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Abstract

Background: There is an ever-expanding range of technologies that generate very large numbers of biomarkers

for research and clinical applications. Choosing the most informative biomarkers from a high-dimensional data

set, combined with identifying the most reliable and accurate classification algorithms to use with that

biomarker set, can be a daunting task. Existing surveys of feature selection and classification algorithms

typically focus on a single data type, such as gene expression microarrays, and rarely explore the model’s

performance across multiple biological data types.

Results: This paper presents the results of a large scale empirical study whereby a large number of popular

feature selection and classification algorithms are used to identify the tissue of origin for the NCI-60 cancer cell

lines. A computational pipeline was implemented to maximize predictive accuracy of all models at all parameters

on five different data types available for the NCI-60 cell lines. A validation experiment was conducted using

external data in order to demonstrate robustness.

Conclusions: As expected, the data type and number of biomarkers have a significant effect on the performance

of the predictive models. Although no model or data type uniformly outperforms the others across the entire

range of tested numbers of markers, several clear trends are visible. At low numbers of biomarkers gene and

protein expression data types are able to differentiate between cancer cell lines significantly better than the other

three data types, namely SNP, array comparative genome hybridization (aCGH), and microRNA data.
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Interestingly, as the number of selected biomarkers increases best performing classifiers based on SNP data

match or slightly outperform those based on gene and protein expression, while those based on aCGH and

microRNA data continue to perform the worst. It is observed that one class of feature selection and classifier are

consistently top performers across data types and number of markers, suggesting that well performing

feature-selection/classifier pairings are likely to be robust in biological classification problems regardless of the

data type used in the analysis.

Background

Due to the recent rise of big-data in biology, predictive models based on small panels of biomarkers are

becoming increasingly important in clinical, translational and basic biomedical research. In clinical

applications such predictive models are increasingly being used for diagnosis [1], patient stratification [2],

prognosis [3], and treatment response, among others.

Many types of biological data can be used to identify informative biomarker panels. Common ones include

microarray based gene expression, microRNA, genomic copy number, and SNP data, but the rise of new

technologies including high-throughput transcriptome sequencing (RNA-Seq) and mass spectrometry will

continue to increase the diversity of biomarker types readily available for biomarker mining.

Useful predictive models are typically restricted to use a small number of biomarkers that can be

cost-effectively assayed in the lab [4]. The use of few biomarkers also reduces the effects of over-fitting,

particularly for limited amounts of training data [5]. Once training data has been collected and

appropriate procedures for normalization of primary data have been defined, assembling a robust

biomarker panel requires the solution of two main computational problems: feature selection, to identify a

short list of informative biomarkers, and classification, used to make predictions for new samples based on

patterns extracted from the training data. Both of these steps have been explored extensively in the

statistics and machine learning literature, and many alternative algorithms are available for each. Due to

the sheer number of available choices and the lack of predictable interactions between feature selection

method, classification algorithm, and data type, assembling the most robust biomarker assay for a given

biomedical application is rarely undertaken systematically. Rather, it is more often driven by the intuition
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and a priori preferences of the statistician.

Available feature selection methods can be grouped into three broad categories: filter, wrapper and

embedded. Filtering approaches use an easy to calculate metric which allows quick ranking of the features,

with top ranking features being selected. Wrapper methods use a classification algorithm to interrogate the

effect of various biomarker subsets. Embedded approaches are classification algorithms which eliminate

features as part of the training process. Recent studies [6–8] investigated the influence of feature selection

algorithms on the performance of predictive models and provided a framework for thorough comparison of

approaches. However the effect of the number of biomarkers selected and high-dimensional data type was

not explored.

There are hundreds of publications describing classification algorithms and their applications to genetic

research and medicine. Many publications advocating a new method employ a limited comparison between

similar approaches. However non-uniform validation strategies make it difficult to assess performance of a

wide variety of approaches. A previous study compared both classification and feature selection approaches

in a unified framework [8], however the effect of biological data type was not explored, but it was observed

that the biological question does have an effect on the best model. Additionally most comparisons typically

overlook the effect of model parameterization even though the choice of parameters can have profound

effects on performance.

