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Abstract—Metabolomics is a rapidly growing field studying 

the small-molecule metabolite profile of a biological organism. 

Studying metabolism has a potential to contribute to 

biomedical research as well as drug discovery. One of the 

current challenges in metabolomics is the identification of 

unknown metabolites as existing chemical databases are 

incomplete. We present a novel way of utilizing known 

mammalian metabolites in an effort to identify unknown 

ones. The system relies on a mammalian scaffolds database to 

aid the classification process. The results show that 96% of 

the mammalian compounds were identified as truly 

mammalian in a leave-one-out experiment. The system was 

also tested with a random set of synthetic compounds, 

downloaded from ChemBridge and ChemSynthesis 

databases. The system was able to eliminate 54% of the set, 

leaving 46% of the compounds as potentially unknown 

mammalian metabolites.    
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similarity; structure matching; mass spectrometry, 

classification. 

I.  INTRODUCTION  

Metabolomics is a rapidly evolving discipline involving 
the systematic study of endogenous small molecules that 
characterize the metabolic pathways of biological systems 
[1]. It is closely related to the genomics, transcriptomics 
and the proteomics and plays an increasingly important role 
in current biomedical research [2, 3].  

The goals of most metabolomics studies are to identify 
small-molecule metabolites in tissues and biofluids, and to 
correlate their levels with physiological and/or toxicological 
endpoints [4]. Although many challenges remain in this 
field, the metabolite identification process itself remains 
one of the most important.  

Liquid chromatography coupled to electrospray 
ionization mass spectrometry (LC/MS) is becoming a 
method of choice for profiling metabolites in complex 
biological samples [4-6]. For any tissue or biofluid 
examined, there are hundreds to potentially thousands of 
compounds that can be "detected" using LC/MS. However, 
only a handful of these can be reliably associated with 
actual chemical structures even when searching large 
chemical databases. Additionally, screening multiple 
candidate compounds against the thousands of accessible 
compounds in databases does not seem to be a practical 
option [7]. Similarly, in drug discovery, the search for 

pharmaceutically active drugs can be considered a multi-
objective optimization problem over an enormous search 
space of “possible” drugs [8, 9]. In such cases, 
chemoinformatic methods are used to constrain the 
compounds screened, in an attempt to narrow the search 
space of chemically diverse candidate compounds, such that 
they display ‘metabolite-likeness’ [10], ‘lead-likeness’ [11-
13] or ‘drug-likeness’ [14, 15]. 

Nobeli et al. [16] presented a first attempt to examine 
the metabolome of an organism, using two-dimensional 
molecular structures and a variety of chemoinformatics 
tools.  Based on the fact that similar molecules will tend to 
have similar biological properties [17] they used a library of 
57 fragments to act as scaffolds. The fragments were 
manually derived by visual examination of metabolite 2D 
diagrams making them subjective. 

In this paper, we establish a scaffolds database (1,400 
compounds) including all currently known mammalian 
metabolites (to the best of our knowledge) and present a 
system capable of efficiently and accurately classifying 
unknown compounds as non-mammalian or mammalian-
like. Our classification method is based on a novel scoring 
scheme that combines all matches of scaffolds to 
substructures of the unknown compounds, as well as 
matches of the unknown compound to substructures of the 
scaffolds. 

II. METHODS 

Our classification process (summarized in Fig. 1) starts 
with a set of uncategorized candidate compounds. Each 
candidate compound is represented by its molecular 
structure in the form of a canonical SMILES string. 
SMILES (Simplified Molecular-Input Line-Entry System) 
is a way of presenting chemical molecular structures using 
short ASCII strings that are easily converted into two-
dimensional models [18]. These sets of compounds first go 
through a filtration process where compounds containing at 
least one non-biological substructure are eliminated. Non-
biological substructures (NBS) are substructures that are not 
commonly found in biological compounds. We empirically 
derived a list of non-biological substructures that were 
checked against our mammalian scaffolds database 
(scaffolds list). The scaffolds list is a list of structures 
known to exist in mammalian pathways. If a substructure 
was found amongst the scaffolds list, it was removed from 
the NBS list.  
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Candidate compounds surviving this elimination phase 
are then matched against the scaffolds list. Candidate 
compounds that contain one or more scaffold structure are 
scored and ranked. Candidates with a score higher than a 
predefined threshold were declared to be biological. 

