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ABSTRACT

Structural Variations (SVs) are genomic rearrangeméhat include both copy-number
variants, such as insertion, deletions, duplicatiand balanced variants like inversion
and translocations. These SVs are getting meeatains for research and investigation
because of their role on human phenotype, genstiasles and genomic rearrangements.
Evolution of Next-generation Sequencing has pravidgolden opportunities to
investigate these variants and make their wider @edr spectrum in human genome.
This investigation includes identification of typESVs and their breakpoints at base pair
level. For their effective identification and breaknt resolution, many techniques are
devised mainly based on paired end read. Withivelgtlow cost and high efficiency
different platforms including ION TORRENT, Illuminean generate high throughput
Single End reads. In this thesis we provide a napproach based on Single End reads to
detect genomic inversions in human genome. We atsopare our approach with
existing methods based on paired end reads and tfadwur approach is competitive in
terms of sensitivity and precision at relativelwlooverage for detection of breakpoints

of genomic inversion.

vi



CHAPTER 1

INTRODUCTION

The successful completion of Human Genome Projpehed up a new avenue for the
comparative study of human genome by providingilliob bases' reference genome.
After this, several comparative genomic studies ameducted which have shown that
there are large scale of different type of Strutifariations (SV) in human genome
ranging from single base to several megabaseseT®¥gnay cause the copy-number to
be varied with respect to reference called Copy blemVariant like deletions,

duplication (tandem duplications and interspersaglidation)and Insertions(novel

sequence insertion and mobile element insertion)ray not change copy-number but
change the order and orientation of sequences negpect to reference called Copy

Number Invariants. This includes Inversion and $rlotation of gene sequence.

Similar to other human genomic alterations, SV bame impact on human phenotype
by disrupting the usual DNA. Diseases can be aemrence of this ability to interfere
with gene function, protein function, and gene espron. Therefore, identifying the type
of SV and finding their precise location of occuee (breakpoints) is cardinal in
genomic research. If there exists problem in r@sglbreakpoints even with few bases it
will be highly ambiguous to make a conclusion wieet8Vs falls in regulatory region or
in overlapping exons which leads to delusion ofctional impact of SVs. These SVs can
be detected only when DNA sequences are compardd stéandard sample called
reference. Two techniques have been used to igleBtfs in the human genome:
Technique based on hybridization (array comparagamomic hybridization (aCGH) and
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Single Nucleotide Polymorphism array technology)d afechnique based on end

sequence profiling (ESP), also called paired-endpma [5].

Hybridization techniques test the relative frequesof probe DNA segments between
two genomes [6]. Although by considering allelitioa at heterozygous sites, they are
able to detect CNVs like insertions and deletiotigy can only detect handful of
balanced variant like, inversions [7]. Newer tecfusis and methods are being devised
for detection of Structural Variations (CNV and émgion and trans-location) with
emergence of cost effective and high throughputisegng technologies where two
paired reads are generated at an approximately rkrdigtance in the donor genome
containing SV. Although Sequencing of SV allowstaisdentify their location of base-
pairs and type, finding proper resolution of tH&ieakpoints are still challenging. All the
approaches defined and developed to find breakpahiSV to date basically rely on
Pair-End reads. Unfortunately, methods based on-Hfal reads have limitation in
breakpoint resolution because of uncertainty itatgice between sequenced ends. In this
context, we have put forth a novel method for detacof genomic inversions that relies

on Single End (SE) reads.

To implement our method, we map SE reads genefeded donor genome containing
genomic inversion enabling ungapped alignments vetbrence genome. If a SE read is
hovering a junction of inversion in one directiame get the partial alignment of same
read over other corresponding junction of inversioopposite direction. Alignments of
all such reads are processed based on their mapgeagon, orientation, number of
softclipped bases, and number of mapped basesfdp time candidate breakpoints of

inversions. The list of candidate breakpoints ieffed in the second phase to remove

2



false positives and final list of breakpoints asngrated. In this thesis we present our
pipeline, results analysis based on simulated aatcomparison with existing methods

that are being used for the inversion detectiontha sections 3.3, 3.4 and 3.5



CHAPTER 2

BACKGROUND

2.1 Basic Definition
DNA: Deoxyribose nucleic acid or DNA is the most fastimg molecule in the entire

world. Its massive amount of base pairs consistihg varying number of genes (per
organism) contains hereditary information that isedi in the development and
functioning of an entire organism. In fact, it srtl to imagine life or living without DNA

being involved. The double helix structure that ¥éat and Crick discovered in the
nineteen fifties holds many more mysteries than ather molecule could ever do;
mysteries that are in need of elucidation [8]. Tikiprobably what inspires us every day,

in our quest of understanding DNA [1].

Structural Variations:  Structural variations used to be defined as ahognic

rearrangements that are bigger than one thousasedgdaars (>1 kb) [11, 12]. Since our
detection techniques have further developed, theesudefinition can be adjusted to
include all variations bigger than 50 base paifd.[IStructural variations in its broadest
sense can even simply be defined as all genomiatiars in an organisms genome that
are bigger than one base pair [9]. Several diffetgmes of mutations fit these two last
definitions: deletions, insertions (novel sequenicsertions and mobile-element
insertions), inversions, duplications (tandem dtgilons and interspersed duplications),
and translocations [9]. The type of rearrangemant loe identified by comparing the

sequence of someone’s DNA sample to the sequeraeotifier DNA sample. Usually, a



reference genome is used in this comparison. Howew®en trying to identifyde novo
rearrangements, the DNA sequence of the parentsisexl. De novo (or new)
rearrangements are structural variations that @ ttas, but the parents of that child do
not have. They are often a result of a rearrangéimetine paternal chromosome of the

germ cell during meiosis [14].

Structural variations can be divided into severalegories. Firstly, they are either
recurrent or non-recurrent. Sometimes, rearrangemeccur more often in a certain
DNA fragment, due to favorable circumstances. They therefore present in many
individuals. These are recurrent structural vasisj meaning that they happen more
often. Non-recurrent structural variations on thikeo hand occur on rare spots in the
DNA. Sometimes an individual can even seem to beotily one with a certain structural
variation at a certain spot. Secondly, structuealations are either intrachromosomal or
interchromosomal. Rearrangements in one chromosmm@enamed intrachromosomal,
while rearrangements between two chromosomes #exl gaterchromosomal. Finally,
structural variations can either occur in somagitscor in germ cells. A rearrangement in
a somatic cell only affects the organism in whikl tearrangement has happened in. A

mutation in a germ cell on the other hand will ohive effect on the offspring [1].



Deletion Novel sequence insertion Mobile-element insertion

Ref. > Ref. > Ref. >
K 0 7 J s B " . i ",
Mobile
element
Tandem duplication Interspersed duplication

Ref. — > Ref. B

Inversion Translocation
Ref. - — — Ref. - : >
' . e - " . '

: Do S ; Ref P

Figurel: figure showing Basic Structural Variasda1]

Deletiont Deletion is a type of structural variation whiciuses loss of bases with respect

to reference genome.

Insertion: This type variation occurs when there are extrae®as donor genome with

respect to reference genome.

Duplication

Segmental duplication or low-copy repeat: A segment of DNA >1 kb in size that occurs
in two or more copies per haploid genome, with diféerent copies sharing >90%
sequence identity. They are often variable in capyber and can therefore also be

CNVs [15].



Inversion:A segment of DNA that is reversed in orientatiothwespect to the rest of the
chromosome. Pericentric inversions include the roemtre, whereas paracentric

inversions do not [15].

Translocation A change in position of a chromosomal segment withigenome that
involves no change to the total DNA content. Traoations can be intra- or inter-

chromosomal [15].

Indels: Abbreviated combination oinsertions anddeletions. Indels refers to DNA
mutations. Indels involving one or two base paas bave devastating consequences to
the gene because translation of the gene is "friaiftet’. Indels have a size ranging

from 1 base pair upto 50 base pair [15].

Single Nucleotide Polymorphism: A single base substitution of one nucleotide with

another observed in the general population atquéecy greater than 1%.

Breakpoints: A breakpoint is the location at either end of dnual variations.