This work presents a large scale empirical comparison of the effects of the interaction between the main

components of the predictive model (i.e., feature selection and classification algorithms), the number of

features utilized, and the underlying data type on the performance of the overall model. This study also

implements exhaustive parametrization of all models to ensure a fair comparison between models.

In order to test the performance of the large number of models tested in this study, and in order to be able

to run direct comparisons of the models on different biological data types, we took advantage of the publicly

available NCI-60 cancer cell line data set [9]. The NCI-60 cell line collection represents a carefully curated

collection of 60 independent cancer cell lines derived from nine types of cancer occurring in 60 individual

patients. Each line has been uniformly cultured and DNA fingerprinted to ensure independence [10]. In

addition, the NCI-60 cell lines have been subjected to extensive molecular characterization including

mRNA microarray [11], microRNA [12], protein lysate arrays [11], SNP arrays [13], and aCGH

analysis [14]. For these reasons, the NCI-60 data set represents a tremendous research tool for exploring

and benchmarking Omics-type approaches to cancer classification and therapeutics.

Cancers are widely believed to derive from a single event in which one cell escapes the many surveillance
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mechanisms in place to prevent uncontrolled proliferation. Once this has occurred, the cancer often evolves

quickly, rapidly acquiring large numbers of mutations, ranging from small point mutations to very large

chromosomal aberrations and regional amplifications (DNA duplications). The original identity of the

cancer cell (its cell type or tissue type) appears to exert a very strong influence on the course of evolution

of the cancer. For this reason, characteristic mutations will often be found in cancers derived from the

same tissue, even in different patients. In addition, because identical cell types from different patients will

share very similar gene expression signatures, cancers derived from these tissues will often do the same. In

the present study we take advantage of these two features of cancer to test the ability of various statistical

models to correctly infer the cell type (or “tissue-of-origin”) of each cancer cell line. The ability to make

this inference correctly not only represents an excellent test of these models on real biological data, it is a

good example of the type of classification ability required for targeted cancer therapeutics.

Methods
NCI-60 cancer cell-line dataset

In order to test the predictive models in this study we use publicly available data from the NCI-60 cancer

cell lines as provided by CellMiner [9]. For the purpose of this study, we analyzed cancers with at least 5

representative cell lines derived from the same tissue-of-origin (5-9 cell lines per tissue-of-origin). These

lines represent cancers emerging from eight tissues: breast, central nervous system, colon, leukemia,

melanoma, non-small cell lung, ovarian, and renal cancers. The data types used in this study are gene

expression (mRNA) and protein lysate (protein) arrays [11], microRNA [12], SNP arrays [13], and array

comparative genome hybridization (aCGH) [14]. All data has been normalized according to best practices

for each assay platform prior to downloading for this study [9]. The specific cell lines and data files used in

this study can be found in Supplemental Tables S1 and S2.

Feature selection methods

The area of feature selection in machine learning has recently been quite robust. There are numerous

specialized feature selection algorithms which identify the most informative biomarkers from

high-dimensional data. This study utilized at least one approach from each of the three broad categories

identified above (filter, wrapper, and embedded). Every approach utilized allowed for a specific number of

features to be chosen. No requirement was established that induced a relationship between feature sets

from the same algorithm. So the 16 features chosen by one approach are not required to be a subset of the
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32 features chosen by the same. For all algorithms we used the implementations in the Scikit-learn [15]

Python package, please refer to its associated documentation for specific implementation details.

The fastest and most simplistic selection method is univariate filtering. These approaches rank features

according to some score, and the user selects the best k features accordingly. Here the F-statistic (Anova),

a generalization of the t-test, is used as a filter, as suggested in [8] and [6]. There are no parameters for

this feature selection method.

Wrapper approaches typically use some type of greedy strategy to select influential features using a black

box classifier. They are more computationally intensive, however SVM recursive feature elimination

(SVM-RFE) is extensively used in medical applications [16]. The parameters considered were the penalty

parameter and loss function.

