene because translation of the gene is "frameshifted". Indels have a size ranging 

from 1 base pair upto 50 base pair [15]. 

Single Nucleotide Polymorphism: A single base substitution of one nucleotide with 

another observed in the general population at a frequency greater than 1%. 

Breakpoints: A breakpoint is the location at either end of structural variations. 
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2.2 SAM File Format 

SAM format is TAB-delimited. Headers are started with @ sign and there are other 

components in the following order. 

1. Query/template/pair Name  2. FLAG (bitwise FLAG) 3. Reference Name 4. Position 

(1-based left most position) 5. Mapping Quality (In Phred Scale) 6. CIGAR (String) 

7.Mate Reference Name (= if same as Reference Name) 8. Mate Position  (1-based 

Position) 9. Insert Size 10. Query sequence 11. Query Quality 12. Variable Optional 

fields  

@SQ SN:ref LN:45                              header  

r001      163       ref 7 30   8M3S  37   =      TTAGATAAAG  

Template   FLAG   Ref-name Position CIGAR Mapping Quality  Sequence Name 

   Figure 2: figure showing SAM Sequence 

Each bit in flag is defined as  

 FLAG   Description 

 0x1   templates having multiple segments in sequencing 

 0x2   each segment properly aligned according to the aligner 

 0x4   segments unmapped 

 0x8   next segments in the template unmapped 

 0x10   SEQ being reverse complemented 
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 0x20   SEQ of the next segment in the template being reversed 

 0x40   the first segment in the template 

 0x80   the last segment in the template 

 0x100   secondary alignments 

 0x200   not passing quality controls 

 0x400   PCR or optical duplicate 

CIGAR String represents the following CIGAR Operations 

 Op  Description 

 M  alignment match (can be a sequence match or mismatch) 

 I  insertion to the reference 

 D  deletion from the reference 

 N  skipped region from the reference 

 S  soft clipping (clipped sequences present in SEQ) 

 H  hard clipping (clipped sequences NOT present in SEQ) 

 P  padding (silent deletion from padded reference) 

 =  sequence match 

 X  sequence mismatch 
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2.3 Structural Variation in Human Genome 

Through different scientific studies, it has found that about all human being from around 

world has 99.9% of identical DNA sequence. Thus it is only the small fraction of genome 

that constitutes genetic variation between individuals and responsible for phenotypic 

variation and disease susceptibility [21, 22]. Before the breakthrough of sequencing 

technology, only the rare change in quantity and structure of chromosome were observed 

in comparison study of genetic variation which included aneuplodies, rearrangement, 

heteromorphism and fragile sites. These changes were large (~3 Mb or more) enough to 

be observed using microscope and thus named as microscopic structural variants. With 

the advancement of molecular biology along with sequencing technology, new variations 

such as SNPs, and small (<1kb) insertions, deletions and duplications were observed. 

After the completion of primary sequence of human genome more tools and techniques 

were developed that started characterizing human genetic compositions at nucleotide 

level. Peculiarly, genome-scanning array technologies and comparative DNA-sequence 

analyses revealed large number of genomic variations that are smaller than microscopic 

level and larger than those detected by conventional sequence analysis. Those variations 

are defined as submicroscopic structural variations [21]. Hundreds of submicroscopic 

copy-number variants (CNVs) and inversions have been described in the human genome 

with help of those technologies. Figures below shows the number of CNVs and 

Inversions found and their size distributions 
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Figure 3: Blue bars indicate reported CNVs; Red bars indicate reported inversion 

breakpoints; Green bars to the left indicate segmental duplications [21]. 

STAT Merged Level Sample Level 

CNVs 21801 610834 

Inversions 892 1734 

 

Table T1: Table showing the CNVs and inversions [21]. 
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Figure 4: Graph showing the increase in published CNV and InDel data 

that have been added to the database since the start in 2002 [21] 

 

Figure 5: Figure showing graph displays the size distribution of CNVs in 

the database [21]. 
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Similar to other CNVs, It has long been possible to detect inversions of large 

chromosomal regions in karyotype level in G-band karyotypes. But, this technique is 

confined to identification of variants that are several megabases in size, and even 

significantly larger inversions may not be detected if the inverted segment leads to slight 

difference in the banding pattern. From the very beginning of chromosomal study, 

inversions are always variants of interest but they were not identified for clinical 

significance [16]. Inversions are the most common human constitutional karyotype make 

inversions astonishing as genomic rearrangements is their role in recent primate 

evolution. Nine cytogenetically visible pericentric inversions were found while 

comparing the human and chimpanzee genomes [25] and many submicroscopic inverted 

sequences [26]. The majority of the nine visible inversions occurred along the 

chimpanzee lineage, but inversions on chromosomes 1 and 18 are specific to the human 

lineage. This finding implies that inversions are important genomic rearrangement that 

occurs quite frequently in primate chromosomal evolution. Thus identification of a large 

number of inversions between closely related species, and signatures of selection 

associated with these, will shed light on the role of genomic inversion in speciation [27]. 
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Figure 6:  Figure shows that the majority of inversions reported to date are in the 

10 to 100 kb size bin [20]. 

2.4 Role of Structural Variations 

Previously SNP (Single Nucleotide Polymorphism) was considered to be the most 

significant for the variation of genome but later it was found that there exists a structural 

variation which causes variation in thousands of base-pairs. These types of variant can 

cover millions of bases of DNA, containing entire genes and their corresponding 

regulatory regions [21, 26, 28, 29]. Although structural variants in some genomic regions 

have no distinct and direct phenotypic consequence [21, 26, 28, 29], those in others may 

influence gene dosage causing genetic diseases. Structural variations can come into play 

either alone or in combination with other genetic or environmental factors to influence 

genetic variation and gene functionality [30]. The extents of effects of structural 

variations on phenotype depend on a combination of the location and the type of 

structural variation. The location is probably the determining factor in defining the 

consequence of structural variation. Since a mutation in so-called ‘junk DNA’ might not 
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even have any consequences [1]. Firstly, structural variations can occur in the regulatory 

sequence of a gene. Although these regulatory sequences are in non-coding region of 

DNA they can influence the gene expression. Thus gene expression could change if the 

promoter sequence of a certain gene changes. A deletion or inversion of (a part of) the 

regulatory sequence can cause a decrease in gene expression. Insertions can also decrease 

gene expression when they occur in the promoter. But, if a promoter of an active gene is 

coincidentally inserted right in front of a relatively inactive gene, an insertion can cause 

an increase in gene expression [1]. A deletion in the downstream regulatory sequence of 

TNFAIP3 is associated with systemic lupus erythematosus [31]. 

 Another instance of a change in phenotype due to a rearrangement in the non-coding 

DNA sequence is in the non-coding functional RNA, among others: micro-RNA 

(miRNA). Micro-RNAs are thought to control the activity of approximately 30 percent of 

all proteins [32]. When a structural variation changes a miRNA, the activity of a protein 

could change as well. Therefore it is no surprise that micro RNAs have been shown to 

play important roles in different diseases, such as cancer and immune diseases [32]. A 

deletion of the miRNA Dgcr8 in mice results in defects in the synaptic transmission of 

the pre-frontal cortex, which could give insights in the pathology of human schizophrenia 

[33].  