2.2 SAM File Format
SAM format is TAB-delimited. Headers are startedhwf@ sign and there are other

components in the following order.

1. Query/template/pair Name 2. FLAG (bitwise FLAG) Reference Name 4. Position
(1-based left most position) 5. Mapping Quality @hred Scale) 6. CIGAR (String)
7.Mate Reference Name (= if same as Reference N&@8m&)ate Position (1-based
Position) 9. Insert Size 10. Query sequence 11.nQQuality 12. Variable Optional

fields
@SQ SN:ref LN:45 <———  header
rool 163 ref 7 30 8M 3S 37 = TTAGA{AAAG

!

Template FLAG Ref-name Position CIGAR Mappingafity  Sequence Name

Figure 2: figure showing SAM Sequence

Each bit in flag is defined as

FLAG Description

0x1 templates having multiple segments in secjugn
0x2 each segment properly aligned accordingeatigner
0x4 segments unmapped

0x8 next segments in the template unmapped

0x10 SEQ being reverse complemented



0x20 SEQ of the next segment in the templatedoesversed

0x40 the first segment in the template
0x80 the last segment in the template
0x100 secondary alignments

0x200 not passing quality controls
0x400 PCR or optical duplicate

CIGAR String represents the following CIGAR Opeva8

Op Description

M alignment match (can be a sequence match anatch)

insertion to the reference

D deletion from the reference

N skipped region from the reference

S soft clipping (clipped sequences present in SEQ
H hard clipping (clipped sequences NOT prese@HEQ)
P padding (silent deletion from padded reference)

= sequence match

X sequence mismatch



2.3 Srructural Variation in Human Genome
Through different scientific studies, it has fouhdt about all human being from around

world has 99.9% of identical DNA sequence. Thus @nly the small fraction of genome
that constitutes genetic variation between indiglduand responsible for phenotypic
variation and disease susceptibility [21, 22]. Befohe breakthrough of sequencing
technology, only the rare change in quantity andcstire of chromosome were observed
in comparison study of genetic variation which udgd aneuplodies, rearrangement,
heteromorphism and fragile sites. These changes lagge (~3 Mb or more) enough to
be observed using microscope and thus named assoapic structural variants. With
the advancement of molecular biology along withuseging technology, new variations
such as SNPs, and small (<1kb) insertions, deletaomd duplications were observed.
After the completion of primary sequence of humanamne more tools and techniques
were developed that started characterizing humanetige compositions at nucleotide
level. Peculiarly, genome-scanning array techne®gnd comparative DNA-sequence
analyses revealed large number of genomic varstibat are smaller than microscopic
level and larger than those detected by convenrtssuence analysis. Those variations
are defined as submicroscopic structural variatif®i§. Hundreds of submicroscopic
copy-number variants (CNVs) and inversions havenlmescribed in the human genome
with help of those technologies. Figures below shawe number of CNVs and

Inversions found and their size distributions
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Figure 3: Blue bars indicate reported CNVs; Red lnadicate reported inversion

breakpoints; Green bars to the left indicate segaheluplications [21].

STAT

Merged Leve

Sample Level

CNVs

21801

610834

Inversions

892

1734

Table T1: Table showing the CNVs and inversiong.[21
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Figure 4: Graph showing the increase in publishs @nd InDel data
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Similar to other CNVs, It has long been possible detect inversions of large
chromosomal regions in karyotype level in G-bandy&gypes. But, this technique is
confined to identification of variants that are el megabases in size, and even
significantly larger inversions may not be detedfetie inverted segment leads to slight
difference in the banding pattern. From the vergim@ng of chromosomal study,
inversions are always variants of interest but thegre not identified for clinical
significance [16]. Inversions are the most commaman constitutional karyotype make
inversions astonishing as genomic rearrangementgheg role in recent primate
evolution. Nine cytogenetically visible pericentrimversions were found while
comparing the human and chimpanzee genomes [25fnamg submicroscopic inverted
sequences [26]. The majority of the nine visibleversions occurred along the
chimpanzee lineage, but inversions on chromosona®l118 are specific to the human
lineage. This finding implies that inversions angportant genomic rearrangement that
occurs quite frequently in primate chromosomal etroh. Thus identification of a large
number of inversions between closely related specad signatures of selection

associated with these, will shed light on the adlgenomic inversion in speciation [27].
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Figure 6: Figure shows that the majority of invens reported to date are in the
10 to 100 kb size bin [20].
2.4 Role of Sructural Variations

Previously SNP (Single Nucleotide Polymorphism) wamsidered to be the most
significant for the variation of genome but latewas found that there exists a structural
variation which causes variation in thousands &fehaairs. These types of variant can
cover millions of bases of DNA, containing entirengs and their corresponding
regulatory regions [21, 26, 28, 29]. Although stuaral variants in some genomic regions
have no distinct and direct phenotypic consequéte?6, 28, 29], those in others may
influence gene dosage causing genetic diseasest8al variations can come into play
either alone or in combination with other geneticeavironmental factors to influence
genetic variation and gene functionality [30]. Teketents of effects of structural
variations on phenotype depend on a combinatiorthef location and the type of
structural variation. The location is probably tHetermining factor in defining the

consequence of structural variation. Since a nmartat so-called ‘junk DNA’ might not

14



even have any consequences [1]. Firstly, structtambtions can occur in the regulatory
sequence of a gene. Although these regulatory segaeare in non-coding region of
DNA they can influence the gene expression. Thuee gexpression could change if the
promoter sequence of a certain gene changes. Aiateler inversion of (a part of) the
regulatory sequence can cause a decrease in geress®n. Insertions can also decrease
gene expression when they occur in the promotet;. iBa promoter of an active gene is
coincidentally inserted right in front of a relatly inactive gene, an insertion can cause
an increase in gene expression [1]. A deletiorhendownstream regulatory sequence of

TNFAIP3 is associated with systemic lupus erythematoslis [3

Another instance of a change in phenotype due teasangement in the non-coding
DNA sequence is in the non-coding functional RNAnoag others: micro-RNA
(miRNA). Micro-RNAs are thought to control the atty of approximately 30 percent of
all proteins [32]. When a structural variation cgas a miRNA, the activity of a protein
could change as well. Therefore it is no surpris® tmicro RNAs have been shown to
play important roles in different diseases, sucltascer and immune diseases [32]. A
deletion of the miRNADgcr8 in mice results in defects in the synaptic trassmon of
the pre-frontal cortex, which could give insightshe pathology of human schizophrenia

[33].

Structural variations can also occur in genes, d@hengh there is selective constraint
against this in germ cells .The effects of thes¢atens in coding DNA are more likely
than of non-coding DNA and can have worse consempgernSeventeen percent of all
rearrangements for example directly alter gene tianc[10]. The amount of genes

affected by a variation clearly increases with merease in size of the variation. This is

15



especially true for mutations smaller than ten damd base pairs. Approximately 125
genes are affected by a ten thousand base paiamgament [10]. Genes can be affected
by structural variations in different ways. Firsttiie gene dosage can be altered. When a
person has a third Z1chromosome, he or she will suffer from Down symaoeo
Secondly, a gene could be disrupted, by for ingarcinsertion. This would result in a
disrupted non-functional protein. Thirdly, genesatthare fused together by a
rearrangement can form a new functional protein /9] example of this is the BCR-
ABL fusion gene that is caused by a translocatiaeh that is found in leukemia patients
[32, 33]. A fourth mechanism is the alteration @ng expression due to structural
variations. Gene expression can for instance beeased when a gene with low
transcription activity will translocate to anoth@romoter of a gene with high
transcription activity. A final mechanism is thenuasking of recessive mutations [9].
Rearrangements related to SV can either occurgere cell or in a somatic cell; the
consequences are totally different. A mutation miyimeiosis of a germ cell can cause a
congenital (and eventually hereditary) diseaselennsomatic mutation can contribute to
a tumor. SV are thus associated with many diffedisgases. These range from aniridia
to susceptibility to HIV infection to genomic distears such as the Williams-Beuren

syndrome [1, 2, 3, 4].