The final class of feature selection algorithms is embedded approaches where the features are chosen while

building the classifier. To represent this class two tree-based methods were adapted; random forest

(RF) [17] and extra-trees (ET) [18]. The parameter considered was the number of trees used in each

approach.

A summary of parameters of all considered feature selection methods along with the range of values

searched for each parameter are given in Supplemental Table S3.

Classification methods

An exhaustive comparison of all classification algorithms would be quite challenging. Therefore only a

small number of approaches was explored, chosen to represent most common machine learning approaches

used in bioinformatics. Identifying the cancer type from the NCI-60 dataset is inherently a multi-category

classification problem. Therefore each considered approach must accommodate this setting or be adaptable

by one-vs-one [19] or equivalent approaches. The types of algorithms tested fall into three main categories:

linear, tree, and distance based methods. Again we used the Scikit-learn [15] Python implementations for

all compared classification algorithms.

Linear classifiers use a linear function to score classes by taking the dot product of feature values and

feature weights computed during training. One of the most powerful, flexible and ubiquitous linear

classifier is the support vector machine (SVM) with linear kernel [20]. SVM has been utilized in numerous

works describing predictive models with biological and medical significance. Both the penalty and loss

function parameters were explored. Another powerful linear classifier is logistic regression (LR) [21]. The

specific implementation uses one-vs-all to accommodate the multi-classification setting instead of the
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one-vs-one approach. The penalty function, and regularization parameters were explored.

Classification trees are a machine learning tool which has found extensive use in the biological and medical

communities. This is partially due to both their resilience to over-fitting and ease of interpretation. This

work looks at three related approaches; vanilla decision trees (DT) [22], random forest (RF) [18] and

gradient boosting (GB) [23]. Decision trees represent class labels as leaves in the tree and branches are

combinations of features that lead towards a leaf. Vanilla decision trees can often over-complicate the

explanation necessary to arrive at the appropriate class label, however their interpretation is very simple.

Random forest approach and gradient boosting are ensemble learning techniques where multiple trees are

created and the final decision is some aggregate. These approaches are less-susceptible to over-fitting

however they are often computationally intensive. The common parameter explored is the number of trees

used and for gradient boosting the number of boosting stages.

Distance based methods surveyed are k-nearest neighbors (KNN), cosine (Cos) and correlation (Corr).

Cosine and correlation are simple classifiers which calculate the distance to all training samples from the

test sample and assign the label based on the closest match. KNN is a slightly more advanced version of

the same concept in which class membership is assigned by majority voting among the k closest matches.

A summary of parameters of all considered classification algorithms along with the range of values searched

for each parameter are given in Supplemental Table S4.

Validation strategy

A common validation strategy used in evaluating machine-learning methods is k-fold cross-validation [6, 8].

Here the data is partitioned into k equal size subsets with each set used in turn for testing while the other

k − 1 subsets are used as training data. Care must be taken taken to avoid substantial biases [24] by

ensuring that feature selection is performed only on the data reserved for training. Since the approach

presented here is also parameterizing for each distinct model, nested k-fold cross-validation is used to tune

parameter values. This requires an additional cross-validation experiment on each training dataset, where

a grid-search over the considered parameter range is performed. The inner phase identifies the best

parameter values which are then used exclusively in the outer cross-validation. In order to build stronger

evidence for the models’ performance, the outer cross-validation phase was repeated 100 times, however the

parameterization was only performed in the first iteration. Biases towards selecting more complex models

with more parameters or overly fine grid-steps are still a possibility, however nested cross-validation should

largely mitigate them. More advanced techniques presented in [25] could be utilized in future iterations.
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An outline of the validation strategy can be seen in Figure 1.