Structural variations can also occur in genes, even though there is selective constraint 

against this in germ cells .The effects of these mutations in coding DNA are more likely 

than of non-coding DNA and can have worse consequences. Seventeen percent of all 

rearrangements for example directly alter gene function [10]. The amount of genes 

affected by a variation clearly increases with an increase in size of the variation. This is 
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especially true for mutations smaller than ten thousand base pairs. Approximately 125 

genes are affected by a ten thousand base pair rearrangement [10]. Genes can be affected 

by structural variations in different ways. Firstly, the gene dosage can be altered. When a 

person has a third 21st chromosome, he or she will suffer from Down syndrome. 

Secondly, a gene could be disrupted, by for instance an insertion. This would result in a 

disrupted non-functional protein. Thirdly, genes that are fused together by a 

rearrangement can form a new functional protein [9]. An example of this is the BCR-

ABL fusion gene that is caused by a translocation and that is found in leukemia patients 

[32, 33]. A fourth mechanism is the alteration of gene expression due to structural 

variations. Gene expression can for instance be increased when a gene with low 

transcription activity will translocate to another promoter of a gene with high 

transcription activity. A final mechanism is the unmasking of recessive mutations [9]. 

Rearrangements related to SV can either occur in a germ cell or in a somatic cell; the 

consequences are totally different. A mutation during meiosis of a germ cell can cause a 

congenital (and eventually hereditary) disease, while a somatic mutation can contribute to 

a tumor. SV are thus associated with many different diseases. These range from aniridia 

to susceptibility to HIV infection to genomic disorders such as the Williams-Beuren 

syndrome [1, 2, 3, 4].  

Structural variations not only have negative effects, but they also seem to have a function. 

Many deletions for instance (including the deletion of entire genes) have been found to be 

distributed in the whole genome. Structural variations can thus possibly also play a 

significant part in genome evolution [34].This might be the cause for the existence of 

population based differences in structural variations. The UGT2B17 gene for example is 
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associated with ethnic differences in risk of prostate cancer [9, 12]. Moreover, different 

populations have different skin colors, eye colors and hair colors which are also 

contributed by SVs [1]. 
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2.5 Discovery of Structural Variations 

Since SVs are important genomic arrangements that have several consequences in 

phenotype, gene functionality and diseases, their proper discovery is very important in 

genomic research. Discovery of variations incorporates the processes of variant detection, 

validation and characterization at the sequence level [11]. In this thesis we explain 

current methods for discovery of SVs, including experimental approaches using 

microarrays, single-molecule analysis and sequencing-based computational approaches. 

2.5.1 Hybridization based Array Approach 

Microarrays based techniques is considered as the first breakthrough in CNV discovery 

and genotyping. Under this technology two approach are most prevalence: first, array 

comparative genomic hybridization (array CGH) and second, SNP microarrays. Although 

both of these techniques are based on inferring copy number gains or losses compared to 

a reference sample or population they do differ in the details and application of the 

molecular assays [11]. Even though, they are able to detect structural variations like 

insertion, deletion significantly, detection of genomic inversions is only handful [6]. 

Array CGH platforms are based on the technique of comparative hybridization of two 

labeled  samples test and reference to a set of hybridization targets either formed by long 

oligonucleotides or, historically, bacterial artificial chromosome (BAC) clones. The 

signal to noise ratio of test to sample is calculated, normalized and presented in log2 

scale. This ratio is then used as a proxy for copy number. An increase in log2 ratio 

indicates the gain in copy number in test with respect to reference, while a decrease in 

log2 ratio indicates the loss in copy number. An important consideration is the effect of 

the reference sample on the copy-number profile. For example, when only one sample is 
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examined, a loss in the reference sample is indistinguishable from a gain in the test 

sample. To address this issue, a well-characterized reference is vital to make final 

conclusion of array CGH data [11, 35]. Since early studies of germ line CNVs were 

based on BAC arrays or low-resolution oligonucleotide platforms, CNVs typically 

greater than 100 kb were detected [11, 21, 28, 36]. Although initial phase of studies 

uncovered the high number of CNVs in healthy individuals, corresponding breakpoints of 

these variations were not sufficiently well-defined to allow accurate assessment of the 

proportion of the genome altered or its gene content. As this result was overestimation of 

extend to copy number polymorphism due to large-insert BAC clones[11,36], it was  

refined by using  oligonucleotide microarrays or sequence-based studies of the same 

DNA samples[11, 37-40].Now a days , Roche NimbleGen and Agilent  Technologies are 

the top provider  of whole-genome  array CGH platforms which  routinely produce arrays 

with  up to 2.1 million (2.1M) and 1M long oligonucleotides (50–75-mers), respectively, 

per microarray. By setting the requirement of 3-10 consecutive probes's signal to detect 

CNV, CGH and SNP can detect several hundred CNV in a genome. Due to easy 

availability of custom, high probe density arrays array CGH platform is replacing 

traditional karyotyping analysis in clinical diagnostics to find copy-number alterations 

[11]. 

Similar to array CGH, SNP microarray platforms are also based on hybridization. But 

they have some key differences to array CGH platforms. First difference is, in SNP array 

the hybridization is performed on a single sample per microarray, and log-transformed 

ratios are generated by clustering the intensities measured at each probe across many 

samples [41, 42, 43]. Second, SNP platforms take advantage of probe designs that are 
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specific to single-nucleotide differences between DNA sequences, either by single-base-

extension methods which is implemented in Illumina platform or differential 

hybridization implemented in Affymetrix [41, 42, 43]. Moreover, SNP array platform 

also  uses  SNP  allele-specific probes to increase CNV sensitivity, distinguish alleles and 

identify regions of uniparental disomy through the calculation of a metric termed B  allele 

frequency (BAF) [11] .Although early SNP array had poor coverage over CNV regions 

recent arrays (such  as the Affymetrix 6.0 SNP and Illumina 1M platforms) have 

excellent performance because of better SNP selection criteria for complex genomic 

regions and non-polymorphic copynumber probes(which are examined for log ratios but 

not BAF) [41,42,46].They are becoming popular than array CGH platform and replacing 

them gradually in  the large-scale discovery of CNVs in a broad variety of  populations 

[11, 22,29,41,42,45,47]. 

SNP array platform also has disadvantage over array CGH, as SNP microarrays tend to 

offer lower signal-to-noise ratio per probe than array CGH platforms. This disadvantage 

become more significant in comparisons of array CGH and SNP platforms in terms of 

detection of CNVs by a purely ratio-based approach [21, 28, 44]. To validate results and 

improve confidence of CNV detection some studies combine array CGH and SNP platforms [41, 

45, 46]. 
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Figure 7: Figure showing log ratio of copy number for array CGH, SNP array platforms 

and BAF for SNP array platform [11]. 

 

Figure 8: Figure shows the probe coverage of several major array platforms as 

determined by  ResCalc [48]. 
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Method Translocation Inversion LCV(>50kb) CNVindel 

(1-50kb) 

Small sequence  

variants(<1kb) 

Karyotyping   Yes(>3Mb) Yes 

(>3Mb)  

Yes(>3Mb) No No 

Clone-based array-

CGH 

No No Yes(>50kb) No No 

Oligonucleotide-

based array-CGH 

No No Yes Yes Yes(SNPs) 

Sequence-assembly 

Comparison 

Yes Yes Yes Yes  Yes 

Clone paired-end   

sequencing(fosmid) 

Yes Yes 

(breakpoin

ts) 

Yes(>8kb 

deletions) 

Yes (>8kb of  

deletions); 

(<40kb of 

insertions) 

No 

 

Table T2: Table showing methods for detecting structural variation in human 

genome [11]. 
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Pathogenic studies require thousands of individuals and controls to assess the different 

diseases. Thus it will be easier in terms of cost and throughput to use Microarrys for such 

studies. Using array data, we can conduct genome wide studies to detect and genotype 

different structural variants. For example, 2,493 Illumina SNP profiles were used to 

retrieve a detail picture of large CNVs in the 0.5–1% frequency range [49]. It will also 

help in future to study larger populations and investigate human diseases [11]. 