Structural variations not only have negative effebut they also seem to have a function.
Many deletions for instance (including the deletidrentire genes) have been found to be
distributed in the whole genome. Structural vaoiasi can thus possibly also play a
significant part in genome evolution [34].This midbe the cause for the existence of

population based differences in structural varreiorThe UGT2B17 gene for example is

16



associated with ethnic differences in risk of patestcancer [9, 12]. Moreover, different
populations have different skin colors, eye colarsd hair colors which are also

contributed by SVs [1].
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2.5 Discovery of Sructural Variations
Since SVs are important genomic arrangements thae fseveral consequences in

phenotype, gene functionality and diseases, theipgy discovery is very important in
genomic research. Discovery of variations incorfesrdhe processes of variant detection,
validation and characterization at the sequencel IEM1]. In this thesis we explain
current methods for discovery of SVs, including exmental approaches using
microarrays, single-molecule analysis and sequergased computational approaches.
2.5.1 Hybridization based Array Approach
Microarrays based techniques is considered asir$tebfeakthrough in CNV discovery
and genotyping. Under this technology two approach most prevalence: first, array
comparative genomic hybridization (array CGH) aadosid, SNP microarrays. Although
both of these techniques are based on inferring oomber gains or losses compared to
a reference sample or population they do diffethe details and application of the
molecular assays [11]. Even though, they are abldetect structural variations like

insertion, deletion significantly, detection of gemic inversions is only handful [6].

Array CGH platforms are based on the technique of compardtybridization of two
labeled samples test and reference to a set oidgdtion targets either formed by long
oligonucleotides or, historically, bacterial adtifil chromosome (BAC) clones. The
signal to noise ratio of test to sample is caladatnhormalized and presented in log2
scale. This ratio is then used as a proxy for copgnber. An increase in log2 ratio
indicates the gain in copy number in test with eesgo reference, while a decrease in
log?2 ratio indicates the loss in copy number. Ampamtant consideration is the effect of

the reference sample on the copy-number profile.ekample, when only one sample is

18



examined, a loss in the reference sample is imdgishable from a gain in the test
sample. To address this issue, a well-characterieéetence is vital to make final
conclusion of array CGH data [11, 35]. Since eatiydies of germ line CNVs were
based on BAC arrays or low-resolution oligonucleetiplatforms, CNVs typically
greater than 100 kb were detected [11, 21, 28, BBhough initial phase of studies
uncovered the high number of CNVs in healthy indlinls, corresponding breakpoints of
these variations were not sufficiently well-definedallow accurate assessment of the
proportion of the genome altered or its gene cdan#&this result was overestimation of
extend to copy number polymorphism due to largefin8AC clones[11,36], it was
refined by using oligonucleotide microarrays ogwsence-based studies of the same
DNA samples[11, 37-40].Now a days , Roche Nimble@ed Agilent Technologies are
the top provider of whole-genome array CGH platf® which routinely produce arrays
with up to 2.1 million (2.1M) and 1M long oligonigotides (50—75-mers), respectively,
per microarray. By setting the requirement of 3eb@secutive probes's signal to detect
CNV, CGH and SNP can detect several hundred CN\a igenome. Due to easy
availability of custom, high probe density arraysag CGH platform is replacing
traditional karyotyping analysis in clinical diagts to find copy-number alterations

[11].

Similar to array CGHSNP microarray platforms are also based on hybridization. But
they have some key differences to array CGH platsorFirst difference is, in SNP array
the hybridization is performed on a single sampde microarray, and log-transformed
ratios are generated by clustering the intensitiessured at each probe across many

samples [41, 42, 43]. Second, SNP platforms takergdge of probe designs that are
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specific to single-nucleotide differences betwedwDsequences, either by single-base-
extension methods which is implemented in Illumimpdatfiorm or differential
hybridization implemented in Affymetrix [41, 42, UdMoreover, SNP array platform
also uses SNP allele-specific probes to incr€d$¢ sensitivity, distinguish alleles and
identify regions of uniparental disomy through tdatculation of a metric termed B allele
frequency (BAF) [11] .Although early SNP array haabr coverage over CNV regions
recent arrays (such as the Affymetrix 6.0 SNP dhdnina 1M platforms) have
excellent performance because of better SNP setectiiteria for complex genomic
regions and non-polymorphic copynumber probes(whieghexamined for log ratios but
not BAF) [41,42,46].They are becoming popular tharay CGH platform and replacing
them gradually in the large-scale discovery of GNN a broad variety of populations

[11, 22,29,41,42,45 47].

SNP array platform also has disadvantage over &fah, as SNP microarrays tend to
offer lower signal-to-noise ratio per probe tharagprCGH platforms. This disadvantage
become more significant in comparisons of array C&id SNP platforms in terms of
detection of CNVs by a purely ratio-based appro@dh 28, 44].To validate results and

improve confidence of CNV detection some studigslmoe array CGH and SNP platforms [41,

45, 46).
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Method Transocation Inversion LCV(>50kb) CNVinde Small sequence
(1-50kb) variants(<1kb)
Karyotyping Yes(>3Mb)  Yes Yes(>3Mb) No No
(>3Mb)
Clone-based arrayNo No Yes(>50kb) No No
CGH
Oligonucleotide- No No Yes Yes Yes(SNPs)
based array-CGH
Sequence-assemblyes Yes Yes Yes Yes
Comparison
Clone paired-endres Yes Yes(>8kb Yes (>8kb ofNo
sequencing(fosmid (breakpoin deletions) deletions);
ts) (<40kb of
insertions)

Table T2: Table showing methods for detecting $tma¢ variation in human

genome [11].
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Pathogenic studies require thousands of individaat$ controls to assess the different
diseases. Thus it will be easier in terms of castthroughput to use Microarrys for such
studies. Using array data, we can conduct genorde gtudies to detect and genotype
different structural variants. For example, 2,498mina SNP profiles were used to
retrieve a detail picture of large CNVs in the A.%-frequency range [49]. It will also

help in future to study larger populations and stigate human diseases [11].

Although, array data are being extensively useddémtify structural variations, there
have limitation in detection of larger size CNVsldnce variants like inversions and in
breakpoint resolution at single base pair levek $tze and breakpoint resolution of any
prediction is correlated with the density of thelms on the array, which is limited by
either the density of the array itself (in aCGH)ogrdensity of known SNP loci (for SNP
array) [6]. Another important limitation of arragchnique is to use it in repeat-rich and
duplicated regions. Since Array CGH and SNP platbiare based on the assumption
that each location to be diploid in the refereneaamne, which is not true in case of
duplicated sequence. Since CNVs have a strongiy®sibrrelation with segmental
duplications and many breakpoints lie in duplicatedions, we need other additional
technology to find the accurate boundaries and copybers of these events [38, 49, 50,
51].
2.5.2 Sngle-molecule Analysis

Single-molecule Analysis is an important way to @kze and understand the location
and structure of larger variants at single-molet¢eNel. This analysis includes techniques
such as fluorescent in situ hybridization (FISHpef-FISH and Karyotying. These

techniques are effective for identification of coonmand rare large genome structural
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variants. However, their low throughput and lowotaion limit their application to a
few individuals and to particularly large structudifferences (~500 kb to 5 Mb).
Different methods are being developed to use laogde stretched DNA fragments for
direct visualization to improve resolution and stdity of this approach [11]. Optical
mapping is a technique based on a modificatiomaafitional restriction mapping. In this
technique restriction digestion is performed ommibilized DNA to identify the
fragment sizes and changes in their relative ooterthe basis of comparison to an in
silico digested version of the reference genomguesece [11]. Originally, it was
developed to analyze yeast genome but was usefintascale structural analysis of
human genomes, detection of inversions and trazegitims, as well as copy number
alterations, and their breakpoints [11, 37, 53, ®jtical Mapping technique has very
limited throughput and its entire analysis depewdsthe reference genome. DNA
barcoding methodologies are also being developadtemative techniques which would
be helpful for high-throughput detection of balashcdructural differences in cellular
level in future [11].
2.5.3 SV Detection Based on Sequencing

DNA sequencing is done to obtain the order of foasic nucleotides in a DNA. This
will be helpful to find the SVs in comparative gem® study. Different sequencing
methods and technologies have evolved in the rdaeducing sequencing cost and

increasing throughput.