Compounds in our scaffolds list were compiled in the 
following manner: All compounds listed as components of 
one or more Metabolic Pathways in the KEGG database 
[19] were retrieved on 4/23/2011. Compounds in this list 
that were listed as participants in at least one of the 
following metabolic pathway groups were retrieved: 
Carbohydrate, Energy, Lipid, Nucleotide, Amino Acid, 
Other Amino Acid, Glycan, Cofactors, and Vitamins 
Metabolism. Each of these compounds were listed as 
participants in one or more of the following 91 KEGG 
numbered pathways: ko00010, ko00020, ko00030, 
ko00040, ko00051, ko00052, ko00053, ko00061, ko00062, 
ko00071, ko00072, ko00100, ko00120, ko00121, ko00130, 
ko00140, ko00190, ko00195, ko00196, ko00230, ko00240, 
ko00250, ko00260, ko00270, ko00280, ko00290, ko00300, 
ko00310, ko00330, ko00340, ko00350, ko00360, ko00380, 
ko00400, ko00410, ko00430, ko00440, ko00450, ko00460, 
ko00471, ko00472, ko00473, ko00480, ko00500, ko00510, 
ko00511, ko00512, ko00513, ko00514, ko00520, ko00531, 
ko00532, ko00533, ko00534, ko00540, ko00550, ko00561, 
ko00562, ko00563, ko00564, ko00565, ko00590, ko00591, 
ko00592, ko00600, ko00601, ko00603, ko00604, ko00620, 
ko00630, ko00640, ko00650, ko00660, ko00670, ko00680, 
ko00710, ko00720, ko00730, ko00740, ko00750, ko00760, 
ko00770, ko00780, ko00785, ko00790, ko00830, ko00860, 
ko00900, ko00910, ko00920, and ko01040.  

 
 

 

 
 
 
 
 
 

Figure 1.  The Classification Process. 

Entries that were single elements, metals, inorganic, n 
polymers or had no elemental formula were removed from 
the list. For the remaining compounds, corresponding 
structures were downloaded from the PubChem database 
[20] in the form of canonical SMILES. Compounds that did 
not have an entry in the PubChem database were 
eliminated, resulting in a scaffolds list of 1,987 distinct 
structures in the mass range of 25 – 1000 daltons (da). 

 

A. Structure-Scaffold Matching 

In the structure matching step, the Small Molecule Sub-
graph Detector (SMSD) Toolkit [21] was used for molecule 
similarity searches. SMSD is a Java based software library 
for finding the Maximum Common Sub-graph (MCS) 
between small molecules. It uses atom type matches with 
bond sensitivity information to evaluate molecular 
similarity. In this study, SMSD has been restricted to 
consider a match only if the scaffold (smaller structure) is 
an exact substructure of the structure being compared 
(larger structure). This restriction has been enforced in both 
the structure elimination phase (using our list of NBSs) and 
the structure inclusion phase (matching candidates to the 
scaffolds). Since SMSD guarantees that a given compound 
is an exact substructure of another in terms of atoms, bonds, 
and structure, we found that the percentage of atoms 
discovered would be a sufficient similarity measure. 
Equation 1 is used to compute the similarity score between 
any two compounds (candidates and scaffolds)  
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��� =  
����

����

  (1) 

where NSBS represents the number of atoms in the 
substructure and NSPR represents the number of atoms in the 
superstructure. Table I shows an example of assigning 
similarity scores to candidates using (1). Obviously, a 
candidate compound may match more than one scaffold. 
Consequently, more than one score may be associated with 
it as seen in Table I. Initially, we selected the score of the 
best match to represent a compound in the final ranking of 
all candidates. After examining a few compounds, it was 
clear that information was missed by following this 
approach. Hence the idea of creating a union scaffold 
structure, that incorporates all the scaffolds matching a 
candidate compound, was investigated. 