The nested k-fold cross-validation strategy is computationally very intensive. With 4 × 9 = 36 models

(combinations of feature selection and classifier) to evaluate, dozens of parameter values and different

number of selected markers there can be upwards of 1,000,000 individual classifier runs per data type. The

majority of the jobs occur in the inner cross-validation loop, and fortunately can all be run in parallel on a

cluster or multi-core server. Also, a pre-filtering heuristic was applied to speed up the feature selection

process. For all datasets with more than 1,000 features we retained only the top 1,000 features as ranked

by the F-statistic prior to any additional feature selection.

To further validate the results on external datasets, eight primary tumor cohorts from The Cancer Genome

Atlas (TCGA) were identified to match five NCI-60 tissue-of-origin cell lines; central nervous system, colon,

non-small cell lung, ovarian, and renal. The mapping of the TCGA cohorts to the NCI-60 cell lines can be

found in Supplemental Table 7. The TCGA derived gene expression microarray data was obtained from

the Broad Institute’s GDAC Firehose utility [26–34]. The presented pipeline was used to select biomarkers,

identify and train the most informative model using NCI-60 data [35]. Then its performance was tested

using the TCGA derived data.

Metrics

There are numerous metrics used in evaluating the accuracy of a predictive model. One common metric is

AUC, or area under the receiver operating characteristic (ROC) curve. The ROC curve is a plot of the true

positive rate against the false positive rate. The AUC is then the area under this curve and is used as a

single measurement of classifier performance. This definition is typically for binary classification tasks,

however there are several extensions to multiclass classification problems [36]. Since the classes are equally

represented in the NCI-60 dataset this work utilizes the multiclass metric,

AUCtotal =
∑

ci∈C AUC(ci) · p(ci), where AUC(ci) is the typical binary classification AUC for class ci and

p(ci) is the prevalence in the data of class ci.

Results and discussion

This study is evaluating the effect of three parameters simultaneously: the model, the data type and the

number of markers. Therefore conclusions about the best predictive model are presented from the

perspective of each parameter individually. In Figure 2 an overview of the AUC for each model, data type,

and number of markers, is presented as a heatmap. The hotter entries represent higher AUC.
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Model effects

The accuracy of the predictive models varies greatly, with the various combinations of feature selection and

classification algorithms. If the feature selection and classification algorithms are grouped by class, a

high-level ranking becomes much clearer. In Figure 3 the relative ranking of each model is indicated by

color for each data type at each number of features. The RFE-Linear combination which uses SVM-RFE

for feature selection and logistic regression or SVM for classification is the best performing model in almost

all instances. Close behind is Ensembl-Linear, where in Table 1 it is clear that it performs only slightly

worse than RFE-Linear.

If the data type and number of features are fixed the effects of the models can be explored further. As seen

in Figure 4 the mRNA and protein data types consistently afford the best classification accuracy at both

high and low number of markers. Although classifiers have relatively poor performance on SNP data for 8

markers, as the number of selected biomarkers increases best performing classifiers based on SNP data

match or slightly outperform those based on gene and protein expression. The accuracy of all models is

generally highest at a high number of markers. Therefore mRNA and SNP at 16 (Figure 5) and 64 (Figure

6) markers were chosen to demonstrate model effects. Surprisingly, the effect of classifier choice is small as

seen in Figure 3. The models are grouped by feature selection algorithm. For RFE there is very little

difference between all the classifiers except decision trees and gradient boosting which are consistently poor

performers. The major differences appear between feature selection groups, where SVM-RFE is the best,

random forest and extra trees have equivalent performance, and Anova is the worst.

This conclusion is contrary to that of [6], where it was found that the t-test univariate filter (of which

Anova is considered a multiclass generalization) often performed the best for feature selection. This could

be due to the differences in the underlying complexity of the question; namely in [6] the goal was to predict

metastatic relapse, which is a binary question, using gene expression microarrays. In addition, no

parameter tuning using nested CV or similar approach was performed in [6]. Although this study cannot

prove that a particular feature selection or classification algorithm is best in a certain scenario, it does

indicate that a thorough model selection step is advised.

