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Abstract

Metabolic pathways are composed of a series of chemical reactions occurring within a

cell. In each pathway, enzymes catalyze the conversion of substrates into structurally similar

products. Thus, structural similarity provides a potential means for mapping newly identified

biochemical compounds to known metabolic pathways. In this paper, we present TrackSM;

a cheminformatics tool designed to associate a chemical compound to a known metabolic

pathway based on molecular structure matching techniques. Validation experiments show that

TrackSM is capable of associating 93% of tested structures to their correct KEGG pathway

class and 88% to their correct individual KEGG pathway. This suggests that TrackSM may

be a valuable tool to aid in associating previously unknown small molecules to known bio-

chemical pathways and improve our ability to link metabolomics, proteomic, and genomic data
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sets. TrackSM is freely available at http://metabolomics.pharm.uconn.edu/?q=

Software.html

Introduction

Metabolic pathways are characterized as a series of enzyme catalyzed reactions where the products

of a previous reaction serve as substrates for a subsequent reaction. Understanding these pathways

is essential to understanding the machinery of life.1 The reconstruction of the metabolic network

of an organism based on its genome sequence is a key challenge in systems biology.2 Predicting

which metabolic pathways are present in the organism based on the annotated genome of the

organism is a possible strategy to address this issue.3 Such metabolic pathways are selected from

a reference database of known pathways. Other strategies use data mining techniques to correlate

protein annotations to pathway templates so that organism-specific pathways can be derived. Some

of the commonly used tools include PathComp,4 Pathway Analyst,1 Rahnuma,5 Pathway Tools,6

UM-BBD Pathway Prediction System,7 and PathPred.8

Pathway prediction can involve predicting pathways that were previously known in other organ-

isms, or predicting novel pathways that have not been previously observed (pathway discovery).3

The work presented here is focused on methodologies that do the former, predicting pathways from

a curated reference database.

A number of databases containing biological pathway information are available. One of the

most commonly used is the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.9

KEGG contains a collection of manually curated pathway maps representing molecular interaction

and reaction networks. KEGG defines eleven metabolic pathway classes that are strongly associ-

ated with the biological function of compounds:10 Carbohydrate Metabolism, Energy Metabolism,

Lipid Metabolism, Nucleotide Metabolism, Amino Acid Metabolism, Metabolism of Other Amino

Acids, Glycan Biosynthesis and Metabolism, Metabolism of Cofactors and Vitamins, Metabolism

of Terpenoids and Polyketides, Biosynthesis of Other Secondary Metabolites, and Xenobiotics
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Biodegradation and Metabolism. Each of these classes contains several individual pathways. Some

compounds serve as intermediates in multiple pathways and appear in multiple KEGG pathways.

Several recent advances in analytical and computational metabolomics techniques11–14 will

potentially improve our ability to identify the structures of previously unknown metabolites that

do not belong to any known metabolic pathways. Placing these molecules in the context of known

metabolic pathways might aid in understanding their biological function and will shed light on the

presence of yet unidentified gene products that may be catalyzing relevant reactions.15 Thus, the

aim of the work described here is to develop and assess a model to predict pathway classes and

individual pathways for a previously unknown query molecule.

Previous attempts to annotate metabolites with metabolic pathway information have been per-

formed by Nobeli and Thornton.16 Further investigations performed by Cai et al. 17 utilized func-

tional group composition of compounds to represent small molecules. They proposed a Nearest

Neighbor Algorithm to map small chemical molecules to a metabolic pathway class. After ex-

cluding all compounds that belonged to two or more metabolic pathway classes, a set of 2,764

compounds from 11 classes of metabolic pathways obtained from KEGG were selected for that

study. An overall successful prediction rate of 73.3% was observed. Since the authors focused

on addressing the single-label classification problem, their methods could not be used to deal

with "multi-function" compounds, i.e., compounds that belong to more than one pathway class.

Macchiarulo et al. 15 used 32 physiochemical and topological descriptors to derive a quantitative

structure activity relationship model and estimate the proximity of any small molecule to a given

pathway class. When classifying 681 small molecules into 7 KEGG pathway classes using a ran-

dom forest classifier,18 they reported an average Matthews correlation coefficient of 0.73. They

expanded their investigation to predict individual pathways to which these small molecules would

belong. When classifying those metabolites into 52 individual KEGG pathways, they were able to

predict the correct pathway for 31% of the molecules.