B. Union Scaffold Construction 

A union scaffold is formed by taking the union of all 
substructures of a candidate compound that are exact 
matches of scaffold structures. Table I illustrates the step by 
step construction of a union scaffold. 

The union scaffold provides a quantitative assessment of 
a candidate compound’s overall “biological coverage”. 
Equation 1 is then used to compute the similarity score 
between the candidate structure and the union scaffold. By 
constructing a union scaffold for each candidate compound, 
each candidate is assigned only one score and can be easily 
ranked. 
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In evaluating the effectiveness of the union scaffold 
concept, we noticed that some of the smaller 
compounds were not categorized as mammalian
reason behind this was that larger candidate compounds 
have a higher chance of having scaffolds as substructures.

As the candidate structure gets smaller that chance 
decreases drastically. In next section we propose an 
approach for correcting this bias by matching candidate 
structures against substructures of scaffolds. 

  

TABLE I.  UNION SCAFFOLD CONSTRUCTION

Matched  

Scaffold 

Candidate 

Compound 

Similarity 

Score 

Union 

Scaffold 

Structure

 

 

4/11 =  
0.36  

4/11 = 
 0.36 

 

4/11 = 
0.36 

 

5/11 = 
0.45 

Four scaffolds are found to be substructures of this candidate compound. The 
highest similarity score is 0.45. Instead of ignoring the matches that ha
similarity score, we build a union scaffold. The union scaffold 
this candidate is 0.91. 
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e of having scaffolds as substructures. 
As the candidate structure gets smaller that chance 

In next section we propose an 
approach for correcting this bias by matching candidate 
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4/11 = 
0.36 

 

8/11 = 
0.73 

9/11 = 
0.82 

10/11 = 
0.91 

e found to be substructures of this candidate compound. The 
s 0.45. Instead of ignoring the matches that have a lower 

union scaffold similarity score of 

C. Superstructure Matching 

Using SMSD, each candidate compound 
against larger scaffold compounds in the scaffolds list for 
sub-graph matches. If a scaffold is found to be a 
superstructure of a candidate, a similarity score is computed 
using (1). It is apparent that a candidate compound may be 
a substructure of several scaffolds, 
of multiple scores. In this case, the highest similarity score, 
which represents the best match between this candidate and 
a scaffold, is used as the “superstructure score” (
in Table II). 

TABLE II.  SUPERSTRUCTURE 

Candidate 

Compound 

Matched Superstructure 

Scaffold 

 

 

 

This candidate compound is a substructure of 3 scaffolds. The highest similarity 
score of the 3 matches is selected to be the superstructure score of th
compound. In this case the superstructure score is
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candidate compound is tested 
against larger scaffold compounds in the scaffolds list for 

graph matches. If a scaffold is found to be a 
superstructure of a candidate, a similarity score is computed 

a candidate compound may be 
 leading to the same issue 

of multiple scores. In this case, the highest similarity score, 
which represents the best match between this candidate and 

is used as the “superstructure score” (as shown 

UPERSTRUCTURE MATCHING 

Superstructure Superstructure 

Score 

 

11/20 = 0.55 

 

11/22 = 0.5 

22/40 = 0.55 

s a substructure of 3 scaffolds. The highest similarity 
matches is selected to be the superstructure score of the candidate 

is 0.55 
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D. Structure Scoring 

At this point, a candidate compound can have a union 
scaffold score, a superstructure similarity score, or both. If 
we use the union scaffold score only, we might be 
excluding smaller structures from being classified as 
biological. If we use the superstructure score only, we may 
exclude larger candidate structures. We decided to use both 
scores, and to select among various methods of combining 
the two scores by cross validation. 

Specifically, as discussed in the Results section, the best 
scoring scheme was selected by performing a 5-fold cross-
validation on some training data. Two different ways of 
combining the union scaffold and superstructure matching 
scores were considered. The first approach computes a 
candidate compound’s score by adding the union scaffold 
score and the superstructure score, while the other approach 
considers the candidate compound’s score to be the 
maximum of the union scaffold score and the superstructure 
score.  