Although, array data are being extensively used to identify structural variations, there 

have limitation in detection of larger size CNVs, balance variants like inversions and in 

breakpoint resolution at single base pair level. The size and breakpoint resolution of any 

prediction is correlated with the density of the probes on the array, which is limited by 

either the density of the array itself (in aCGH) or by density of known SNP loci (for SNP 

array) [6].  Another important limitation of array technique is to use it in repeat-rich and 

duplicated regions. Since Array CGH and SNP platforms are based on the assumption 

that each location to be diploid in the reference genome, which is not true in case of 

duplicated sequence. Since CNVs have a strong positive correlation with segmental 

duplications and many breakpoints lie in duplicated regions, we need other additional 

technology to find the accurate boundaries and copy numbers of these events [38, 49, 50, 

51]. 

2.5.2 Single-molecule Analysis 

Single-molecule Analysis is an important way to visualize and understand the location 

and structure of larger variants at single-molecule level. This analysis includes techniques 

such as fluorescent in situ hybridization (FISH), fiber-FISH and Karyotying. These 

techniques are effective for identification of common and rare large genome structural 
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variants. However, their low throughput and low resolution limit their application to a 

few individuals and to particularly large structural differences (~500 kb to 5 Mb). 

Different methods are being developed to use large scale stretched DNA fragments for 

direct visualization to improve resolution and scalability of this approach [11]. Optical 

mapping is a technique based on a modification of traditional restriction mapping. In this 

technique  restriction digestion is performed on  immobilized DNA to identify  the  

fragment sizes and changes in their relative order on  the basis of comparison to an in 

silico digested version  of the reference genome sequence [11]. Originally, it was 

developed to analyze yeast genome but was used for fine-scale structural analysis of 

human genomes, detection of inversions and trans-locations, as well as copy number 

alterations, and their breakpoints [11, 37, 53, 54]. Optical Mapping technique has very 

limited throughput and its entire analysis depends on the reference genome. DNA 

barcoding methodologies are also being developed as alternative techniques which would 

be helpful for high-throughput detection of balanced structural differences in cellular 

level in future [11]. 

 2.5.3 SV Detection Based on Sequencing 

 DNA sequencing is done to obtain the order of four basic nucleotides in a DNA. This 

will be helpful to find the SVs in comparative genome study. Different sequencing 

methods and technologies have evolved in the race of reducing sequencing cost and 

increasing throughput. 

In high-throughput shotgun Sanger sequencing, genomic DNA is fragmented, then 

cloned to a plasmid vector and used to transform E. coli. For each sequencing reaction, a 

single bacterial colony is picked and plasmid DNA isolated. Each cycle sequencing 
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reaction takes place within a microliter-scale volume, generating a ladder of ddNTP-

terminated, dye-labeled products, which are subjected to high-resolution electrophoresis 

separation within one of 96 or 384 capillaries in one run of a sequencing instrument. As 

fluorescently labeled fragments of discrete sizes pass a detector, the four-channel emission 

spectrum is used to generate a sequencing trace [55]. 

After three decades of continuous improvement, the Sanger biochemistry can be applied 

to achieve read-lengths of up to ~1,000 bp, and per-base 'raw' accuracies to 99.999%. In 

the context of high-throughput shotgun genomic sequencing, Sanger sequencing costs on 

the order of $0.50 per kilobase [55]. 

The advancement of Next Generation Sequencing (NGS) has proved itself as a   high 

throughput and cost-effective sequencing technology. It has provided golden 

opportunities for effective genomic variant detection. NGS has capability to sequence 

million of bases simultaneously completing sequencing of full human genome in couple 

of days with twenty fold less cost than all previous methods [56]. 

The concept of cyclic-array sequencing can be summarized as the sequencing of a dense 

array of DNA features by iterative cycles of enzymatic manipulation and imaging-based 

data collection. The commercial products that are based on this sequencing technology 

include Roche’s 454, Illumina’s Genome Analyzer, ABI’s SOLiD and the Heliscope 

from Helicos [55].Along with these technologies there is also a commercial Ion Torrent 

platform that has semiconductor based detection system [57]. 

 

 



26 

 

Roche 454 GenomeSequencer 

In 2005, 454 Life Sciences lunched GenomeSequencer as a first next-generation system 

which was based on pyrophosphate detection [61]. It is also called pyrosequencing 

technology. It employs Emulsion PCR amplification approach to detect sufficient light 

signal in the sequencing-by-synthesis reaction step. In this sequencing system, DNA 

fragments are ligated to beads by means of specific adapters.  After the completion of 

PCR amplification cycles, each bead along with its fragment is placed at the top end of an 

optical fiber that has the other end facing to a sensitive CCD camera. This camera enables 

the positional detection of emitted light. In the final step, to start the synthesis of 

complementary strand polymerase enzyme and primer are added to the beads. The 

incorporation of a base by the polymerase enzyme in the growing chain releases a 

pyrophosphate group, which can be detected as emitted light. Although 454 sequencing 

platform has overcome substitution error, it has limitation during base calling of 

homopolymers DNA segments (of lengths greater than 6).For this reason homopolymers 

segments are prone to base insertion and deletion errors during base calling. At present, 

the GS FLX Titanium series allows generation of more than 1,000,000 single reads per 

run with an average read length of 400 bases [60]. 

Illumina Genome Analyzer 

The Illumina Genome Analyzer also known as Solexa sequencer is the most widely 

available HTS technology. In this platform, the amplified sequencing features are 

generated by bridge PCR and after immobilization in the array, all the molecules are 

sequenced in parallel by means of sequencing by synthesis [60, 62, 63]. 
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During the sequencing process, each nucleotide is recorded through imaging techniques, 

and is then converted into base calls. The Illumina sequencer is able to sequence reads up 

to 100 bp (with longer ones expected in the near future) with relatively low error rates. 

Read-lengths are limited by multiple factors such as incomplete cleavage of fluorescent 

labels or terminating moieties which cause signal decay and dephasing. In this platform 

sequencing errors are mainly due to substitution errors, while insertion/deletion errors are 

much less common. Average raw error-rates are on the order of 1–1.5% [64], but higher 

accuracy bases with error rates of 0.1% or less can be identified through quality 

Metrics associated with each base-call. Illumina Genome Analyzer IIx is able to generate 

up to 200 million 100 bp paired-end reads per run for a total of 20 Gb of data with a 

throughput of around 2 Gb per day. The latest MiSeq is said most to be most easiest and 

accurate benchtop product among Illumina products [60]. 

ABI's SOLiD 

The ABI SOLiD sequencer is another widely used sequencing platform acquired by 

Applied Biosystems in 2006. The sequencing process used by ABI SOLiD is very similar 

to the Solexa work flow; however, there are also some differences. First of all, the clonal 

sequencing features are generated by emulsion PCR, instead of bridge PCR. Second, the 

SOLiD system uses a di-base sequencing technique in which two nucleotides are read 

(via sequencing by ligation) simultaneously at every step of the sequencing process, 

while the Illumina system reads the DNA sequences directly. Although there are 16 

possible pairs of di-bases, the SOLiD system uses only four dyes and so sets of four di-

bases are all represented by a single color. As the sequencing machine moves along the 
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read, each base is interrogated twice: first as the right nucleotide of a pair, and then as the 

left one. In this way, it is possible to derive each subsequent letter if we know the 

previous one, and if one of the colors in a read is misidentified (e.g. due to a sequencing 

error), this will change all of the subsequent letters in the translation. Even if this may 

seem to generate problems in read sequencing, it can be advantageous during the read 

alignment to a reference genome. The raw ‘per-color’ error rate is around 2-4% .The 

latest 5500 W Series Genetic Analysis Systems are able to generate fragment sequencing 

of up to 75 bp, paired-end sequencing of up to 75 x 35 bp, and mate-paired sequencing of 

up to 60 x 60 bp [ 65]. 