A multi-target model for predicting which of the 11 KEGG metabolic pathway classes a query

compound may belong was proposed by Hu et al..10 Their model was built using chemical-
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chemical interactions retrieved from STITCH,19 a database containing known and predicted in-

teractions of chemicals and proteins derived from experiments, literature and other databases. In

their model, an interaction unit consists of two chemicals and their interaction weight (confidence

score) representing the probability that the interaction occurs between the two chemicals being

compared. Their overall success rate was approximately 78% using a 5-fold cross-validation test

on a benchmark dataset consisting of 3,137 compounds.

Gao et al. 20 extended Hu et al.’s work by integrating interactions among chemicals and pro-

teins in yeast. Their work included not only chemical-chemical interactions but also protein-

protein interactions and chemical-protein interactions to predict metabolic pathways in which

small molecules and enzymes participate. The protein-protein interaction data was retrieved from

STRING.21 They constructed a hybrid interaction network having small molecules and enzymes

as nodes and edges between two nodes if and only if there was data showing that they can interact

with one another. Results of a leave-one-out cross validation method showed that the first order

prediction accuracy was 77.12% for the 3,348 small molecules. This was not an improvement over

the approach of Hu et al. described above. One of the major limitations in the approaches pro-

posed in Hu et al. and Gao et al. is their dependency on interaction information. Hu et al. reported

they were unable to process 1,229 compounds due to the lack of interaction information with other

compounds within their dataset.

In the work described here, we develop and assess TrackSM, a cheminformatics tool designed

to predict the metabolic pathway class as well as the individual pathways to which previously

unknown small molecules might be associated with, based only on their molecular structures.

TrackSM is guided by structural similarity information acquired from a set of compounds, here-

after referred to as scaffolds. In this context, the term scaffolds refers to common core features (i.e.

substructures) that are shared among structurally related compounds and hence, among compounds

in biochemically related pathways. In other words, TrackSM represents pathways using the scaf-

folds they comprise. The method described was inspired by the fact that small molecules within

a typical pathway tend to look similar because they are related to each other through stepwise
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chemical transformations.

Methods and materials

In TrackSM, a query compound is predicted to belong to a metabolic pathway based on how

similar its chemical structure is to the structures associated with that pathway. As in our previ-

ous work on metabolite structure identification,11 molecular similarity searches in TrackSM are

carried using the SMSD Toolkit22 for finding the maximum common sub-graph (MCS) between

small molecules. Although we have not directly evaluated similarity searches based on structural

descriptors, the MCS search implemented in SMSD has the advantage of incorporating chemical

knowledge (e.g., atom type match with bond sensitive information), thus resulting in improved

structure matching sensitivity.22

Molecular Structure Similarity Score

In this study, we define two ways for matching molecular structures: Match100 and Match90. In

Match100, two molecular structures are considered a match if and only if the smaller structure is

an exact substructure (atom and bond types) of the larger structure being compared. Match90 con-

siders two molecular structures as similar if at least 90% of the smaller structure’s atoms match the

larger structure being compared. Regardless of the matching method, if two molecular structures

r and q were found to be a match, a similarity score is defined by

Sc =
AC(r)
AC(q)

(1)

where AC(r) represent the number of atoms in compound r and AC(q) represent the number of

atoms in compound q if r is a substructure of q. Clearly, a candidate molecule may match more

than one scaffold structure, some of which as substructures and others as superstructures, resulting

in several similarity scores computed for each candidate compound.
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Figure 1: Schematic of TrackSM’s predictive process.

As previously mentioned, molecules within a typical pathway tend to have similar structures

since they are related to each other through stepwise chemical transformations. Our hypothesis is

that for a query compoundcq, the larger the number of compounds that are structurally similar to

cq within a given metabolic pathway the more likely that cq is a member of that pathway. Also, if

at least one of those scaffolds matches cq as a substructure and another as a superstructure, then

that might be more evidence of cq belonging to that pathway. TrackSM identifies the biochemical

pathway of a molecular compound in two steps. It first predicts a metabolic class to which the

molecule is likely to belong, based on information from structurally similar scaffolds. Then it uses
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the predicted metabolic class with scaffold similarity information to predict an individual pathway

to which the molecule is likely to belong. Figure 1 shows a general overview of the TrackSM

prediction process.