E. Synthetic Datasets 

The Synthetic datasets used in the cross validation 
analysis (refer to Results section) and the independent 
testing experiments were randomly selected from 
ChemBridge 1  and ChemSynthesis 2 databases. About 
400,000 compounds were retrieved from both databases. 
Synthetic compounds were restricted to the 6 biological 
elements C, H, N, O, P, and S.  The mass distribution of 
molecules in ChemBridge was in the range of 150 – 700 da 
while that of ChemSynthesis was in the range of 50 – 300 
da. By combining both databases we managed to have 
synthetic molecules with masses ranging from 50 – 700 da. 
Consequently, only the mammalian compounds that fell 
within this mass range were kept, reducing the mammalian 
scaffold list to 1,400 compounds. From the curated 
synthetic list 1,400 compounds were randomly selected to 
participate in the cross-validation analysis as a training set 
and 5,320 compounds were randomly chosen for 
independent testing experiments. 

III. RESULTS AND DISCUSSION 

A. Comparison of Scoring Methods 

For an initial evaluation of the scoring methods 
previously mentioned, we performed a cross validation 
analysis using our scaffolds list and a random set of 1,400 
synthetic compounds (retrieved from ChemBridge and 
ChemSynthesis databases). 

Cross Validation (CV) is one of the simplest and most 
widely used methods for estimating the accuracy of 
classification algorithms [22]. Briefly, both the synthetic 
and mammalian compounds were randomly split in half; 
one half for training the model and the other half for testing 
it. The training half was randomly split into K roughly equal 
parts, and then each part was used to evaluate classification 

                                                           
1 http://www.chembridge.com/index.php 
2 http://www.chemsynthesis.com/ 

 

accuracy of a model trained on the remaining (K – 1) parts. 
In our experiments we used K = 5, i.e., 5-fold cross-
validation. 

Several methods for scoring a candidate compound 
were examined in this CV analysis. Specifically, the Union-
Scaffold Score (US) – reflects the value of (1); having the 
candidate compound as the superstructure and the union 
scaffolds as the substructure, the Sum of Scores (SS) – 
reflects the sum of the union scaffold score and the 
superstructure score, the Maximum Score (MS) – reflects 
the largest of the union scaffold score and the superstructure 
score. After some preliminary investigation, it was 
noticeable that the mass of a compound might have an 
impact on its final score. Therefore, we considered splitting 
test compounds into 5 mass bins and used CV to find cutoff 
thresholds for each bin. Bin boundaries were also found 
through CV. The same scoring methods, referred to as 5 
Bin Union-Scaffold Score (5US), 5 Bin Sum of Scores 
(5SS) and 5 Bin Maximum Score (5MS), were applied to 
each of the 5 bins. Fifteen (5-fold) CV experiments were 
executed to evaluate the performance of our system 
regarding the scoring methods mentioned above.  

Table III shows the average sensitivity (SENS), 
specificity (SPEC) and the Matthews correlation coefficient 
(MCC) over the 15 (5-fold) CV experiments for US, SS, 
MS, 5US, 5SS and 5MS. Sensitivity refers to the proportion 
of compounds that are biological and have been predicted 
by the system to be biological. Specificity refers to the 
proportion of compounds that are non-biological and have 
been predicted to be non-biological [22]. The MCC is used 
in machine learning as a measure of the quality of binary 
(two-class) classifications. It returns a value between -1 and 
+1. A coefficient of +1 represents a perfect prediction, 0 an 
average random prediction and -1 an inverse prediction 
[22]. 

SS outperformed all other scoring techniques with a 
sensitivity of 88% while 5SS had the highest specificity of 
78%. According to MCC, 5SS is the best classifier in all 6 
methods. Accordingly, the “5 Bin Sum of Scores” method 
was used when testing the system on the independent 
datasets.   