In high-throughput shotguisanger sequencing, genomic DNA is fragmented, then
cloned to a plasmid vector and used to transférwoli. For each sequencing reaction, a

single bacterial colony is picked and plasmid DNgblated. Each cycle sequencing
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reaction takes place within a microliter-scale wody generating a ladder of ddNTP-
terminated, dye-labeled products, which are subgetd high-resolution electrophoresis
separation within one of 96 or 384 capillariesoie run of a sequencing instrument. As

fluorescently labeled fragments of discrete sizasspa detector, the four-channel emission

spectrum is used to generate a sequencing trage [55

After three decades of continuous improvement,Saeger biochemistry can be applied
to achieve read-lengths of up to ~1,000 bp, anebpse 'raw' accuracies to 99.999%. In
the context of high-throughput shotgun genomic saqing, Sanger sequencing costs on

the order of $0.50 per kilobase [55].

The advancement ddext Generation Sequencing (NGS) has proved itself as a high
throughput and cost-effective sequencing technolodly has provided golden

opportunities for effective genomic variant detewti NGS has capability to sequence
million of bases simultaneously completing sequegaf full human genome in couple

of days with twenty fold less cost than all prexdguethods [56].

The concept of cyclic-array sequencing can be sumethas the sequencing of a dense
array of DNA features by iterative cycles of enzyimananipulation and imaging-based
data collection. The commercial products that aseld on this sequencing technology
include Roche’s 454, lllumina’s Genome Analyzer, JABSOLID and the Heliscope
from Helicos [55].Along with these technologiesrhés also a commercial lon Torrent

platform that has semiconductor based detectioesygb7].
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Roche 454 GenomeSequencer

In 2005, 454 Life Sciences lunched GenomeSequeaerfirst next-generation system
which was based on pyrophosphate detection [61]s lalso called pyrosequencing
technology. It employs Emulsion PCR amplificatigupeoach to detect sufficient light
signal in the sequencing-by-synthesis reaction. siepghis sequencing system, DNA
fragments are ligated to beads by means of speaifapters. After the completion of
PCR amplification cycles, each bead along witliragment is placed at the top end of an
optical fiber that has the other end facing toressge CCD camera. This camera enables
the positional detection of emitted light. In theal step, to start the synthesis of
complementary strand polymerase enzyme and primeradded to the beads. The
incorporation of a base by the polymerase enzyméhéngrowing chain releases a
pyrophosphate group, which can be detected aseshiight. Although 454 sequencing
platform has overcome substitution error, it hamithtion during base calling of
homopolymers DNA segments (of lengths greater &)adfor this reason homopolymers
segments are prone to base insertion and deletiorseduring base calling. At present,
the GS FLX Titanium series allows generation of entiran 1,000,000 single reads per

run with an average read length of 400 bases [60].

Illumina Genome Analyzer

The lllumina Genome Analyzer also known as Solegquencer is the most widely
available HTS technology. In this platform, the dififgd sequencing features are
generated by bridge PCR and after immobilizatiorthie array, all the molecules are

sequenced in parallel by means of sequencing thesis [60, 62, 63].
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During the sequencing process, each nucleotidecsrded through imaging techniques,
and is then converted into base calls. The Illunseguencer is able to sequence reads up
to 100 bp (with longer ones expected in the neard&) with relatively low error rates.
Read-lengths are limited by multiple factors sushrecomplete cleavage of fluorescent
labels or terminating moieties which cause sigreslagy and dephasing. In this platform
sequencing errors are mainly due to substitutioorgrwhile insertion/deletion errors are
much less common. Average raw error-rates are @moitier of 1-1.5% [64], but higher

accuracy bases with error rates of 0.1% or les$eadentified through quality

Metrics associated with each base-call. lllumina@ee Analyzer lIx is able to generate
up to 200 million 100 bp paired-end reads per rmnée total of 20 Gb of data with a
throughput of around 2 Gb per day. The latest MiSexpid most to be most easiest and

accurate benchtop product among lllumina prod&§ [
ABI's SOLID

The ABI SOLID sequencer is another widely used saqing platform acquired by
Applied Biosystems in 2006. The sequencing proasss by ABI SOLID is very similar
to the Solexa work flow; however, there are alsmedalifferences. First of all, the clonal
sequencing features are generated by emulsion P€fead of bridge PCR. Second, the
SOLID system uses a di-base sequencing techniquéhich two nucleotides are read
(via sequencing by ligation) simultaneously at gvstep of the sequencing process,
while the Illumina system reads the DNA sequendesctly. Although there are 16
possible pairs of di-bases, the SOLID system usésfour dyes and so sets of four di-

bases are all represented by a single color. As¢heencing machine moves along the
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read, each base is interrogated twice: first asitjie nucleotide of a pair, and then as the
left one. In this way, it is possible to derive leagubsequent letter if we know the
previous one, and if one of the colors in a reashigdentified (e.g. due to a sequencing
error), this will change all of the subsequentdigtin the translation. Even if this may
seem to generate problems in read sequencingnibeaadvantageous during the read
alignment to a reference genome. The raw ‘per-t@oor rate is around 2-4% .The
latest 5500 W Series Genetic Analysis Systemslaeeta generate fragment sequencing
of up to 75 bp, paired-end sequencing of up to 35 kp, and mate-paired sequencing of

up to 60 x 60 bp [ 65].

lon Semiconductor Sequencing

lon Torrent Systems Inc. (now owned by Life Teclogats) developed a system based
on using standard sequencing chemistry, but witbweel, semiconductor based detection
system. This sequencing platform also uses EmulBiGR amplification approach for
clonal sequencing. This method of sequencing isdain the detection of hydrogen ions
that are released during the polymerization of Did8,0pposed to the optical methods
used in other sequencing systems. A microwell ¢oimg a template DNA strand to be
sequenced is flooded with a single type of nuctkpntilf the introduced nucleotide is
complementary to the leading template nucleotides iincorporated into the growing
complementary strand. This causes the release bfdaogen ion that triggers a
hypersensitive ion sensor, which indicates thataction has occurred. If homopolymer
repeats are present in the template sequence fauttipleotides will be incorporated in a

single cycle. This leads to a corresponding numiderreleased hydrogens and a
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proportionally higher electronic signal. Althougdthas relatively low substitution error, it

has indels in sequencing reads due to homopolyetecton error [57].

Method Single- lon Pyrosequencin | Sequencing | Sequencing Chain
Molecule Semiconductor g by synthesis | by litigation | Terminatio
real time (lon  Torrent (454) (Ilumina) (Solid n
sequencing | Sequencing) Sequencing)
(Pacific Bio) (Sanger
Seguencing)
Reac Lengtt 290( bp 200by 700bg 50to25Cbp | 50+3t or 400by to
average 50-50 bp 900 bp
Accuracy 87%(rea 98% 99.9% 98% 99.9% 99.9%
length
mode),
99%
(accuracy
mode)
Read pel run 35-75 Up to 5 million | 1 million Up to 312 to 1.4 N/A
thousand million billion
Time petrun 30 mins to 2 2 hours 24 hours 1 to 10 days 1to2week: 20 minsto 3
hours depending hours
upon
sequencer
Cos pel 1M b (in $2 $1 $1C $005to $0.15 $0.1: $240(
Us $)
Advantage Longes reac Less expensiv Long reac size High Low cos|Long
length. Fastequipment ,, Fast sequence per bases individual
Detects 4mGC Fast yield reads usefu
5mC, 6mA for  many
applications
Disadvantage Low vyield all Homopolymers Runs are Equipmen Slowel thar More
high errors expensive. can be veryother expensive
accuracy. Homopolymersexpensive methods  and
Equipment errors impractical
can be for larger
expensive sequencing
project

Table T3: Comparison of next-generation sequencing metfiagl 59].
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Paired-End/Mate Pair Reads

Sequencing technologies can generate pair of r@agstwo reads at approximately
known distance, known as insert size) by sequeniootg sides of DNA segments. To
generate Mate Pair reads, first genomic DNA isrfragted and size-selected inserts are
circularized and linked by means of an internalpaela Second, this circularized and
linked fragment is then randomly sheared, and satgr@ntaining adapter are purified.
In third and final step, mate pairs are generatgddnuencing around the adapter. In
contrast, Paired-End Reads are generated by fragtimnof genomic DNA into short
segments, followed by sequencing of both endsetdgments. Paired-end reads provide
tighter insert-size distributions, and thus highesolution, whereas mate pairs give the
advantage of larger insert sizes .In computatia@roaches they do not have any
significant differences though wet lab approaclegednerate them are different. Thus

here we only mention paired-end reads [6].