Computational prediction algorithms

We propose an algorithm to predict the metabolic class and an individual metabolic pathway of

a small compound based only on its molecular structure. First we will start by defining some

notations followed by an explanation of the computational model behind TrackSM.

Let cq be the molecular structure of a query compound, S = {s1, s2, . . . , sn} be a set of n

small compounds (scaffolds), M = {M1, M2, . . . ,Ml} be a set of metabolic pathway classes, and

P = {p1, p2, . . . , pm} be the set of individual pathways. Let sxMy indicate that the scaffold sx

belongs to the metabolic pathway class My and let sx→ Pz indicate that sx belongs to the individual

metabolic pathway Pz. Let CL
(
cq
)

represent the list of candidate pathway classes to which cq is

predicted to be associated with. Similarly, let PL
(
cq
)

represent the list of candidate individual

pathways to which cq is predicted to be associated with.

Pathway Classes Prediction Method

For a query compound cq, TrackSM populates a vector V to represent the confidence that metabolic

class Mi is the pathway class to which cq belongs to. Vector V
(
cq, Mi

)
= [Ss, Sc,Co] where Ss is

a binary value representing the existence of at least one substructure compound and at least one

superstructure compound that belong to Mi, i.e.

Ss
(
cq, Mi

)
=


1, i f ∃sx ∈ Sb &sy ∈ Sp; sx→Mi ,sy→Mi

0, otherwise.

Such that Sb represents the set of scaffolds that are substructures of cq and Sp represent the set

of scaffolds found to be a superstructure ofcq. Hence, let S̄ denote the set of scaffolds that

7



structurally match cq such that S̄ = Sb ∪ Sp. Let Sc represent the highestSimScore as defined

earlier by equation (1) found between cq and all the matching scaffolds in S̄ that belong to Mi;

Sc
(
cq, Mi

)
= maxs jεS,s j→MiSimScore(cq,s j). Co is defined as the number of scaffolds in S̄ that

belong to pathway class Mi; Co
(
cq, Mi

)
= count(s j ∈ S̄, s j→Mi). Finally, all pathway classes in

CL
(
cq
)

are ranked based on (Ss, Co, Sc) values and the class with the highest scores is predicted

to be PC, the class to which cq is associated.

Individual Pathways Prediction Method

In the second step, TrackSM predicts one or more individual pathways to which the query com-

pound might belong to. List PL
(
cq
)

is populated and ranked via a method very similar to that

used to populate CL
(
cq
)

with the exception of referencing individual pathways instead of pathway

classes. Similarly, for each candidate individual pathway Pr, associated with at least one compound

in S̄, a vector V
(
cq,Pr

)
= [Ss,Sc,Co] is populated. Vector V

(
cq,Pr

)
represents the confidence that

pathway Pr is the predicted pathway to which cq belongs to. Ss is a binary value representing the

existence of at least one substructure compound and at least one superstructure compound that

belong to Pr, i.e.

Ss
(
cq,Pr

)
=


1, i f ∃sx ∈ Sb &sy ∈ Sp; sx→ Pr ,sy→ Pr

0, otherwise.

Let Sc represent the highestSimScore (defined by equation 1) found between cq and all the match-

ing compounds in S̄ that belong to Pr; Sc
(
cq,Pr

)
= maxs jεS,s j→PrSimScore(cq,s j). Finally, Co is

defined as the number of scaffolds in S̄ that belong to pathway class Pr ; Co
(
cq,Pr

)
= count(s j ∈

S̄s j→ Pr ).

Specific to predicting individual pathways, we have developed an additional method referred

to as Match90ClassBased. In this method, TrackSM uses the predicted pathway class PC in the

first step to further guide its search for individual pathway associations forcq. Hence, PL
(
cq
)
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is only populated with individual pathways that have associations with scaffolds that structurally

match cq and belong to the predicted pathway class PC. Hence, any scaffold in S̄ must belong to

the predicted class PC. All the calculations following this step are similar to that of the previously

explained method.