Ion Semiconductor Sequencing 

Ion Torrent Systems Inc. (now owned by Life Technologies) developed a system based 

on using standard sequencing chemistry, but with a novel, semiconductor based detection 

system. This sequencing platform also uses Emulsion PCR amplification approach for 

clonal sequencing. This method of sequencing is relied on the detection of hydrogen ions 

that are released during the polymerization of DNA, as opposed to the optical methods 

used in other sequencing systems. A microwell containing a template DNA strand to be 

sequenced is flooded with a single type of nucleotide. If the introduced nucleotide is 

complementary to the leading template nucleotide it is incorporated into the growing 

complementary strand. This causes the release of a hydrogen ion that triggers a 

hypersensitive ion sensor, which indicates that a reaction has occurred. If homopolymer 

repeats are present in the template sequence multiple nucleotides will be incorporated in a 

single cycle. This leads to a corresponding number of released hydrogens and a 
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proportionally higher electronic signal. Although it has relatively low substitution error, it 

has indels in sequencing reads due to homopolymer detection error [57]. 

Method Single-
Molecule 
real time 
sequencing 
(Pacific Bio) 

Ion 
Semiconductor 
(Ion Torrent 
Sequencing) 

Pyrosequencin
g  
(454) 

Sequencing 
by synthesis 
(Illumina) 

Sequencing 
by litigation 
(Solid 
Sequencing) 

Chain 
Terminatio
n 
 
(Sanger 
Sequencing) 

Read Length 2900 bp 
average 

200bp 700bp 50 to 250 bp 50+35  or 
50-50 bp  

400bp to 
900 bp 

Accuracy 87%(read 
length 
mode), 
99% 
(accuracy 
mode) 

98% 99.9% 98% 99.9% 99.9% 

Reads per  run 35-75 
thousand 

Up to 5 million  1 million  Up to 3 
million  

1.2 to 1.4 
billion 

N/A 

Time per run 30 mins to 2 
hours 

2 hours 24 hours 1 to 10 days 
depending 
upon 
sequencer 

1 to 2 weeks 20 mins to 3 
hours 

Cost per 1M b (in 
US $) 

$2 $1 $10 $0.05 to $0.15 $0.13 $2400 

Advantages Longest read 
length. Fast. 
Detects 4mC, 
5mC, 6mA 

Less expensive 
equipment , 
Fast 

Long read size 
, Fast 

High 
sequence 
yield 

Low cost  
per bases 

Long  
individual 
reads useful 
for  many 
applications 

Disadvantages Low yield at  
high 
accuracy. 
Equipment 
can be 
expensive 

Homopolymers 
errors 

Runs are 
expensive. 
Homopolymers 
errors 

Equipment 
can be very 
expensive 

Slower than 
other 
methods 

More 
expensive 
and 
impractical 
for larger 
sequencing 
project 

 

Table T3: Comparison of next-generation sequencing methods [58, 59]. 
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Paired-End/Mate Pair Reads 

Sequencing technologies can generate pair of reads (i.e. two reads at approximately 

known distance, known as insert size) by sequencing both sides of DNA segments. To 

generate Mate Pair reads, first genomic DNA is fragmented and size-selected inserts are 

circularized and linked by means of an internal adapter. Second, this circularized and 

linked fragment is then randomly sheared, and segments containing adapter are purified. 

In third and final step, mate pairs are generated by sequencing around the adapter. In 

contrast, Paired-End Reads are generated by fragmentation of genomic DNA into short 

segments, followed by sequencing of both ends of the segments. Paired-end reads provide 

tighter insert-size distributions, and thus higher resolution, whereas mate pairs give the 

advantage of larger insert sizes .In computational approaches they do not have any 

significant differences though wet lab approaches to generate them are different. Thus 

here we only mention paired-end reads [6]. 

Techniques based on Paired-End Reads 

Before the breakthrough of Next-generation Sequencing, relatively low coverage and 

expensive Sanger sequencing techniques are used to generate long pair end reads. But 

after the introduction of  Next-generation sequencing platforms  like  Roche’s 454, 

Illumina’s Genome Analyzer, ABI’s SOLiD and Ion Semiconductor Sequencer, both 

single end and paired end reads are generated in terms of billions with in short time 

period with relatively low cost. To extensively utilize these high throughput data different 
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strategies are developed. We mention here four general types of strategies, all of which 

focus on mapping sequence reads to reference genome and subsequently finding the 

discordant signatures or patterns that are indicators of different type of SVs. 

Read Pair: Assessing the insert size of read-pair and abnormal orientation of read pairs 

in which the mapping span and/or orientation of the read pairs are inconsistent with the 

reference genome, one can observe different SVs. Read pairs mapping larger distance 

than defined insert size define deletions, those mapped with smaller distance are 

indicative of insertions, and orientation inconsistencies can indicate inversions and 

specific class of tendum duplication [11]. Different SV detection tools including PEMer, 

VariationHunter , MoDIL, BreakDancer and  SVDetect are based on this approach but 

they do  differ on the variant of signatures they detect and on the clustering procedures. 

 

Read-depth: All the SV signatures cannot be detected by above mention approach. This 

approach is based on a random (typically Poisson or modified Poisson) distribution in 

mapping depth and investigate the divergence from this distribution to find out 

duplications and deletions in the sequenced sample. The basic idea of this approach is 

that duplicated regions will show significantly higher read depth and deletions will show 

reduced read depth when compared to diploid regions [11]. Different tools including 

RDXplorer and CNVnator are based on this approach. 

 

Split-read: This approach can detect deletions as well as small insertions with single-

base-pair resolution.This approach were first applied to longer Sanger sequencing reads. 

This technique is used to define the breakpoint of a structural variant based on a ‘split’ 
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sequence-read signature. If the split reads are mapped such that they are mapped far from 

each other than those reads indicates a deletion or in the reference indicates an insertion; 

if the split reads are mapped in reverse orientation that indicates the inversion [11]. Some 

example of tools based on this technique are PRISM , Pindel ,and  SVseq. 

Sequence Assembly: Generating assembly of the short reads and mapping them to the 

reference also help us to find SVs. There are assembly algorithms based on deburjion 

graph methods that generate the contigs from short reads. Mapping this contigs with 

reference gives us the clue to detect Svs. Some de novo assembly algorithms based on 

next-generation whole-genome shotgun (NG-WGS) data include EULER-USR, ABySS, 

SOAPdenovo and ALLPATHS-LG [11]. 
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Figure 9: Figure showing different SV signatures and detection strategies based 

on Paired-end reads [11]. 
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Advantages  

With help of NGS technology high throughput paired-end read sequences are being generated at 

low cost and small time frame. Techniques based on paired-end reads have made easier to detect 

different varieties of SVs and to present clear spectrum of genomic variations in the genome. 

Large number of reads provides the easy comparison for copy number of donor genome and 

reference genomes and gives us opportunity to find novel structural variations. 