The relatively small effect of classifier choice is interesting and unexpected. This indicates that much more

care should be given to choosing the right features, as this has the biggest effect on model performance.
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Data type effects

The rich selection of data types available for these cell lines provides the opportunity to compare the

ability of many types of biological data to classify the tissue of origin of a tumor cell line. Some of these

data types fundamentally reflect gene expression levels: mRNA, protein and microRNA. The other two,

CNV and SNP, are generally assumed to reflect genomic changes at large (CNV) and small (SNP) scales.

Comparisons of data type effects at all marker sizes are best seen in Figure 4.

The transition from normal tissue to cancerous tissue is generally associated with changes at the level of

both gene expression and the genome. Frequent mutations, genomic rearrangements and large scale

changes in gene expression are all characteristic of oncogenic transformation. However, cancer cells also

retain many, if not most, of the essential hallmarks of the tissue of origin of the cancer. In this study, we

use the tissue of origin as the ground truth and measure the ability of each data type to correctly infer the

tissue of origin of a sample based upon each data type.

A priori, we expect some of these data types to be better at this task than others. For instance, mRNA

profiles are highly distinct between different tissue types. For this reason, even after oncogenic

transformation, an mRNA transcriptional profile characteristic of the tissue of origin is expected to

resemble that of the normal tissue, more than it would the transcriptional profile of tumors derived from

other tissues. For this reason, we expect (and find) that mRNA transcriptional profiles reliably and

accurately infer the tissue of origin of tumor cell lines. Similarly, protein expression profiles are also very

reliable indicators of the tissue of origin of a tumor. microRNA profiles are less powerful than either

mRNA or protein expression profiles, but still fairly powerful indicators of tissue of origin. The relative

weakness of microRNA profiles compared to mRNA and protein expression profiles may in part result from

lower tissue specificity of microRNA expression relative to mRNA and protein.

The ability of genomic data to infer the tissue of origin of the tumor is subject to a very different set of

biological constraints than expression data. While expression data is expected to be approximately

identical across tissues regardless of patient identity, and thus similar between tumors derived from the

same tissue but from different individuals; genomic data is identical across normal tissues in an individual,

and differs between individuals. Thus, at first glance, genomic data would be expected to track with the

individual, and be a very poor predictor of the tissue of origin of a cancer. However, dramatic genomic

alterations are a hallmark of cancer progression, and distinct genomic alterations are often found in

distinct cancer types. Accordingly, we find that copy number variation is about as powerful as microRNA

profiles at inferring the tissue of origin of a cancer cell. This is likely due to the preferential occurrence of
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specific DNA rearrangements in cancers derived from specific cell types [37]. The SNP arrays however,

which measure the presence of specific alleles in a sample, show unexpectedly strong ability to infer the

tissue of origin of these cancer cell lines. Indeed, their performance is similar to that of the mRNA and

protein expression profiles (perhaps even better at high numbers of markers). This was unexpected as

SNP’s should be roughly identical across all tissues in an individual, and by and large, reflect an

individual’s ancestry. However, this phenomenon has been previously observed in the NCI-60 data, and

was found to result from the fact that intensity of signal on the SNP array was actually reflecting SNP

copy number at duplicated loci, and thus indirectly measuring likely gene expression levels, rather than

homogenization of genotypic diversity [38]. This effect was strongest for linked SNPs, and appears to be

the result of local gene copy number amplification, which in turn enables increased gene expression. Thus,

the ability of SNP arrays to accurately infer tissue of origin of cancer cell lines appears to result from

increased gene expression driven by local duplication and increase in copy number. As the CGH arrays

used to profile the NCI-60 lines provide much lower genomic resolution than the SNP arrays, they are less

powerful at detecting and exploiting this effect. This unexpected behavior of the SNP arrays used to

characterize the NCI-60 lines could be addressed by utilizing newer SNP arrays that control for copy

number such as the Affymetrix SNP6 platform.

