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Abstract. Mass spectrometry (MS) of target nucleic acid sequences
fully digested using base-specific cleavage reactions has emerged in the
past decade as a cost-effective method for performing single nucleotide
polymorphism discovery and DNA methylation analysis of targeted ge-
nomic regions in large numbers of samples. MS based assays are par-
ticularly attractive as an alternative to more expensive sequencing ap-
proaches for studying heterogeneity of viral populations, typically per-
formed on a short hypervariable region of the viral genome under study.
In this abstract we describe a novel algorithm for reference assisted re-
construction of nucleic acid sequences from MS data, and present pre-
liminary experiments assessing reconstruction accuracy as a function of
target sequence length and its distance from the reference.

1 Introduction

While tandem MS has long been the main technique used for protein and small
molecule identification in proteomics and metabolomics, MS-based protocols for
nucleic acid analysis have only gained acceptance in the past decade. Commer-
cially available from Sequenom, assays such as MassCLEAVE (Fig. 1) start by
PCR amplification of one or more regions of interest using primers tagged with
two different promoters (T7 and SP6). PCR amplification is followed by four in
vitro transcription and RNA cleavage reactions that generate molecules corre-
sponding to fragments ending at each occurrence of specific nucleotides in the
original DNA template. Subjecting these fragments to matrix assisted laser des-
orption/ionization time-of-flight (MALDI-TOF) MS results in four base-specific
mass spectra. Depending on instrument precision, peak masses can be matched
with one or more fragment base compositions, or compomers. This information
can be used for performing a number of nucleic acids analyses ranging from
polymorphism discovery and genotyping [3, 5, 6, 13] and microbial identification
[7, 11, 15] to DNA methylation analysis [4, 12, 14] and non-invasive prenatal ge-
netic testing [8, 9]. MS-based assays are also becoming increasingly popular in
molecular epidemiology due to the very low cost and relatively high throughput



(384 reactions in less than one hour for a single MassARRAY system) compared
to next-generation sequencing. They are a particularly good fit for studying het-
erogeneity of viral populations, since virus genomes are small and have even
smaller hypervariable regions of common interest. For example, most studies of
the Hepatitis C Virus (HCV) focus on a single viral amplicon containing the
≈290bp long Hypervariable region 1 (HVR1). This region is sufficient for esti-
mating several population genetics parameters of interest. Analysis of genetic
heterogeneity of hepatitis viruses is useful for tracing the route of transmission
and the geographical migration of hepatitis carriers [1] and is essential for out-
break analysis [10] and differentiation between acute and chronic forms of the
disease [2].

In this abstract we describe a novel algorithm for reference assisted recon-
struction of nucleic acid sequences from MS data. Our algorithm has three main
stages. In the first stage we identify fragments of the reference sequence that are
unambiguously supported by MS data and thus are very likely to be present in
the unknown target sequence. In the second stage we use a branch-and-bound
approach to fill in remaining gaps and generate a set of candidate sequences con-
sistent with the MS data. Finally, in the third stage we rank candidate sequences
based on the total relative error of matches between masses in the experimental
MS data and compomers in theoretical spectra, efficiently computed via linear
programming. Preliminary experimental results on simulated data show that
the true target sequence is almost always ranking the highest among the gener-
ated candidate sequences. In a significant percentage of testcases (that decreases
with target length and distance from the reference) the true target is the unique
candidate with highest rank, resulting in unambiguous reconstructions.

2 Problem formulation

Let Σ = {A,C,G, T } denote the DNA alphabet. We define a compomer to be
the base composition (the multiset of bases) of a fragment obtained from per-
forming any of the four cleavage reactions, and refer to a compomer obtained
by cleaving the sequence at base α ∈ Σ as an α-compomer. The compomer spec-

trum of a given sequence refers to the multiset of compomers obtained by per-
forming the four base-specific cleavage reactions in silico. We denote by CSα(s)
the compomer spectrum of a sequence s digested at cut base α ∈ Σ, and by
CS(s) = (CSα(s))α∈Σ the compomer spectra obtained by performing all four
cleavage reactions.

We assume that the biological sample consists of copies of a single DNA se-
quence, referred to as the target. The target sequence is typically obtained from
a more complex biological sample via PCR. Thus, we will assume that short
prefix and suffix sequences of the target (corresponding to PCR primers) are
known. The remaining target sequence is unknown but assumed to be within
a small edit distance of a known reference sequence. We denote by MSα the
experimental mass spectrum obtained by base-specific cleavage of the target at
cut base α ∈ Σ, and by MS = (MSα)α∈Σ the MS spectra obtained by perform-



T C “T C  G A

5 ’ - - 3 ’

Gene specific SP6 primer

5 ’ - - 3 ’ 3 ’- 5 ’

U C U

5 ’-

C C

- 3 ’