Limitation 

Each of four above mentioned approaches based on paired-end reads has limitations depending 

on variant type, size and the properties of the underlying sequence at the SV locus.Read Depth 

method is applicable to detect SVs based on absolute copy-number; the breakpoint resolution is 

very weak. Read-pair approaches are powerful, but resolving ambiguous mapping assignments in 

repetitive regions is challenging and accurate prediction of SV breakpoints depends on very tight 

fragment size distributions, which can make library construction difficult and costly [6]. 

Similarly, split-read algorithms can be devised to   detect a wide range of SV classes with exact 

breakpoint resolution; however, split read is currently reliable only in the unique regions of the 

genome. Sequence assembly promises to be the most versatile method by facilitating pair-wise 

genome comparisons; however, it has been shown to be heavily biased against repeats and 

duplications causing to collapse assembly over such regions [66, 67]. 
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CHAPTER 3 
 

 

METHODS 

Methods based on paired-end reads need very tight fragment size distributions and high coverage 

for accurate SVs detection which can make library construction difficult and costly [11]. Also the 

short paired-end reads have been more challenging to map accurately and uniquely against 

reference genome than relatively longer reads. In this context we are presenting Inversion 

detection pipeline based on Single End Reads to show that our approach is applicable in the 

relatively low coverage and perform well to detect inversion variants. We have divided our 

pipeline in two phases. In the first phase candidate breakpoint pairs are inferred and in the second 

phase false positives are filtered to find true inversion breakpoints. 

3.1 Read Mapping 

The preliminary step of our pipeline is read mapping. Single End reads generated from 

donor genome are aligned to reference genome using a mapper suitable for mapping 

single end reads. To make pipeline efficient, alignment process is divided into two 

phases. During first phase, we do full length alignment of whole reads against the 

reference genome. These results in SAM file containing alignment detail of whole reads 

in reference genome. This step is supposed to map the all reads at unambiguous positions 

in the reference genome except those reads which are hovering the region of inversion. In 

the second phase, SAM file obtained from first phase is processed to extract the 

unmapped reads. These unmapped reads have the alignments with their location field set 

to 0 in the SAM file, which are extracted and changed to fastq/fasta file format by 

picking read header, sequence and base quality using custom bash script. These 

unmapped reads are supposed to contain reads of our interest. 
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 All extracted unmapped reads are performed ungapped alignments against reference 

genome enabling the softclipping using Smith-Waterman algorithm incorporated in the 

mapper to get all best alignments. From the second phase of mapping we can obtain the 

alignments of those reads which are covering the junction of inversions with a CIGAR of 

mapped and softclipped bases. The SAM file obtained after the second phase is sorted 

based on read header if it is not sorted. This sorting makes sure that we will get all 

alignments of individual read consecutively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Alignments of Read r1 and r2 (over the junction of 

inversion) after aligning against reference genome in the second 

phase. These reads r1 and r2 are the reads of our interest. 
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3.2 Processing SAM and Generating Candidate Breakpoints 

After completing two phase mapping of the single end reads, obtained sorted SAM file is 

considered as main input in our pipeline. We process SAM file by scanning from the first 

line of the SAM file. SAM file first contains header section which starts with '@ ' and 

contains information such as contig name and length and are located above first 

alignment in the SAM file. Thus, our program ignores the line that starts with '@'.After 

scanning header section of the SAM file, it scans the each alignment, to check whether 

the alignment is mapped or not. To check this, our program checks the location field of 

alignments in SAM format. If location field is set to 0, this indicates the read is 

unmapped thus program skips that alignment and start scanning next alignments of 

another read. We know the fact that a single end read can have multiple alignments at 

multiple locations of different chromosomes/contigs in reference genome, and all such 

alignments are depicted in SAM file with same header name. Our program implements 

HashMap data structure to store the chromosome name and corresponding alignments of 

a read in that chromosome. First, we store alignments of a read belonging to a particular 

chromosome in array-list. This array list is then inserted into a HashMap as a value with 

chromosome name as a key. We repeat this for all alignments of a read. More formally, 

we hash all the alignments of a single end read based on chromosome name, which is at 

third position in SAM format of an alignment. After hashing all alignments of a read we 

start processing the hash map. For each chromosome (key) in a hash map we iterate all 

the alignments in the corresponding list to find those alignment pair which are first: 

aligned opposite to each other, second: total mapped bases are at least 90% of read 

length, third: softclipped bases are more than 10. These three constraints are the most 

essential for the inference of genomic inversion and its breakpoints from the alignments. 
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To deal with first constraint, we decode the flag field present in the SAM format of 

alignment. This flag bit is converted into binary bit and checked if 0X10 flag bit is set or 

not. If 0X10 bit is set then alignment has reverse direction otherwise alignment has 

forward direction. To deal with second and third constraints our program parse CIGAR 

field of SAM format alignment. Using regular expression, our program separates mapped 

and softclipped bases from CIGAR, which are subsequently used to find the total mapped 

bases of two alignments and their softclipped bases length. If the pair of alignments in the 

list fulfill these three constraints we infer the pair of candidate breakpoints of inversion 

from them, store them in a list. Finally, we clear HashMap to start hashing alignments of 

another reads. Position field of SAM file is the co-ordinate of first mapped base pair. 

Position field and CIGAR field give us the co-ordinate of breakpoints. To infer the 

breakpoint pairs we check type of softclipping from CIGAR string of the alignment. If 

CIGAR string has softclipped bases on the left side, the breakpoint of a inversion is given 

by the location field of the alignment. If CIGAR string has softclipped bases on right 

side, the breakpoint of inversion is given by sum of location and mapped bases. Our 

definition of breakpoints is the position of first and last base pair of inversion, subtraction 

of 1 from right breakpoint is done to get location of last base pair in the inversion for the 

inferred location. Based on genomic coordinates breakpoints are assigned either to list of 

left breakpoint or right breakpoint and inserted to another HashMap with chromosome 

name as key and left and right breakpoints as value. After SAM file scanning is 

completed, this HashMap is processed to find the supporting read counts which are 

indicated by duplicate entry in the HashMap. This supporting read count is the important 
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parameter which helps to create the more precise candidate breakpoint list. We ignore 

those breakpoints whose support count is only one; that is underpinned by only one read. 

Pseudo Code 

 for each key(chromosome)  retrieve list of alignments L = HashMap(key) 

   for i in the list L 

   for j =i+1 in the list L 

   check following conditions for ith and jth alignments  

   a. direciton of alignmets are reverse 

   b. total mapped bases >= 90% of READ_LENGTH 

   c. softclipped length >10  

   if(a AND b AND c)  

     GO TO  STEP 1. and store in  

    HashMap  H <chromosome, bppairlist>  

    set the flag indicating jth alignment is checked. 

   else  

     j++; 

   end if 

   end for 
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  i++; 

 end for 

end for each 

 

STEP 1 : Calculate breakpoint positions of those alignments in the following way 

 pos ←  position of alignment in the reference 

 ls ← left softclipped bases 

 rs ← right softclipped bases  

  if ls>10  

   bppos1 ← pos  

  end if 

  if rs >10  

  bppos2 ←  pos + (readlength-rs)  

  end if 

  if(bppos1>bppos2)then   

   bppos1 ←  bppos1 -1  

   leftbp ← bppos2 

   rightbp ← bppos1 

   else  

   bppos2 ←  bppos2 -1  

   leftbp ← bppos1 
    rightbp ←bppos2 

   end if 
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if (overlapping of base pairs in the alignment,  d  >0) 
 
   if(alignment giving rightbp has leftsoftclip) then 
    rightbp ← rightbp + d 

    

  if(alignment giving leftbp has rightsoftclip) then 

    leftbp ←  leftbp - d 

  end if  

  add (leftbp &rightbp ,  bppairlist). 