Number of marker effects

As one uses more biomarkers to classify samples, one expects increased performance, the possibility of

overfitting, and the appearance of a plateau beyond which additional markers do not increase the power of

classification. However, the rate at which these changes occur as more markers are used to classify a

sample can be very different for various types of data.

Our analysis shows that mRNA, protein, and SNP data all plateau at about the same AUC (∼0.97).

However, each of these data types reaches the plateau at a different number of markers: mRNA plateaus

between 16 and 32 markers, while protein plateaus at around 32 markers, and SNP does not reach the

same AUC until 64 markers are used. This may result from the fact that each of these markers appear to

measuring aspects of gene expression, with decreasing directness (SNP) or coverage (protein), and thus

power of discrimination. The mRNA arrays used to characterize the NCI-60 cell lines provide direct

assessment of the activity of thousands of protein-coding genes, while the protein arrays measure only

somewhat more than 300 proteins. With thousands of potential markers to choose from, the mRNA-based

models can select informative markers from a larger marker pool, and thus maximize the performance of a
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gene expression-based model more quickly than the protein arrays, which are restricted to a small subset of

the protein coding genes represented on the mRNA arrays. The more direct nature of the protein

measurement (i.e. closer to the active biological component) does not appear to outweigh the disadvantage

of the lower coverage in the starting set of protein markers. As discussed in the preceding section, the SNP

array appears to be measuring, in part, gene expression levels resulting from the amplification of specific

regions of the genome in specific cancer types. However, there is likely to be a complex and possibly

heterogeneous and non-linear relationship between signal intensity on the SNP array, and gene expression

levels. Thus, despite the very large number of markers to choose from on the SNP array, highly informative

markers are not as abundant in this data as they appear to be in the mRNA data. As a result, many more

SNP markers are required to achieve the same level of performance as mRNA-based markers. It is hard to

predict how the power of SNPs to infer cancer type might change when newer arrays, that control for copy

number changes, are used to characterize these cell lines.

Similarly, CNV and microRNA markers approach the same level of performance as one another, but do so

at different rates. While microRNA markers plateau quickly (at about 16 markers) CNV markers require

64-96 markers to reach the same level of performance. The quick plateau of microRNA-based markers is

likely due to the highly tissue-specific expression of a minority of microRNA’s, and the more global

expression of the remaining majority. Once the few highly informative microRNA’s have been selected and

used, adding more provides little additional classification power. In the case of CNV’s, like SNP’s these

markers reflect changes in the cancer cells genome that can lead to changes in gene expression that are

distinctive features of cancer subtypes. However, not only do the CNV markers suffer from the indirect

relationship between the marker and gene expression expected for SNP’s, they are also a much lower

resolution marker than SNP’s (megabases vs single bases), and far fewer CNV’s were measured on the

arrays, thus limiting the likelihood that the most informative CNV’s were available for selection. Thus, the

power of the CNV biomarker panel climbs slowly.

Taken together, these observations suggest that the absolute performance of a given biomarker data type

to classify a cancer can be understood in the context of: the number of available markers for the model to

choose from, the power of the most informative markers in the set, and the directness with which the data

type reflects an informative aspect of the sample biology. Data types with a large number of markers to

choose from, that are closely related to the biology of the sample, are most likely to yield highly effective

small biomarker panels. On another hand, data types with lower saturation (fewer markers measured),

and/or a less direct relationship to the biological differences between samples, will require more markers to
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reach maximal performance.

Combined model, data type, and number of marker effects

Ultimately all parameters should be considered simultaneously when attempting to build the best targeted

predictive model. In order to do this it is necessary to build a validation framework to explore all

parameters fairly and efficiently. Although it is a difficult task it is not impractical and interesting nuances

can be extracted.

In this study it was observed that at the lowest number of markers (8) mRNA and protein were the best

data types for cancer identification. For mRNA, SNP and protein the SVM-RFE was the best feature

selection choice and ET was the best classifier. For CNV and microRNA the best classifier was LR and ET

respectively. Interestingly for all data types at 8 markers except CNV a tree based classifier performed the

best as seen in Table 1. It is possible that if only a few biomarkers are considered the tree based

approaches explicit enumeration of decisions may be better suited, however it should be noted that the

linear classifiers are typically only marginally worse.