Techniques based on Paired-End Reads

Before the breakthrough of Next-generation Sequegnadielatively low coverage and
expensive Sanger sequencing techniques are usgehtoate long pair end reads. But
after the introduction of Next-generation sequegcplatforms like Roche’s 454,
lllumina’s Genome Analyzer, ABI's SOLID and lon Sewonductor Sequencer, both
single end and paired end reads are generatedns tef billions with in short time

period with relatively low cost. To extensivelylizie these high throughput data different
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strategies are developed. We mention here fourrgetypes of strategies, all of which
focus on mapping sequence reads to reference geaothesubsequently finding the

discordant signatures or patterns that are indisatbdifferent type of SVs.

Read Pair: Assessing the insert size of read-pair and abriasrmentation of read pairs

in which the mapping span and/or orientation ofked pairs are inconsistent with the
reference genome, one can observe different SVad Rairs mapping larger distance
than defined insert size define deletions, thoseped with smaller distance are
indicative of insertions, and orientation inconsities can indicate inversions and
specific class of tendum duplication [11]. Diffete3V detection tools including PEMer,

VariationHunter , MoDIL, BreakDancer and SVDetace based on this approach but

they do differ on the variant of signatures thetedt and on the clustering procedures.

Read-depth: All the SV signatures cannot be detected by abosstion approach. This
approach is based on a random (typically Poissomantified Poisson) distribution in
mapping depth and investigate the divergence fréws tistribution to find out
duplications and deletions in the sequenced sarijple.basic idea of this approach is
that duplicated regions will show significantly h&y read depth and deletions will show
reduced read depth when compared to diploid regjbhE Different tools including

RDXplorer and CNVnator are based on this approach.

Split-read: This approach can detect deletions as well as smalftioss with single-
base-pair resolution.This approach were first aoptd longer Sanger sequencing reads.

This technique is used to define the breakpoird efructural variant based on a ‘split’
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sequence-read signature. If the split reads argpethpuch that they are mapped far from
each other than those reads indicates a deletiontbe reference indicates an insertion;
if the split reads are mapped in reverse oriemdtiat indicates the inversion [11]. Some
example of tools based on this technique are PRIBMdel ,and SVseq.

Sequence Assembly: Generating assembly of the short reads and mggpem to the
reference also help us to find SVs. There are dsgeailgorithms based on deburjion
graph methods that generate the contigs from gieads. Mapping this contigs with
reference gives us the clue to detect Svs. Someode assembly algorithms based on
next-generation whole-genome shotgun (NG-WGS) mhefade EULER-USR, ABYSS,

SOAPdenovo and ALLPATHS-LG [11].
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Figure 9: Figure showing different SV signatures @etection strategies based

on Paired-end reads [11].

33




Advantages

With help of NGS technology high throughput paierdt read sequences are being generated at
low cost and small time frame. Techniques basepaimred-end reads have made easier to detect
different varieties of SVs and to present clearcBpen of genomic variations in the genome.
Large number of reads provides the easy compafimocopy number of donor genome and

reference genomes and gives us opportunity torfove! structural variations.

Limitation

Each of four above mentioned approaches based icgdgand reads has limitations depending
on variant type, size and the properties of theetgithg sequence at the SV locus.Read Depth
method is applicable to detect SVs based on alesohpy-number; the breakpoint resolution is
very weak. Read-pair approaches are powerful, dsdlving ambiguous mapping assignments in
repetitive regions is challenging and accurate iptieh of SV breakpoints depends on very tight
fragment size distributions, which can make libramgnstruction difficult and costly [6].
Similarly, split-read algorithms can be devised tetect a wide range of SV classes with exact
breakpoint resolution; however, split read is catlsereliable only in the unique regions of the
genome. Sequence assembly promises to be the essttile method by facilitating pair-wise
genome comparisons; however, it has been showretbeavily biased against repeats and

duplications causing to collapse assembly over segions [66, 67].
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CHAPTER 3

METHODS

Methods based on paired-end reads nvesg tight fragment size distributions and high eage

for accurate SVs detection which can make librarystruction difficult and costly [11]. Also the
short paired-end reads have been more challengingap accurately and uniquely against
reference genome than relatively longer reads.hla tontext we are presenting Inversion
detection pipeline based on Single End Reads tev ghat our approach is applicable in the
relatively low coverage and perform well to det@votersion variants. We have divided our
pipeline in two phases. In the first phase canditbatakpoint pairs are inferred and in the second

phase false positives are filtered to find trueeinsion breakpoints.

3.1 Read Mapping
The preliminary step of our pipeline is read mappiSingle End reads generated from

donor genome are aligned to reference genome wsin@pper suitable for mapping
single end reads. To make pipeline efficient, atignt process is divided into two

phases. During first phase, we do full length alhgnt of whole reads against the
reference genome. These results in SAM file coimgialignment detail of whole reads

in reference genome. This step is supposed to heaglitreads at unambiguous positions
in the reference genome except those reads whechamering the region of inversion. In

the second phase, SAM file obtained from first phas processed to extract the
unmapped reads. These unmapped reads have thmatitggwith their location field set

to 0 in the SAM file, which are extracted and cheshdgo fastg/fasta file format by

picking read header, sequence and base qualityg usistom bash script. These
unmapped reads are supposed to contain reads oitergst.

35



All extracted unmapped reads are performed unghp@lignments against reference
genome enabling the softclipping using Smith-Waternalgorithm incorporated in the
mapper to get all best alignments. From the sepbrade of mapping we can obtain the
alignments of those reads which are covering thetjon of inversions with a CIGAR of
mapped and softclipped bases. The SAM file obtagitel the second phase is sorted
based on read header if it is not sorted. Thisigpninakes sure that we will get all

alignments of individual read consecutively

Mapped bases : , Reference Genome
Readrl
Read r2
>
Region of Inversion Donor Genome

Figure 10: Alignments of Read r1 and r2 (over thecfion of
inversion) after aligning against reference genoméhe second

phase. These reads rl and r2 are the reads aiteugst.
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3.2 Processing SAM and Generating Candidate Breakpoints
After completing two phase mapping of the singld ezads, obtained sorted SAM file is

considered as main input in our pipeline. We pre&AaM file by scanning from the first
line of the SAM file. SAM file first contains headsection which starts with '@ ' and
contains information such as contig name and leragid are located above first
alignment in the SAM file. Thus, our program ignotle line that starts with '@".After
scanning header section of the SAM file, it scdres éach alignment, to check whether
the alignment is mapped or not. To check this,mogram checks the location field of
alignments in SAM format. If location field is sé&b O, this indicates the read is
unmapped thus program skips that alignment and stamning next alignments of
another read. We know the fact that a single ead g&an have multiple alignments at
multiple locations of different chromosomes/contigsreference genome, and all such
alignments are depicted in SAM file with same heademe. Our program implements
HashMap data structure to store the chromosome aache€orresponding alignments of
a read in that chromosome. First, we store aligisneha read belonging to a particular
chromosome in array-list. This array list is thaesdrted into a HashMap as a value with
chromosome name as a key. We repeat this forighirabnts of a read. More formally,
we hash all the alignments of a single end readdas chromosome name, which is at
third position in SAM format of an alignment. Afteashing all alignments of a read we
start processing the hash map. For each chromofiaygin a hash map we iterate all
the alignments in the corresponding list to findsh alignment pair which are first:
aligned opposite to each other, second: total nthpyases are at least 90% of read
length, third: softclipped bases are more thanTlfse three constraints are the most