end if 
 
  

2. sort Hashmap H<chromosome, bppairlist> based on chromosome 

 for each key (chromosome) in Hashmap H , 

  List bppairlist = H(key) 

   sort bppairlist based on leftbp 

  set readsupportcounter=1 

  for i in  bppairlist 

   if(leftbp of bppairlist(i+1)- leftbp of bppairlist(i) <=5  AND 
ABSOLUTE(rightbp     of bppairlist(i+1)- right of bppairlist(i) ) 
<=5) 

     readsupportcounter++; 

     
   else  

    if readsupportcounter > CONSTRAINT 

     HashMap bpset <bppairlist(i), counter> 

     HashMap bhchr<bppairlist(i), chromosome> 

    else  
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      readsupportcounter =1; 

    end if  

   end if 

   i++; 

    end for  

end for each 

3.3 Filtering and Finalizing Breakpoints 

After completion of the first phase, we obtain candidate list of breakpoint pairs whose 

support count is greater or equal to CONSTRAINT. We can set this constraint 

depending on the coverage of the reads. For higher coverage (>10X) we can set the 

CONSTRAINT higher (normally >2) and for lower coverage (<5X) we can set it to 

>=1.In the second phase or final phase, we filter the false positives to increase sensitivity 

of our pipeline. To do this, first we create local regions based on coordinate and 

chromosome name of candidate breakpoint pairs. For each such pair first, we retrieve the 

segment of the reference genome located in between two breakpoints (left breakpoint 

and right breakpoint) in a particular chromosome. This segment is named as candidate 

region. Second, we retrieve the segment of reference genome of length equal to read 

length starting from left breakpoint coordinate – READ LENGTH up to left breakpoint, 

which is called left region. Third, we also create right region by retrieving  the segment 

of reference genome of length equal to read length starting from right breakpoint 

coordinate up to right breakpoint coordinate + READLENGTH. 

 READLENGTH          READLENGTH 

   left region   candidate region      right region   
            left bp           right bp   

Figure 11: figure showing local regions retrieved from reference genome based on 

left and right  breakpoints and corresponding chromosome 
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After getting left region, candidate region and right region from breakpoint pair writes 

derive final local regions and store them in fasta file in the following way. 

Pseudo Code 

For each breakpoint pairs in bppairlist 

  String candidateregion ←  Reference.substring(leftbp, rightbp+1) 

  String  extension 1 ←  Reference.substring(leftbp-READLENGTH, leftbp+1) 

  String extension2  ←  Reference.substring(rightbp, rightbp+READLENGTH+1) 

  //generate the region without Inversion// 

 localregion ←  extension1+candidateregion+extension2 

  localregion1 ←  localregion.substring(0,2*READLENGTH) 

  localregion2  ← localregion.substring(localregion.LENGTH -2*READLENGHT, 

    localregion.LENGTH) 

  //generate the region with inversion//  

  candidateregion ←  ReverseComplement(candidateregion) 

  localregion ← extension1+candidateregion+extension2 

  localregion3 ← localregion.substring(0,2*READLENGTH) 

  localregion4 ← localregion.substring(localregion.LENGTH-2*READLENGTH,  

   localregion.LENGTH) 

 end for each 
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To write local regions in fasta format , we create a unique header on the basis of name of 

local region, corresponding  left and right breakpoints , name of chromosome and type of 

local region ( region with inversion or without inversion) in the following way   

concat(>nameoflocalregion/leftbp/rightbp/chromosomename/type of region) . 

For example, header for a localregion generated by breakpoints 22234 and 22456 in 

ChrY with inversion would be >localregion1/22234/22456/ChrY/inv 

Then we write the sequence of the region in the next line. 

After creating local reference, we index it using suitable aligner and perform full length 

alignment of all generated single end reads to this local reference.  

The output SAM stream after aligning whole reads against local reference file  is used to 

count the number of overlapping alignments over the breakpoints. To count alignments 

overlapping over breakpoints we use fractional proportion of alignments. For example, if 

a read has 5 alignments in the local regions we assign 1/5 weight to each of the 

alignments of that read. 

Ideally, for true breakpoints, localregion3 and localregion4 (regions with inversion) will 

have fully mapped alignments’ fractional count nearly equal to the read coverage where 

as localregion1 and localregion2 (region without inversion) will have any fully mapped 

alignments' fractional count nearly equal to 0. Similarly, for false breakpoints, 

localregion3 and localregion4 (regions with inversion) will have fully mapped 

alignments' fractional count equal to 0 where as localregion1 and localregion2 (regions 

without inversion) will have fully mapped   alignments' fractional count equal to the read 

coverage. So setting the following condition will help us filter the false positives. 
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Condition:  

if (fractional alignment count of localregion3 > fractional alignment count 

localregion1 AND  fractional alignment count of localregion4>fractional 

alignment count of localregion2) 

  breakpoint pair generating these localregions are true breakpoint pair 

  else 

  breakpoint pair generating these localregions are false breakpoint pair   

 end if  

 

After these filtering steps false positives are reduced significantly and we get final 

breakpoint pair list with left breakpoint location, its corresponding fractional alignment 

count, right breakpoint location, its corresponding fractional alignment count 

chromosome name, readsupportcounter for breakpoint pair. 
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CHAPTER 4 
 

 

EXPERIMENT AND RESULTS 

4.1 Read Simulation and Mapping Statistics 

To test our pipeline we have taken hg19 human reference genome and implanted 90 

inversions [68] in known positions using Perl script. The number of inversions in 

different chromosomes and their size distribution are shown in Figure 12 and Figure 13 

respectively.  

 

  Figure12: Figure showing number of inversions in different chromosomes 
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 Figure 13: Figure showing size distribution of 90 inversions 

Ideal Single End Reads (error free) of different lengths 100bp, 200bp and 400bp are 

simulated using Wgsim[72] read simulator. To simulate error free reads, parameters like 

base error rates, standard deviation, rate of mutation, fraction of indels, and probability of 

indel extension are set to zero. Since wgsim simulator has limitations in total number of 

reads simulation, we use it repetitively to get total read coverage for each chromosome. 

First reads with coverage 10x are simulated and later coverages 5X and 2.5X are derived 

taking half and one fourth of the reads from 10x coverage reads. These reads are mapped 

using stable version of TMAP 2.3.2 [71].There are simply two steps in mapping with 

TMAP. In the first step and only once we need to build index of the reference genome 

against which we are going to map reads. Second step is to map reads using this index. 

Two phases of mapping processes were executed using TMAP. In the first phase, we use 

TMAP map1 which is based on BWA [73] short read alignment for full length read 

alignment disabling softclipping. Unmapped reads from this phase is mapped again 
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against reference genome using map2 enabling the softclipping. Figure 14 shows the 

reads mapped by map1 and map2 phase using TMAP. 

 

Figure 14: Figure showing the total reads generated, mapped by two phase 

mapping for 100bp, 200bp and 400bp ideal reads. 

To test our program with erroneous data, we again simulated the reads of 100bp, 200bp 

and 400bp with following error statistics in Wgsim simulator.   

Parameters Value 

Base error rate 2% 

Rate of mutation 1% 

Fraction of indels 15% 

Probability of indel 
extended 

0.30 

   

 Table T4: Table showing parameters set to simulate erroneous reads. 
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Similar to ideal reads mapping read with error were also mapped by TMAP using two 

phase mapping. The detail of erroneous read simulated and mapped by two mapping 

phases are shown in figure 15 below. 