Dataset Pathway information concerning 3,190 small molecules of the dataset used by Gao

et al.,20 as well as their molecular structures, were downloaded (January 2013) from the KEGG

database. The distribution of those compounds among the pathway classes and the number of

individual pathways associated with each class are shown in Table 1. The data show that some

compounds are associated with more than one pathway class since the total number of compounds

belonging to all classes (4,404) is greater than the actual number of compounds (3,190). Figure

2a shows that 90% of the 3,190 scaffolds used in this study are associated with only one pathway

class, while 7% are associated with two classes, and 3% are associated with 3 or more pathway

classes. Figure 2b demonstrates the distribution of scaffolds based on their association to individual

pathways. Of the 3,190 scaffolds, 85% are associated with one individual pathway. This means

that 5% (90% - 85%) of the compounds associated with one pathway class belong to more than one

individual pathway within that given class. Nine percent are associated with 2 individual pathways

and 6% are associated with 3 or more individual pathways. The mass distribution of the molecules

in the scaffolds list used in this work (Figure 2c) shows that the majority of the molecules (76%)

fall in the mass range of 116 – 460 Daltons.

Leave-One-Out Cross Validation Test

In this study, a set of leave-one-out cross validation (LOOCV) experiments were carried out on

the N = 3,190 small molecules in our reference scaffolds database as a method for evaluating the

accuracy of TrackSM. N experiments were performed and for each experiment, N-1 compounds

were used as scaffolds and the remaining compound was treated as the query compound. This

allowed the use of all but one scaffold in the prediction process.
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(a) (b)

(c)

Figure 2: Distribution of 3,190 scaffolds based on (a) the number of classes they belong to and, (b)
the number of individual pathways they belong to. Panel (c) shows the mass distribution of 3,190
scaffolds into 8 mass bins ranging from 0 to 922 Daltons.
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Table 1: Distribution of 3,190 KEGG compounds among the 11 KEGG metabolic pathway classes
and 137 individual pathways.

Pathway Class Name Pathway
Class Code

Number of
Individual
Pathways

Number
of Com-
pounds

1 Carbohydrate metabolism CM 15 575
2 Energy metabolism EM 7 193
3 Lipid metabolism LM 16 444
4 Nucleotide metabolism NM 2 137
5 Amino acid metabolism ACM 13 580
6 Metabolism of other amino acids MOAA 9 170
7 Glycan biosynthesis and metabolism GBM 5 48
8 Metabolism of cofactors and vitamins MCV 12 365
9 Metabolism of terpenoids and polyketides MTP 18 541
10 Biosynthesis of other secondary metabolites BOSM 20 555
11 Xenobiotics biodegradation and metabolism XBM 20 796

Total 137 4404

Accuracy measures

To evaluate the performance of TrackSM, we used two measures, sensitivity (SENS) and positive

predictive value (PPV). SENS is a measure representing the percentage of query compounds with

at least one correctly predicted pathway reproduced by TrackSM, and is computed as

SENS =
T P

T P+FN
(2)

where TP represents the number of compounds with at least one correct prediction and FN rep-

resents the number of compounds with all false predictions. PPV is a measure representing the

percentage of correct pathway prediction assignments made by TrackSM and is defined by

PPV =
T P

T P+FP
(3)
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Results and discussion

We formalized six possible ways for ranking the candidate classes in CL
(
cq
)

and candidate path-

ways in PL
(
cq
)

referred to as: SsScCo, ScSsCo, ScCoSs, CoScSs, CoSsSc, and SsCoSc. SsScCo

indicates sorting the candidate pathway classes in CL
(
cq
)

by the Ss value (in descending order)

then breaking ties with the pathway with the highest Sc followed by the highest Co. Table 2 shows

the sensitivity acquired when a set of LOOCV experiments predicting metabolic pathway classes

were carried out using the 3,190 KEGG compounds. The results from SsScCo, ScCoSs, and ScSsCo

seemed comparable and better than those obtained by SsCoSc, CoSsSc, and CoScSs. We carried

out an ANOVA to check for statistical significance between the top 3 ranking methods. ANOVA

results indicated no statistical significance (P >0.05). However, SsScCo accuracy was consistently

higher than the other methods and thus was selected as the ranking method for TrackSM.