At the highest number of markers tests (96) both RFE and ET perform strongly on all data types, however

LR is the best classifier for all types except SNP where KNN is the best. Both of these classification tools

are technically simple, yet they perform best which lends credence to the Occam’s razor principle which

when applied to machine learning places preference on simpler explanations.

External validation

The amount of over-fitting when building a predictive model is always a concern. This effect was measured

in an external validation experiment utilizing analogous gene expression microarray data obtained from

several studies which are part of the TCGA project [26–34]. The results of this comparison indicated that

biomarker and model selection using AUC as the ranking criteria is robust and performs well across

studies. In Table 2 it can be seen that colon (CO), CNS and renal (RE) cancer types were distinguishable

with a high degree of accuracy using between 8 and 96 markers. The CNS type was more challenging to

differentiate after 32 markers, while ovarian (OV) and lung cancers (LC) were extremely difficult to

differentiate at any number of markers.

The NCI-60 data is derived from decades old cell lines, while the TCGA data was derived from recently

sampled primary solid tumors. Additionally the matched cancer types did not have comparable histological

classification. Finally, there were three additional cancer types (ME, LE, BR) which were present in
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NCI-60 but not included in the external validation set. These classes were included in the training. Despite

these differences the presented method was able to perform biomarker selection and build accurate

predictive models for this challenging external validation experiment. A complete breakdown of the

per-class prediction rate by cancer marker set size is provided in Supplemental Table 9.

Conclusions

The initial hypothesis motivating this research was that certain predictive models will perform better on

different data types at different dimensionalities. While this hypothesis holds, the difference in accuracy

between models is often small and allows for several generalizations. Namely that RFE is clearly the best

feature selection algorithm and both SVM and LR are the best classifiers as seen in Figures 2 and 3. Both

mRNA and protein expression are the overall best performing data types for the cancer classification

question. However to maximize predictive accuracy all models at all parameters should be parameterized

and vetted fairly before conclusions are made.
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Figure legends

Figure 1. Validation strategy

Flow chart of the validation strategy. First all combinations of feature selection and classification

algorithms (4x9) are parametrized in the inner k-fold cross-validation loop based on the training folds of

the outer k-fold cross-validation. The best parameters are found by maximizing AUC. Once the parameters

are fix the outer k-fold cross-validation loop is run and the average AUC (or similar metric) is recorded.

Figure 2. AUC heatmap

This heatmap contains the average AUC for each model (grouped by feature selection) for each data type

at each number of markers. The darker the block, the more accurate the predictive model is.

Figure 3. Model rank

This heatmap contains the relative rank based on AUC of each model across all data types. The darker

spots indicate higher AUC and rank.

Figure 4. AUC boxplots

This figure contains box plots of the best model, for each data type and number of markers. The whiskers

represent the 95% confidence interval, while the green dots represent another model with performance

within the confidence interval.

Figure 5. SNP/mRNA: 16 markers

This figure contains box plots describing the AUC of each model, grouped by the feature selection

component for SNP and mRNA data type at 16 markers.

Figure 6. SNP/mRNA: 64 markers

This figure contains box plots describing the AUC of each model, grouped by the feature selection

component for SNP and mRNA data type at 64 markers.
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Tables

Table 1. AUC by data type and marker count

Marker Set Size SNP mRNA CNV microRNA Protein

8 RFE ET 0.8598 RFE ET 0.9585 RFE LR 0.7198 RFE RF 0.8352 RFE ET 0.9426
RFE RF 0.8591 RFE RF 0.9554 ET LR 0.7115 RFE SVM 0.8352 ET ET 0.9394
RFE SVM 0.8321 RFE SVM 0.9521 RF LR 0.71 RFE KNN 0.8295 RFE RF 0.9382
ET ET 0.8295 RFE LR 0.951 RFE ET 0.691 RFE ET 0.8275 RF ET 0.9376