 

Figure 15: Figure showing the total reads generated mapped by two phases of 

mapping for erroneous reads of length 100bp 200bp and 400bp. 

 

        

             

 

 

  Figure 16:  Block diagram of Mapping Process 

100bp 200bp 400bp
0

1

2

3

4

5

6

7

8

9

Total Reads
Mapped by Map1
Mapped by Map2
Total Reads Mapped

Read Length

(L
o

g1
0

 S
ca

le
) 

R
ea

ds

Map1 

(first step) 

Full length  

alignment 

reads(fastq file) 

Unmapped reads  

SAM File 

Map2 

(second step) 

Local  

alignment 

Mapper 



50 

 

It is obvious from the figure 14 and 15 that more ideal reads are mapped by map1 phase 

than erroneous reads. Subsequently, there are more unmapped erroneous reads going to 

map2 phase than ideal reads. Erroneous reads due to alteration in bases and indels, have 

higher probability to map   to other locations (than the locations from where they were 

generated) in the reference genome than ideal reads. Due to which more erroneous reads 

are mapped in map2 phase than ideal reads. But total ideal reads mapped (from both 

map1 and map2 steps) are higher than erroneous reads. 

4.2 Result Analysis 

After getting SAM file from mapping of simulated reads using TMAP 2.3.2 in two 

phases, we feed itto our program for detection of genomic inversion and inference of its 

breakpoint locations in different chromosomal locations. Beside SAM file, our program 

takes reference file, whole genome reads and output name. We have set the read support 

counter constraints to be >=2.First phase of our program finds the candidate breakpoints 

pair and based on those second phase generates local regions .These local regions are 

again mapped with whole reads to filter out false positives. After filtering false positives, 

output is written in a text file which contains, breakpoint pairs, and support read count, 

chromosome name and fractional alignment counts for each of the breakpoints. Results 

of both the phases are tabulated on Tables T5, T6, T7 and T8 for ideal simulated reads of 

different lengths and coverage. Similarly, Table T9 shows the result of our program for 

different read lengths with errors. To evaluate the performance of our program, we have 

calculated the statistical parameters like Sensitivity and Positive Predictive Values 

(PPV). Figures below show the false positives, sensitivity and PPV of different phases 

from different coverage to explain performance of our program. 
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  Figure 17: figure showing false positives in first phase and second phase. 

 

Figure 18: Figure Showing Sensitivity for First Phase and Second Phase 

for different coverage for different read lengths 
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 Figure 19: Figure Showing PPV for First Phase and Second Phase for 

different coverage for different read lengths 

 

Figure 20: Figure showing Sensitivity for first and Second phase for 10X 

coverage for erroneous reads 
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Figure 21: Figure showing PPV for first and second phase for 10X coverage for  erroneous reads 

From the figure 17, we can observe that for coverage 10X we have high number of false 

positives in both first and second phase in comparison to lower coverage 5X and 

2.5X.With 10X coverage, we get more reads and more alignments which cause to rise the 

false positives. We can observe that 200bp read length has high number of false positives 

than 100bp read and 400bp reads. As we increase read length, we also increase the 

chance to map the read uniquely. Thus for 400bp reads we have lesser false positives. For 

reads with length 100bp, since these reads are short, they are relatively prone to be 

mapped to many different locations including the location from where they were 

generated than 200bp and 400bp reads. Figure 14 shows we only get few 100bp reads 

unmapped in the first phase in comparison to 200bp and 400bp reads which 

consequently, reduce the false positives. But in the mean time, we also lose the reads of 
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our interest in the first mapping phase. In the second phase, false positives are reduced 

significantly due to the filtering step for all read lengths and coverage. Figure 17 shows 

the sensitivity of our approach for both the phases for all read lengths. We can clearly 

observe that in the first phase for all read lengths and coverage, we get higher sensitivity 

than second phase. But this is also incorporated with higher false positives. This indicate 

that we also have lower PPV  in first phase(shown in figure Figure 19).After filtering and 

finalizing step in the second phase, false positives are filtered out significantly. 

Unfortunately, this also filters out the some true positives. Thus after second phase it is 

obvious (from figure 19) that we have improved PPV in all the phases and for all 

coverage than first phase but have reduced sensitivity. Thus there exists tradeoff between 

sensitivity and PPV. In the first phase though sensitivity is satisfactory we have very poor 

PPV in contrast to second phase where PPV is improved while sensitivity is reduced. 

Comparatively, we have good PPV and sensitivity for 400bp reads. 

Similarly, for reads with error, first phase of mapping outputs more unmapped reads than 

it was with ideal reads. Thus, in the second phase, we get number alignments and more 

false positives. Another issue with reads with error is, they are easily mapped to other 

location of reference genome with competitive mapping quality. Since this error also 

includes base errors, this force mapper to map in many different location and orientation, 

we get relatively high number of false positives in comparison to ideal reads. 

Consequently, we will have reduced sensitivity and PPV in the final phase result in 

contrast to those of ideal reads. 
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4.3 Comparison with Existing tools 

To compare our method with existing tools we choose SVDetect [69], BreakDancer [70] 

both of which are based on pair end reads. We simulated error free pair end reads with 

coverage 10X of length 200bp with insert size 1000, from a '90 inversions implanted' 

donor genome using wgsim simulator. Those pair end reads are mapped using BWA 

mapping tool to obtain the final SAM file.  

The final SAM file is given input to break dancer pipe line with all the parameters set to 

default except parameter 's' which is set to 100 (minimum size of region). First 

configuration file is generated from the bam2cfg.pl program which is then fed into the 

'breakdancermax' program. 

Similarly to use SVDetect tool, first the SAM file is preprocessed using program 

'BAM_preprocessingPairs.pl' .This preprocessing filters out concordant pairs and keep 

only the discordant pairs. Then 'SVDetect.conf' file is created where, we set all the 

parameters to default. In the mean time ‘.length’ file is also created to store the contig 

lengths residing in the reference genome. Different SVDetect commands are run 

providing 'SVDetect.conf' file as input. The final output, false and true positives 

detected, Sensitivity and PPV are tabulated in Table T10. 

Out of 90 implanted inversions, our approach has found 74 inversions in comparison to 

BreakDancer  's 58 inversions and SVDetects's 49 inversions. Figure 22 below shows that 

our approach has found more true breakpoints than other two. False positives are more in 

our approach than BreakDancer and SV Detect. Since our approach solely relies the 

alignments of the Single End reads, there is always a decent chance of Single End reads 

mapped to many different locations in reference genomes other than the true locations 
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resulting more false positives where as SVDetect and BreakDancer relies on paired-end 

reads which are separated by predefined insert-size. To detect balanced copy number 

event like inversions they only consider those reads which have abnormal orientation but 

approximately correct insert-size. This consideration always helps them to swipe off false 

positive efficiently in comparison to Single End reads approach of no predefined insert 

size. Figure 23 shows that our approach has relatively low PPV value than BreakDancer 

and SVDetect tools the problem with SVDetect is: it does not have capability to resolve 

the breakpoints at base pair level. It only gives the range of breakpoints by giving starting 

and ending co-ordinates of each breakpoint. These ranges are also very wide and far (in 

average) 1000 bp from true breakpoint location. Although BreakDancer tool has provided 

exact breakpoint co-ordinates they are in average 1000 bp away from the true breakpoints 

co-ordinates. Our approach has relatively higher precision than BreakDancer and 

SVDetect. The breakpoints co-ordinates generated by our approach are no more than 5 bp 

far from true breakpoint co-ordinates. 
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Figure 22: Figure showing the comparison of our tools with other existing tools 

based   different parameters. 