Table 2: SENS of each ranking method when TrackSM predicts 1, 2 or 3 classes per candidate
compound.

Classes
Predicted

Ranking Method
SsScCo ScCoSs ScSsCo SsCoSc CoSsSC CoScSs

1 84.92% 84.73% 83.76% 64.70% 50.47% 50.41%
2 92.82% 92.76% 92.23% 81.38% 73.17% 73.13%
3 95.39% 95.27% 95.14% 89.78% 86.36% 86.36%

Metabolic pathway class predictions

In this study we evaluated the predictive method by a set of LOOCV experiments using a dataset

of 3,190 KEGG compounds. The 1st and 2nd order of predictions made by Gao et al. 20 as well as

those of TrackSM using both Match100 and Match90 with the SsScCo ranking method are shown in

Figure 3. TrackSM was able to predict at least one correct pathway class for 85% of the compounds

using Match90 versus 79% when using Match100. Both methods reflect an improvement over the

results reported by Gao et al. (77%).

Actually, using TrackSM Match90 to predict only one class per query compound had a 4%
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improvement in SENS over Gao et al.’s method when they predicted 2 classes per compound. This

also indicates that TrackSM has a better PPV than that of Gao et al. When TrackSM using Match90

made two class predictions per candidate compound, 93% of the 3,190 compounds had at least one

correct class prediction.

Figure 3: LOOCV prediction accuracy of the 1st and 2nd orders of predictions made by Gao et al.,20

TrackSM with Match100, and TrackSM with Match90 when predicting metabolic pathway classes.

In order to determine whether predictions made by TrackSM were equally accurate among

compounds having different masses we distributed the 3,190 compounds into 8 bins according to

compound masses. Results from both prediction method (Match100 and Match90) were compared

in each bin. Figure 4a displays the 1st order of class predictions made by TrackSM using Match100

versus Match90. The results suggest that Match90 outperforms Match100 across all mass bins.

Figure 4b plots the SENS in each bin when Match90 was applied. The plot shows that TrackSM

is capable of predicting the metabolic class of a given compound in the mass range 231 – 460 Da

with 93% accuracy. It also shows that bins 3 through 7 acquire an average SENS of 90%, while

the average SENS in bin 1 and bin 8 is approximately 70%. We suggest that predictions at both

ends of the mass range are poorer because as compounds become very large or very small, there

is a higher chance for them to match with many scaffolds as substructures only or superstructures

only, respectively. Thus, nonspecific matches cause a decrease in sensitivity.
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(a)

(b)

Figure 4: (a) Breakdown of the 1st order class predictions made by Match100 versus those made
by Match90 for 3,190 compounds based on molecular mass from a set of LOOCV experiments.
(b) SENS in each bin when Match90 was applied.
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Figure 5 shows the distribution of the 1st order of Match90 class predictions based on a com-

pound’s molecular mass and the number of pathway classes it is associated with. The first bar in

each subsection shows the overall predictions per number of class associations. Match90 can pre-

dict at least one class to which a compound might belong to with a SENS of 85%, 80%, 83%, and

85% for compounds associated with one, two, three, and four or more classes, respectively. This

suggests that the number of class associations for any given compound does not significantly affect

the prediction quality of TrackSM. It is clear from Figure 5 that the predictions for compounds that

belong to more than one metabolic class do not follow the same distribution (based on mass) as

that of those associated to only on class. However, it is difficult to draw firm conclusions since

only 10% of the compounds used in this analysis are associated with more than one class.

Figure 5: Accuracy of mass bins per number of class associations for TrackSM when using
Match90 to predict metabolic pathway classes.

To further analyze our results, we next explored TrackSM prediction accuracy for each metabolic

class. Figure 6 shows the distribution of compounds among the 11 KEGG metabolic classes based

on the 1st order prediction produced by Match100 versus Match90. In this analysis, only 2,874

of the compounds were included as they are associated with only one class. Match100 had a 4%

improvement over Match90 when associating compounds to class EM. Both methods performed

equivalently when associating compounds to classes CM, MOAA, and XBM. Match90 outper-
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formed Match100 in the other 7 classes with a highest improvement of 18% in class MTP. Match90

correctly associated 90% of the compounds belonging to six metabolic classes (BOSM, CM, LM,

MTP, NM, and XBM). It was also noted that Match90 could only correctly associate 44% of the

compounds belonging to class EM. This is likely due to the small size of class EM, with only 45

scaffold associations.