essential for the inference of genomic inversiod i breakpoints from the alignments.
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To deal with first constraint, we decode the flagjdf present in the SAM format of
alignment. This flag bit is converted into binary énd checked if 0X10 flag bit is set or
not. If 0X10 bit is set then alignment has revedsection otherwise alignment has
forward direction. To deal with second and thirchtoaints our program parse CIGAR
field of SAM format alignment. Using regular exps&s, our program separates mapped
and softclipped bases from CIGAR, which are subsetiy used to find the total mapped
bases of two alignments and their softclipped bksegh. If the pair of alignments in the
list fulfill these three constraints we infer thaipof candidate breakpoints of inversion
from them, store them in a list. Finally, we cléshMap to start hashing alignments of
another reads. Position field of SAM file is the-adlinate of first mapped base pair.
Position field and CIGAR field give us the co-orali@ of breakpoints. To infer the
breakpoint pairs we check type of softclipping fr@@GAR string of the alignment. If
CIGAR string has softclipped bases on the left, dide breakpoint of a inversion is given
by the location field of the alignment. If CIGARrisg has softclipped bases on right
side, the breakpoint of inversion is given by suiriozation and mapped bases. Our
definition of breakpoints is the position of fiemd last base pair of inversion, subtraction
of 1 from right breakpoint is done to get locatmiast base pair in the inversion for the
inferred location. Based on genomic coordinateshkpeints are assigned either to list of
left breakpoint or right breakpoint and insertedatwther HashMap with chromosome
name as key and left and right breakpoints as valiter SAM file scanning is
completed, this HashMap is processed to find thgpeting read counts which are

indicated by duplicate entry in the HashMap. Thiporting read count is the important
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parameter which helps to create the more precisdidate breakpoint list. We ignore

those breakpoints whose support count is only tha;is underpinned by only one read

Pseudo Code

for each key(chromosome) retrieve list of alignisel = HashMap(key)

foriin the list L

for j =i+1 in the list L

check following conditions for ith and jth aligrents

a. direciton of alignmets are reverse

b. total mapped bases >= 90% of READ_LENGTH

c. softclipped length >10

ifta AND b AND c)

GO TO STEP 1. and store in

HashMap H <chromosome, bppairlist>

set the flag indicating jth alignment is chettke

else

j++;

end if

end for
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i++;

end for

end for each

STEP 1 : Calculate breakpoint positions of thosgnaients in the following way

pos« position of alignment in the reference
Is — left softclipped bases
rs« right softclipped bases
if 1s>10
bpposl— pos
end if
if rs >10

bppos2— pos + (readlength-rs)

end if
if(bpposl>bppos2)then
bpposl— bpposl -1
leftbp— bppos2
rightbp— bpposl
else
bppos2— bppos2 -1
leftbp<— bpposl
rightbp—bppos2
end if
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if (overlapping of base pairs in the alignment>@)

if(alignment giving rightbp has leftsoftclip)eh
rightbp«< rightbp + d

if(alignment giving leftbp has rightsoftclip) the
leftbp— leftbp - d

end if

add (leftbp &rightbp , bppairlist)

end if

2. sort Hashmap H<chromosome, bppairlist> basechcomosome
for each key (chromosome) in Hashmap H ,

List bppairlist = H(key)

sort bppairlist based on leftbp

set readsupportcounter=1

foriin bppairlist

if(leftbp of bppairlist(i+1)- leftbp of bppaidi(i) <=5 AND
ABSOLUTE(rightbp of bppairlist(i+1)- right ofdpairlist(i) )
<=b)

readsupportcounter++;

else
if readsupportcounter GONSTRAINT
HashMap bpset <bppairlist(i), counter>
HashMap bhchr<bppairlist(i), chromosome>
else
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readsupportcounter =1,
end if
end if

i++;

end for
end for each
3.3 Filtering and Finalizing Breakpoints
After completion of the first phase, we obtain ddate list of breakpoint pairs whose

support count is greater or equal @ONSTRAINT. We can set this constraint
depending on the coverage of the reads. For higbeerage (>10X) we can set the
CONSTRAINT higher (normally >2) and for lower coage (<5X) we can set it to
>=1.In the second phase or final phase, we filierfalse positives to increase sensitivity
of our pipeline. To do this, first we create logalgions based on coordinate and
chromosome name of candidate breakpoint pairse&cdn such pair first, we retrieve the
segment of the reference genome located in betweerbreakpoints (left breakpoint
and right breakpoint) in a particular chromosomkisTsegment is named as candidate
region. Second, we retrieve the segment of referggemome of length equal to read
length starting from left breakpoint coordinate EAD LENGTH up to left breakpoint,
which is called left region. Third, we also credtght region by retrieving the segment
of reference genome of length equal to read lersgigiiting from right breakpoint

coordinate up to right breakpoint coordinate + READIGTH.

IREADLENGTI—ll | READLENGTI—||
| left region | candidate region ! right regioH
left bp right bp

Figure 11: figure showing local regions retrieveahi reference genome based on

left and right breakpoints and corresponding closome
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After getting left region, candidate region andhtigegion from breakpoint pair writes

derive final local regions and store them in fdigain the following way.

Pseudo Code

For each breakpoint pairs loppairlist
String candidateregior- Reference.substring(leftbp, rightbp+1)
String extension & Reference.substring(leftop-READLENGTH, leftbp+1)
String extension2— Reference.substring(rightbp, rightop+READLENGTHI+1

//lgenerate the region without Inversion//

localregion— extensionl+candidateregion+extension2

localregionl— localregion.substring(0,2*READLENGTH)
localregion2 < localregion.substring(localregion.LENGTH -2*READNEHT,

localregion.LENGTH)

//lgenerate the region with inversion//

candidateregior- ReverseComplement(candidateregion)

localregion— extensionl+candidateregion+extension2

localregion3— localregion.substring(0,2*READLENGTH)

localregion4— localregion.substring(localregion.LENGTH-2*READLENH,

localregion.LENGTH)

end for each
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To write local regions in fasta format , we createnique header on the basis of name of
local region, corresponding left and right breakpo, name of chromosome and type of
local region ( region with inversion or without gngion) in the following way

concat(>nameoflocalregion/leftbp/rightbp/chromosoarae/type of region) .

For example, header for a localregion generatedrepkpoints 22234 and 22456 in

ChrY with inversion would be >localregion1/22234458/ChrY/inv

Then we write the sequence of the region in the hres

After creating local reference, we index it usingtable aligner and perform full length

alignment of all generated single end reads toltiuial reference.

The output SAM stream after aligning whole readsiragg local reference file is used to
count the number of overlapping alignments overhfreakpoints. To count alignments
overlapping over breakpoints we use fractional propn of alignments. For example, if
a read has 5 alignments in the local regions weégmas$/5 weight to each of the

alignments of that read.