 

Figure 23: Figure showing the comparison of our approach with other tools 

based on Sensitivity and PPV and F-Score. 
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CHAPTER 5 
 

 

LIMITATION AND FUTURE ENHANCEMENT 

It is always challenging to detect, SVs and resolve their breakpoints at base pair level. 

Although many methods and techniques are devised for the detection of balanced SV like 

genomic inversion, there always remains limitation in resolving breakpoints due to size 

of inversion, type of inversion(homozygous or heterozygous) and its complexity, 

complex and repetitive structure of reference genome, read lengths, sequencing errors, 

mapping algorithms and mapping accuracy. Although we have overcome the limitation of 

insert size, by considering Single End Reads our approach also has limitations. As much 

as we increase the length of single-end reads we also reduce the capability to detect small 

inversions lesser than read length. Since we use two mapping steps to map our reads 

against reference genome, for efficiency purpose, we also loose many valuable reads in 

the first mapping step. This is caused due to repetitive regions (normal repeats and inverted 

repeats) in the reference genome and accuracy of the mapping algorithm. Additionally in the 

second mapping step we try to retrieve all possible alignments of a read to make sure that we do 

not miss important alignments pairs to infer breakpoints. This adds overwhelming number of 

false positives in first phase of our approach. If we only select best alignments with higher 

mapping quality we will lose many precious alignment pairs due to tie in mapping score, 

consequently we lose true breakpoints in the first phase. 

Despite of limitations and challenges, there also exists some ways to overcome some of 

those. For instance, we can extend our capability to detect smaller inversions by 

considering three pieces of alignments (i.e. alignments have softclipped bases on both 
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sides of matched bases), although this has possibility to add more false positives. We can 

use high coverage data (>10X) to find heterozygous inversions, but high coverage reads 

could yield overwhelming false positives creating problem in filtering steps. Our 

approach has  overhead of  running time  in the  second phase, generating local regions, 

indexing and mapping whole reads to them which could be reduced by making more 

stringent constraint in first phase i.e. by using larger read support count for breakpoint 

pairs but this will likely cause to lose true breakpoints. Fine tuning of different 

parameters and making them strict could help to reduce this difficulty. 
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CHAPTER 6 
 

 

CONCLUSION 

In this thesis work we put forth a pipeline to detect genomic inversion in human genome 

using Single-End reads. We have used simulated platform to verify our approach for 

different read lengths and variable coverage. With Single End reads generated with 

relatively low coverage, we are able to detect the breakpoint pair of genomic inversions 

with relatively good resolution and accuracy .Our pipeline is relatively cost efficient 

because it discards the need of preparation of insert size library and related biochemical 

treatments. Moreover, Next Generation Sequencing technology is gradually becoming 

more cost effective, efficient and capable of ultra high throughput than ever before. These 

technological achievements can be fully utilized to the mission of achieving broader and 

clear spectrum of genomic inversions along with other structural variations in the genome 

in near future and our pipeline will become more relevant in this mission. 
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Read 

Length 

coverage 

 

Phase Total 

Candidates 

obtained 

Total 

True 

Positives 

True 

Positives 

obtained by 

Program 

False 

Positives 

False 

Negatives 

Sensitivit

y 

(%) 

PPV 

(%) 

100bp 

10X 

I 1998 90 79 1919 11 87.87 3.95 

II  72 90 47 15 43 52.22 75.81 

5X 
I 207 90 65 142 25 72.22 31.40 

II  41 90 41 0 49 45.56 100 

2.5X 

I 90 90 25 65 65 27.78 6.81 

II  15 90 14 1 76 15.56 93.33 

Table T5 : Output of our approach for ideal reads of  100bp read lengths for coverage 

10X,5X and 2.5X for SupportCount >=2 
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Table T6 :Output of our approach for ideal reads of 200bp read lengths for coverage 

10X,5X and 2.5X for SupportCount >=2 

 

 

 

 

 

 

Read 

Length 

coverage 

 

Phase Total 

Candidates 

obtained 

Total 

True 

Positives 

True 

Positives 

obtained by 

Program 

False 

Positives 

False 

Negatives 

Sensitivity 

(%) 

PPV 

(%) 

200bp 

10X 

I 49657 90 86 49571 4 95.56 0.17 

II  222 90 74 148 16 82.22 33.33 

5X 

I 18752 90 83 18669 7 92.22 0.44 

II 130 90 58 72 32 64.44 44.62 

2.5X 

I 3881 90 38 3843 52 42.22 9.78 

II 42 90 28 14 62 31.11 66.67 
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Read 

Length 

coverage 

 

Phase Total 

Candidates 

obtained 

Total True 

Positives 

True 

Positives 

obtained by 

Program 

False 

Positive

s 

False 

Negatives 

Sensitivity 

(%) 

PPV 

(%) 

400bp 

10X 

I 3743 90 84 3659 6 93.33 2.24 

II  119 90 75 44 15 83.33 63.03 

5X 
I 808 90 38 770 52 42.22 4.70 

II  37 90 36 1 54 40.00 97.30 

2.5X 

I 657 90 24 633 66 26.67 3.65 

II  27 90 24 3 66 26.67 88.89 

 

Table T7:Output of our approach for ideal reads of 400bp read lengths for coverage 

10X,5X and 2.5X for SupportCount >=2 
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Coverage Read 

Length 

 

Phase Total 

Candidates 

obtained 

Total True 

Positives 

True 

Positives 

obtained by 

Program 

False 

Positives 

False 

Negatives 

Sensitivity 

(%) 

PPV 

(%) 

10X 

100bp 

I 162 90 70 92 20 77.78 43.21 

II  47 90 42 5 48 46.67 89.36 

200bp 
I 5775 90 83 5762 7 92.22 1.44 

II  91 90 56 35 34 62.22 61.54 

400bp 

I 768 90 79 689 11 87.78 10.29 

II  84 90 71 13 19 78.89 84.52 

 

TableT8 : Output of our approach for ideal reads of 100bp,200bp and 400bp read lengths for 

coverage 10X,5X and 2.5X for SupportCount >2   
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  Table T10: Table showing comparison of our tool with other tools 

Coverage Read 
Length 
 

Phase Total 
Candidates 
obtained 

Total True 
Positives 

True 
Positives 
obtained by 
Program 

False 
Positives 

False 
Negatives 

Sensitivity 
(%) 

PPV 
(%) 

10x 

100bp 

I 1707 90 37 1670 53 41.11 2.17 

II  99 90 21 78 69 23.33 21.21 

200bp 

I 3057 90 76 2981 14 84.44 2.49 

II  89 90 53 36 37 58.89 59.55 

400bp 

I 3775 90 74 3701 16 82.22 1.6 

II  45 90 39 6 51 43.33 86.67 

Tools  Candidate  
Breakpoints  

True 
Pos 

True 
BPs 

FalsePos False 
Neg 

Sensitivity 

% 

PPV 

% 

Distance 
from True 
Bps 

SVDetect 54 90 49 5 41 54.44 90.70 1000bp 

BreakDancer 67 90 58 9 32 64.44 86.57 1000bp  

Our Method 222 90 74 148 16 82.22 33.33 5 bp 

Table T9 : Output of our approach for erroneous reads of  100bp read lengths for coverage 

10X,5X and 2.5X for SupportCount >=2 
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