Figure 6: Distribution of class predictions when using Match100 versus Match90 based on the
query compound’s class association.

Individual metabolic pathway predictions

We next evaluated TrackSM to predict individual pathways to which a candidate compound might

belong. We show results from applying Match100, Match90 as well as a method exclusive to path-

way predictions referred to as Match90ClassBased (described in materials and methods). Figure

7 shows the SENS of the 1st , 2nd , and 3rd orders of prediction when using Match100, Match90,

and Match90ClassBased. Match90ClassBased outperformed the other two methods. Specifically,

with the 1st order of individual pathway prediction, Match90ClassBased had 80% accuracy, while

Match100 had only 66% and Match90 had a 69%. When making 2 predictions per query com-

pound, Match90ClassBased was able to predict at least one individual pathway for 88% of the
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compounds. An inherent limitation of our approach is scaffold inclusion; as the number of scaf-

folds included increases, the accuracy of TrackSM would likely increase. However, there is per-

haps an upper limit to scaffold number, above which the results are not significantly improved. This

in fact, was recently shown in our previous work when predicting whether an unknown compound

was biological or synthetic using an approach similar to the one described here.11 Although there

were improvements in model sensitivity and specificity using a much larger scaffold list (double

in size), the data set comparison results were very similar. These results suggest that additional

scaffolds will not greatly improve our representation of biochemical pathway structure space.

Figure 7: Prediction accuracy of the 1st, 2nd and 3rd orders of predictions made by TrackSM with
Match100, Match90 and Match90ClassBased when predicting individual metabolic pathways.

Finally, we distributed the 3,190 compounds into 8 bin masses and compared individual path-

way results from each prediction method (Match100 and Match90ClassBased) for each bin. Figure

8a displays the 1st order of individual pathway predictions made by TrackSM using Match100 ver-

sus Match90ClassBased. It is obvious that Match90ClassBased outperforms Match100 across all

bins except bin 1. Bin 1 consists of very small compounds with masses up to 115 Da. Hence,

allowing any flexibility in the structure matching process (Match90ClassBased) is very likely to

identify significantly different structures as a match to the unknown structure resulting in a poorer

pathway predictions. Figure 8b plots the SENS in each bin when Match90ClassBased was applied
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to predict one individual pathway per query compound. The plot shows that TrackSM is capable

of predicting the individual pathway of a given compound in the mass range 346 – 460 Da and 691

– 805 Da with 94% accuracy. It also shows that bins 4 through 7 acquire an average SENS of 92%.

Similar to pathway class predictions, individual pathway predictions for compounds on both ends

of the mass spectrum are of noticeably lower sensitivity than the rest of the bins.

Conclusions

In this paper we developed and evaluated TrackSM; a bioinformatics tool designed to predict pre-

viously known metabolic pathway classes as well as the individual pathways to which small, pre-

viously unknown, molecules might be associated with, based only on their molecular structures.

TrackSM can place molecules in the context of metabolic pathways since it can link newly identi-

fied biochemicals to matched substructure and superstructure scaffolds for which metabolic path-

ways are known. Validation experiments show that TrackSM is capable of associating 93% of

structures to their correct pathway classes as defined by KEGG and 88% to the correct individual

KEGG pathway. These results suggest that TrackSM may be a valuable tool to aid in recognizing

the biochemical functions of small molecules and of broad use in annotating metabolomcs data for

systems biology applications.

Acknowledgement

This research was funded in part by NIH grant 1R01GM087714, the Agriculture and Food Re-

search Initiative Competitive Grant no. 2011-67016-30331 from the USDA National Institute of

Food and Agriculture, award IIS-0916948 from NSF, and the Booth Engineering Center for Ad-

vance Technology (BECAT) at the University of Connecticut. M.A.H. was responsible for design-

ing the algorithm, software development, and manuscript preparation. She was also responsible

for testing and benchmarking BioSM. I.I.M., D.F.G., and S.R. were involved in the overall super-

vision of the project, manuscript preparation, intellectual input, and guidance. All authors have

18



(a)

(b)
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