RFE KNN 0.9467 RFE RF 0.6802 Anova SVM 0.8089 ET RF 0.9312
Anova LR 0.8051 RF RF 0.9272
RF ET 0.8028
RF RF 0.8027
RFE LR 0.8021
RF LR 0.802

16 RFE ET 0.922 RFE ET 0.972 ET LR 0.7616 RFE SVM 0.8758 RFE ET 0.9666
RFE RF 0.9162 RFE LR 0.9709 RFE LR 0.7607 RFE KNN 0.8704 ET ET 0.9582
RFE SVM 0.9111 RFE RF 0.9681 RF LR 0.7468 RFE RF 0.8671 RFE RF 0.9565
RFE KNN 0.9033 RFE SVM 0.968 RFE ET 0.8597
ET ET 0.8997 RFE Cos 0.9663 RFE LR 0.8535
RFE LR 0.897 Anova SVM 0.8496
RF ET 0.896
ET RF 0.8914

32 RFE LR 0.9685 RFE LR 0.9759 RFE LR 0.8194 RFE KNN 0.8806 RFE ET 0.9792
RFE SVM 0.9674 RFE ET 0.9757 RFE RF 0.8801
RFE KNN 0.966 RF LR 0.9747 RFE ET 0.8717
RFE ET 0.9646 RFE Cos 0.9736 RFE SVM 0.8679
RFE RF 0.9577 RFE RF 0.9734 RFE LR 0.866

RFE SVM 0.9734

64 RFE KNN 0.9911 RF LR 0.9789 RFE LR 0.8379 RFE KNN 0.8746 RFE ET 0.979
RFE LR 0.9892 RFE LR 0.9777 RFE LR 0.8688 RFE LR 0.9782
RF LR 0.9862 RFE Cos 0.977 RFE RF 0.8682 RF LR 0.9731
RFE SVM 0.9843 RFE ET 0.976 RF LR 0.8595 RFE KNN 0.9727
ET LR 0.9837 RFE RF 0.9757 RF Corr 0.8585

RF RF 0.9755 RFE ET 0.8578
ET LR 0.9741 RF KNN 0.8574
RF ET 0.9737 RFE SVM 0.8568
RFE SVM 0.9733 Anova KNN 0.8564
ET RF 0.9728 Anova LR 0.8557
RFE Corr 0.9709 ET LR 0.8539

RFE Corr 0.8537
ET Corr 0.8536
ET KNN 0.852
RFE Cos 0.8492

96 RFE KNN 0.9933 RF LR 0.9808 RFE LR 0.847 RFE LR 0.8697 RF LR 0.979
RF LR 0.9918 RFE LR 0.9787 ET LR 0.8292 RF KNN 0.8657 RFE LR 0.9779
RFE LR 0.9916 RF RF 0.9774 RF LR 0.8643 ET LR 0.9768
ET LR 0.9909 RFE Cos 0.977 ET LR 0.8634 RFE ET 0.9765

RFE RF 0.9762 RFE RF 0.8633 ET ET 0.9734
ET LR 0.9761 RF Corr 0.863 RF ET 0.973
ET RF 0.9758 ET Corr 0.8629
RF ET 0.9746 RFE KNN 0.8628
RFE ET 0.9744 ET KNN 0.8613

Anova KNN 0.8596
Anova LR 0.8573
RFE SVM 0.853
ET RF 0.8483
RFE Corr 0.8477
RF SVM 0.8474

Table of AUC for top performing models for each data type and grouped by marker set size.
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Table 2. External validation accuracy by cancer type

Marker Set Size CO OV CNS LC RE
8 0.1673 0 1 0.3656 0.0138
16 0.9856 0.037 0.8246 0.686 0.7403
32 1 0.1111 0.9123 0.2384 0.8571
64 1 0.0741 0.5965 0.1163 0.8961
96 1 0.2593 0.5351 0.0116 1

Accuracy of the top performing model for each cancer type and grouped by marker set size.
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