Ideally, for true breakpoints, localregion3 and localregion4 (regions with inven3 will
have fully mapped alignments’ fractional count heaqual to the read coverage where
as localregionl and localregion2 (region withowtension) will have any fully mapped
alignments' fractional count nearly equal to 0. ifirty, for false breakpoints,
localregion3 and localregion4 (regions with invergi will have fully mapped
alignments' fractional count equal to 0 where asllegionl and localregion2 (regions
without inversion) will have fully mapped alignnts' fractional count equal to the read
coverage. So setting the following condition widlljy us filter the false positives.
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Condition:

if (fractional alignment count of localregion3 =aétional alignment count
localregionl AND fractional alignment count of &begion4>fractional

alignment count of localregion2)

breakpoint pair generating these localregiongraeebreakpoint pair

else

breakpoint pair generating these localregiondase breakpoint pair

end if

After these filtering steps false positives areusd significantly and we get final
breakpoint pair list with left breakpoint locatioits corresponding fractional alignment
count, right breakpoint location, its correspondirftactional alignment count

chromosome nameeadsupportcounter for breakpoint pair.
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CHAPTER 4

EXPERIMENT AND RESULTS
4.1 Read Smulation and Mapping Statistics
To test our pipeline we have taken hgl9 human eafsr genome and implanted 90
inversions [68] in known positions using Perl striphe number of inversions in
different chromosomes and their size distributiom shown in Figure 12 and Figure 13

respectively.
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Figurel2: Figure showing number of inversionsdifferent chromosomes
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Inversion Size Distribution
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Figure 13: Figure showing size distribution ofiB@ersions

Ideal Single End Reads (error free) of differemighs 100bp, 200bp and 400bp are
simulated using Wgsim[72] read simulator. To sinteilarror free reads, parameters like
base error rates, standard deviation, rate of mutataction of indels, and probability of
indel extension are set to zero. Since wgsim sitaulzas limitations in total number of
reads simulation, we use it repetitively to getitoead coverage for each chromosome.
First reads with coverage 10x are simulated aret @dverages 5X and 2.5X are derived
taking half and one fourth of the reads from 10xezage reads. These reads are mapped
using stable version of TMAP 2.3.2 [71].There arapdy two steps in mapping with
TMAP. In the first step and only once we need tddoundex of the reference genome
against which we are going to map reads. Secoqdist® map reads using this index.
Two phases of mapping processes were executed TBAG. In the first phase, we use
TMAP mapl which is based on BWA [73] short readymtnent for full length read

alignment disabling softclipping. Unmapped readsmfrthis phase is mapped again
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against reference genome using map2 enabling theligping. Figure 14 shows the

reads mapped by mapl and map2 phase using TMAP.

MW Total Reads Generated

B Mapped byMapl
Mapped by Map2

M Total Reads Mapped

100bp 200bp 400bp
Read Length

Log10 Scale) Reads
o P N W A O O N 0 ©

Figure 14: Figure showing the total reads generategped by two phase

mapping for 100bp, 200bp and 400bp ideal reads.

To test our program with erroneous data, we againlated the reads of 100bp, 200bp

and 400bp with following error statistics in Wgsamulator.

Parameters Value
Base error rate 2%
Rate of mutation 1%
Fraction of indels 15%
Probability of indel 1 0.30
extended

Table T4: Table showing parameters set to sim@atmeous reads.
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Similar to ideal reads mapping read with error walis®o mapped by TMAP using two
phase mapping. The detail of erroneous read sigdiland mapped by two mapping

phases are shown in figure 15 below.
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Figure 15: Figure showing the total reads generatapped by two phases of

mapping for erroneous reads of length 100bp 200bp4&0bp.
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Figure 16: Block diagram of Mapping Process
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It is obvious from the figure 14 and 15 that mateal reads are mapped by mapl phase
than erroneous reads. Subsequently, there are unonapped erroneous reads going to
map2 phase than ideal reads. Erroneous reads dleetation in bases and indels, have
higher probability to map to other locations (ththe locations from where they were
generated) in the reference genome than ideal .réagsto which more erroneous reads
are mapped in map2 phase than ideal reads. Butidei@ reads mapped (from both
mapl and map2 steps) are higher than erroneous. read

4.2 Result Analysis
After getting SAM file from mapping of simulatedags using TMAP 2.3.2 in two
phases, we feed itto our program for detectionasfognic inversion and inference of its
breakpoint locations in different chromosomal lowas. Beside SAM file, our program
takes reference file, whole genome reads and ounpue. We have set the read support
counter constraints to be >=2.First phase of oaggam finds the candidate breakpoints
pair and based on those second phase generatésdgimms .These local regions are
again mapped with whole reads to filter out falesitives. After filtering false positives,
output is written in a text file which containsebkpoint pairs, and support read count,
chromosome name and fractional alignment countedch of the breakpoints. Results
of both the phases are tabulated on Tables T5TT@nd T8 for ideal simulated reads of
different lengths and coverage. Similarly, Tablesi@ws the result of our program for
different read lengths with errors. To evaluate geeformance of our program, we have
calculated the statistical parameters like Sensitiand Positive Predictive Values
(PPV). Figures below show the false positives, itigitg and PPV of different phases

from different coverage to explain performance wf program.
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(Log105cale) False Positives
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Figure 17: figure showing false positives in fipdlase and second phase
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Figure 18: Figure Showing Sensitivity for First Baaand Second Phase

for different coverage for different read lengths
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PPV
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Figure 19: Figure Showing PPV for First Phase &etond Phase for

different coverage for different read lengths
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Figure 20: Figure showing Sensitivity for first aBécond phase for 10X
coverage for erroneous reads
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Figure 21: Figure showing PPV for first and secphdse for 10X coverage for erroneous reads

From the figure 17, we can observe that for coverH@X we have high number of false
positives in both first and second phase in comsparito lower coverage 5X and
2.5X.With 10X coverage, we get more reads and rabgaments which cause to rise the
false positives. We can observe that 200bp reagthemas high number of false positives
than 100bp read and 400bp reads. As we increask leegth, we also increase the
chance to map the read uniquely. Thus for 400bglsrege have lesser false positives. For
reads with length 100bp, since these reads ard, ghey are relatively prone to be
mapped to many different locations including thealion from where they were
generated than 200bp and 400bp reads. Figure Mssie only get few 100bp reads
unmapped in the first phase in comparison to 20@mog 400bp reads which

consequently, reduce the false positives. But énrtiean time, we also lose the reads of
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our interest in the first mapping phase. In theoedcphase, false positives are reduced
significantly due to the filtering step for all ktéengths and coverage. Figure 17 shows
the sensitivity of our approach for both the phasesall read lengths. We can clearly
observe that in the first phase for all read lesgthd coverage, we get higher sensitivity
than second phase. But this is also incorporatéld gher false positives. This indicate
that we also have lower PPV in first phase(shawfigure Figure 19).After filtering and
finalizing step in the second phase, false postieee filtered out significantly.
Unfortunately, this also filters out the some tpasitives. Thus after second phase it is
obvious (from figure 19) that we have improved PRVall the phases and for all
coverage than first phase but have reduced sahsifhus there exists tradeoff between
sensitivity and PPV. In the first phase though defity is satisfactory we have very poor
PPV in contrast to second phase where PPV is inggravhile sensitivity is reduced.

Comparatively, we have good PPV and sensitivitydfa®bp reads.

Similarly, for reads with error, first phase of npapy outputs more unmapped reads than
it was with ideal reads. Thus, in the second phaseget number alignments and more
false positives. Another issue with reads with ersp they are easily mapped to other
location of reference genome with competitive magpquality. Since this error also
includes base errors, this force mapper to mapanyndifferent location and orientation,
we get relatively high number of false positives ¢omparison to ideal reads.
Consequently, we will have reduced sensitivity &V in the final phase result in

contrast to those of ideal reads.
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4.3 Comparison with Existing tools
To compare our method with existing tools we chd®¥g®etect [69], BreakDancer [70]

both of which are based on pair end reads. We siedilerror free pair end reads with
coverage 10X of length 200bp with insert size 100@n a '90 inversions implanted'
donor genome using wgsim simulator. Those pair radis are mapped using BWA

mapping tool to obtain the final SAM file.

The final SAM file is given input to break dancepe line with all the parameters set to
default except parameter 's' which is set to 10tifnum size of region). First
configuration file is generated from the bam2cfgppbgram which is then fed into the

'‘breakdancermax’' program.

Similarly to use SVDetect tool, first the SAM fils preprocessed using program
'BAM_preprocessingPairs.pl' .This preprocessinggril out concordant pairs and keep
only the discordant pairs. Then 'SVDetect.cong i created where, we set all the
parameters to default. In the mean time ‘.lengile’ i also created to store the contig
lengths residing in the reference genome. Differ8MDetect commands are run
providing 'SVDetect.conf' file as input. The finautput, false and true positives

detected, Sensitivity and PPV are tabulated in&alo.