B. Validation on Independent Test Data 

Traditionally, one would use unseen data to validate the 
performance of a system. In this case, we had already used 
all the mammalian scaffolds available (to our knowledge) in 
the training phase. We are not aware of other true 
mammalian compounds to use in the validation step. To 
overcome this limitation in data availability, we carried out 
a set of leave-one-out experiments on our mammalian 
scaffolds list using the bin boundaries and the similarity 
score thresholds obtained by the 5-fold Cross Validation 
experiments.  

For a dataset with N compounds, N experiments were 
performed. For each experiment, N-1 compounds were used 
as scaffolds and the remaining compound was used for 
testing. As a result, our system was able to identify 96% of 
the scaffolds as mammalian compounds. Table IV shows 
the results broken down into 13 (50 da) bins. Each row 
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represents a bin with the number of compounds classified as 
mammalian/non-mammalian and the percentage of each. 

TABLE III.  5-FOLD CV AVERAGE ACCURACY RESULTS  

 
Structure Scoring Methods 

US MS SS 5US 5MS 5SS 

SENS 70% 59% 88% 83% 84% 86% 

SPEC 65% 71% 57% 75% 76% 78% 

MCC 0.36 0.3 0.47 0.57 0.60 0.64 

 
Table V shows the performance of the system when a 

set of 5,320 randomly selected synthetic compounds were 
tested. Similar to Table IV, the results are shown in the 
form of 13 50 da bins. Our system classified 46% of the 
compounds as mammalian compounds. In other words, it 
was able to filter out 54% of the compounds as being non-
mammalian. That being said, a potential use of our system 
is to look for compounds classified as mammalian among 
synthetic lists because they are more likely to have 
biological activity.  

IV. CONCLUSION 

In this study, we presented a novel supervised 
classification method with the capability of eliminating 
compounds that are non-mammalian by efficiently using 
known mammalian metabolites. To this aim we developed a 
scaffolds database (1,400 compounds) that incorporates all 
known mammalian metabolites (to the best of our 
knowledge).  We also introduced new ways of handling 
multiple scaffold matches by constructing a union scaffold 
structure and incorporating superstructure matches. 

TABLE IV.  LEAVE ONE OUT ANALYSIS 

Bin # 
Bin masses 

(da) 

Mam  

Count 

Non-

Mam 

Count 

Mam% 

Non-

Mam

% 

1 50-100 55 10 85% 15% 

2 100-150 228 7 97% 3% 

3 150-200 284 5 98% 2% 

4 200-250 151 5 97% 3% 

5 250-300 127 7 95% 5% 

6 300-350 165 7 96% 4% 

7 350-400 99 3 97% 3% 

8 400-450 91 5 95% 5% 

9 450-500 42 1 98% 2% 

10 500-550 35 4 90% 10% 

11 550-600 34 3 92% 8% 

12 600-650 14 0 100% 0% 

13 650-700 18 0 100% 0% 

Average 96% 4% 

TABLE V.  SYNTHETIC DATASET TEST RESULTS 

Bin # 
Bin masses 

(da) 

Mam  

Count 

Non-Mam 

Count 
Mam% 

Non-

Mam% 

1 50-100 100 147 40% 60% 

2 100-150 399 494 45% 55% 

3 150-200 405 693 37% 63% 

4 200-250 187 406 32% 68% 

5 250-300 187 322 37% 63% 

6 300-350 305 349 47% 53% 

7 350-400 207 181 53% 47% 

8 400-450 240 125 66% 34% 

9 450-500 119 44 73% 27% 

10 500-550 110 38 74% 26% 

11 550-600 110 31 78% 22% 

12 600-650 34 19 64% 36% 

13 650-700 43 25 63% 36% 

Average 46% 54% 

 
Leave one out experiments results show that 96% of the 

mammalian compounds are correctly identified by the 
proposed classification scheme with detection thresholds 
selected by cross-validation on the training data.  In 
validation experiments conducted on an independent set of 
synthetic compounds, 54% of the compounds were 
eliminated as being non-mammalian. These encouraging 
results suggest that the proposed method can be a useful aid 
in the difficult processes of identification of unknown 
metabolites and drug discovery.  In ongoing work we are 
exploring further improvements in classification accuracy 
by using known biological pathway information.  
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