Out of 90 implanted inversions, our approach hamdo74 inversions in comparison to
BreakDancer 's 58 inversions and SVDetects's ¥@sions. Figure 22 below shows that
our approach has found more true breakpoints tttzer bwo. False positives are more in
our approach than BreakDancer and SV Detect. Sinceapproach solely relies the
alignments of the Single End reads, there is alveagiecent chance of Single End reads
mapped to many different locations in referenceogess other than the true locations
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resulting more false positives where as SVDetedt BieakDancer relies on paired-end
reads which are separated by predefined insert-3izedetect balanced copy number
event like inversions they only consider those seatlich have abnormal orientation but
approximately correct insert-size. This consideraalways helps them to swipe off false
positive efficiently in comparison to Single Endads approach of no predefined insert
size. Figure 23 shows that our approach has relgtlew PPV value than BreakDancer

and SVDetect tools the problem with SVDetect igldes not have capability to resolve
the breakpoints at base pair level. It only givesrange of breakpoints by giving starting
and ending co-ordinates of each breakpoint. Thasges are also very wide and far (in
average) 1000 bp from true breakpoint locationhéligh BreakDancer tool has provided
exact breakpoint co-ordinates they are in aver@9® bp away from the true breakpoints
co-ordinates. Our approach has relatively highescipion than BreakDancer and

SVDetect. The breakpoints co-ordinates generatemlibyapproach are no more than 5 bp

far from true breakpoint co-ordinates.
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Figure 22: Figure showing the comparison of outgamith other existing tools
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based on Sensitivity and PPV and F-Score.
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CHAPTERS

LIMITATION AND FUTURE ENHANCEMENT

It is always challenging to detect, SVs and rest¢hadr breakpoints at base pair level.
Although many methods and techniques are devigetthéodetection of balanced SV like

genomic inversion, there always remains limitatiorresolving breakpoints due to size
of inversion, type of inversion(homozygous or hetggous) and its complexity,

complex and repetitive structure of reference gemoread lengths, sequencing errors,
mapping algorithms and mapping accuracy. Althoughhave overcome the limitation of

insert size, by considering Single End Reads oprageh also has limitations. As much
as we increase the length of single-end reads seeratiuce the capability to detect small
inversions lesser than read length. Since we usentapping steps to map our reads
against reference genome, for efficiency purposeaiso loose many valuable reads in

the first mapping step. This is caused due to i@getregions (normal repeats and inverted
repeats) in the reference genome and accuracyeofmtgpping algorithm. Additionally in the
second mapping step we try to retrieve all possbfgnments of a read to make sure that we do
not miss important alignments pairs to infer breakfs. This adds overwhelming number of
false positives in first phase of our approachw# only select best alignments with higher
mapping quality we will lose many precious aligningmirs due to tie in mapping score,

consequently we lose true breakpoints in the finstse.

Despite of limitations and challenges, there algste some ways to overcome some of
those. For instance, we can extend our capabittydétect smaller inversions by

considering three pieces of alignments (i.e. alignts have softclipped bases on both
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sides of matched bases), although this has passiloiladd more false positives. We can
use high coverage data (>10X) to find heterozygouersions, but high coverage reads
could yield overwhelming false positives creatingplpgem in filtering steps. Our

approach has overhead of running time in theorsg phase, generating local regions,
indexing and mapping whole reads to them which @¢dé reduced by making more
stringent constraint in first phase i.e. by usiaggér read support count for breakpoint
pairs but this will likely cause to lose true brpaints. Fine tuning of different

parameters and making them strict could help tacedhis difficulty.
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CHAPTER 6

CONCLUSION

In this thesis work we put forth a pipeline to ad¢tgenomic inversion in human genome
using Single-End reads. We have used simulatedopiatto verify our approach for
different read lengths and variable coverage. V@thgle End reads generated with
relatively low coverage, we are able to detectlreakpoint pair of genomic inversions
with relatively good resolution and accuracy .Oiupefine is relatively cost efficient
because it discards the need of preparation oftisgee library and related biochemical
treatments. Moreover, Next Generation Sequenciogntdogy is gradually becoming
more cost effective, efficient and capable of ultigh throughput than ever before. These
technological achievements can be fully utilizedhte mission of achieving broader and
clear spectrum of genomic inversions along witheostructural variations in the genome

in near future and our pipeline will become morevant in this mission.
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Read coverage | Phase | Total Total True False False Sensitivit | PPV
Length Candidates| True Positives Positives | Negatives |y (%)
obtained Positives  obtained by (%)
Program
I 199¢ aC 79 191¢ 11 87.81 3.9t
10X
I 72 aC 47 15 43 52.2: 75.81
I 207 aC 65 142 25 72.2% 31.4(
100bp 5X
I 41 9C 41 0 49 45.5¢ 10C
I [0 9C 25 65 65 27.7¢ 6.81
2.5X
I 15 9C 14 1 76 15.5¢ 93.3:

Table T5 : Outpu of our approac for idea read: of 100by reac length: for coverag

10X,5X and 2.5X for SupportCount >=2
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Read |coverage Phase | Total Total True False False Sensitivity PPV
Length Candidates | True Positives Positives | Negatives | (%) (%)
obtained Positives | obtained by
Program
I 4965 90 86 4957, 4 95.5¢ 0.1
10X
I 222 a0 74 14¢ 16 82.2: 33.3¢
I 1875: 90 83 1866¢ 7 92.2: 0.44
200bp oX
I 13C a0 58 72 32 64.4¢4 44.6:
I 3881 a0 38 384: 52 42.2: 9.7¢
2.5X
Il 42 90 28 14 62 31.11 66.67

Table T6 :Output of our approach for ideal read20®bp read lengths for coverage

10X,5X and 2.5X for SupportCount >=2
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Read

Length

400bp

coverage | Phase | Total Total True True False False Sensitivity PPV
Candidates |Positives |Positives Positive | Negatives | (%) (%)
obtained obtained by|s
Program
I 374: 9C 84 365¢ 6 93.3: 2.2¢4
10X
I 11¢ 9C 75 44 15 83.3: 63.0:¢
I 80¢ 9C 38 77C 52 42.22 4.7C
5X
I 37 aC 36 1 54 40.0( 97.3(
I 657 aC 24 633 66 26.67 3.6t
2.5X
I 27 aC 24 3 66 26.67 88.8¢

Table T7:Output of our approach for ideal readsA00bp read lengths for coverage

10X,5X and 2.5X for SupportCount >=2
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Coverage Read Phase Total Total True| True False False Sensitivity | PPV
Length Candidates | Positives | Positives Positives Negatives (%) (%)
obtained obtained by
Program
I 162 90 7C 92 20 77.7¢ 43.21
100bp
I 47 a0 42 5 48 46.67 89.3¢
I 577¢ 90 83 576: 7 92.2: 1.44
10X 200bp
Il 91 90 56 35 34 62.22 61.5¢
I 76¢ 90 79 68¢ 11 87.7¢ 10.2¢
400bp
I 84 90 71 13 19 78.8¢ 84.52

TableT8 : Output of our approach for ideal readsl@®bp,200bp and 400bp read lengths for

coverage 10X,5X and 2.5X for SupportCount >2
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Coverage Read |Phase Total Total True| True False False Sensitivity | PPV
Length Candidates | Positives | Positives Positives  Negatives (%) (%)
obtained obtained by
Program
I 1707 9C 37 167( 53 41.1] 2.1%
100bp
I 99 aC 21 78 69 23.3¢ 21.2]
I 3057 aC 76 2981 14 84.4¢ 2.4¢
200bp
Il 89 9C 53 36 37 58.8¢ 59.5¢
I 377¢% 9C 74 3701 16 82.2: 1.€
400bp
Il 45 9C 39 6 51 43.3: 86.67

Table T9 : Outpu of our approac for erroneou read: of 100by reac length: for coverag

10X,5X and 2.5X for SupportCount >=2

Tools Candidate | True True | FalsePos False  Sensitivity | PPV | Distance
Breakpoints | Pos  BPs Neg from True
% % Bps
SVDetec 54 90 49 5 41 54 .4+ 90.7C 1000by
BreakDance |67 90 |58 9 32 64.4¢ 86.57 1000by
Our Methoc | 22z 90 |74 14¢ 16 82.2: 33.3% 5bp

Table T10: Table showing comparison of our toithwther tools
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