-

Gene specific T7 primer

5 ’ - - 3 ’

5 ’ - - 3 ’ 3 ’- 5 ’

U C U

5 ’-

C C

- 3 ’

-

PCRPCR  

Transcription 

coupled with 

RNase A base 

specific 

cleavage

CCononditditiiononiingng  

MMasass s   

spspececttromrometretryy  

Fig. 1. MassCLEAVE assay for MS-based nucleic acid sequence analysis

ing all four cleavage reactions. Due to limitations of current mass spectrometers
some fragments, e.g., cleavage products with mass smaller than some minimum
detection threshold m0, may not be detected by the instrument. Furthermore,
detected masses are noisy. We assume that the signed relative errors follow a nor-
mal distribution with mean 0 and known standard deviation, e.g., σ = 0.0001.

In this abstract we further assume that (a) each target compomer with mass
above the minimum detection threshold m0 is detected (no missing peaks), and
thus must be explained by a mass in MS, and (b) all masses in MS represent
compomers of the target (no extraneous peaks). If a compomer c with mass
m(c) ≥ m0 is matched to a mass m in MS, the relative error is defined as

η(c,m) =
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(1)

Using minimization of the total relative error as optimization objective, we for-
mulate the reconstruction problem as follows:

Reference assisted sequence reconstruction from MS data

Given: reference sequence r including position of PCR primers, mass spectra
MS, instrument parameters m0 and σ, and maximum edit distance D
Find: Target sequence t flanked by the known PCR primers that is within edit
distance D of r and yields a matching of compomers of CS(t) to masses of MS
with minimum total relative error.



3 The algorithm

A näıve algorithm for solving the reference assisted sequence reconstruction
problem would be to generate all sequences within an edit distance of D of
the reference and compute the minimum total relative error for matching the
compomers of each of these sequences to the masses in MS. As shown in Section
3.3, computing the minimum total relative error over all possible matchings of
compomers to experimentally determined masses can be done efficiently by us-
ing linear programming. However, the number of sequences within edit distance
D of the target grows exponentially with D, so the näıve algorithm becomes
impractical for all but very small values of D. Below we present a more scalable
algorithm that has three main stages. In the first stage we identify fragments
of the reference sequence that are unambiguously supported by MS data and
thus are very likely to be present in the unknown target sequence. In the sec-
ond stage we use a branch-and-bound approach to fill in remaining gaps and
generate a set of candidate sequences consistent with the MS data. Finally, in
the third stage we rank candidate sequences based on their total relative error
computed via linear programming. The following subsections detail each stage
of the algorithm.

3.1 Finding strongly supported regions of the reference

Under the assumption that the signed relative errors are normally distributed
with mean 0 and standard deviation σ, by Chebyshev’s inequality we get that

P (η(c,m) ≥ ε) = P
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A detectable compomer c ∈ CSα(r) is strongly matched to mass m ∈ MSα if

η(c,m) =
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where ε = σ√
τ
is set based on a user specified parameter τ , called tolerance, rep-

resenting the probability upperbound in Chebyshev’s inequality (2). A strong
match between compomer c ∈ CSα(r) and mass m ∈ MSα is called unambigu-

ous if (i) c has multiplicity of 1 in CSα(r), (ii) c can be strongly matched in MSα

only to m, and (iii) m can be strongly matched in CSα(r) only to c. The set Mα

of unambiguous matches of α-compomers of r can be found efficiently by binary
search. Let these matches, indexed in non-decreasing order of their relative er-
rors, be (c1,m1), . . . , (cn,mn). We iteratively apply Chebyshev’s inequality with
tolerance τ to the running means of signed relative errors,

Xi =

((

m1

m(c1)
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)

+ · · ·+
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/i



which are normally distributed with mean 0 and standard deviation σ/
√
i. If the

Chebyshev’s inequality fails for index i, i.e., if

|Xi| ≥
σ√
iτ

(4)

then the match (ci,mi) is removed from Mα. Finally, a position in the refer-
ence sequence is marked as having strong support if all detectable compomers
overlapping it can be strongly matched and at least one of these matches is in
∪α∈ΣMα. Positions within PCR primers are automatically marked as having
strong support.

3.2 Generating candidate targets by branch-and-bound

The target sequence is assumed to match the reference at all positions identified
in first stage to have strong support from the MS data. In the second stage we
use a branch-and-bound approach to fill in remaining gaps one base at a time,
in from left to right order. Since most of the time we expect the target sequence
to match the reference, we first try using the reference base to fill in the current
position. When backtracking from the first choice we try all possible mutations,
up to a total of D, first substitutions, then deletion and insertions. For each
choice we check for support of newly created detectable compomers, using a
Chebyshev test with tolerance τ on the running means of signed relative errors
of closest matches, similar to Section 3.1. If the test fails the search is pruned,
resulting in a significant speed-up and a reduced number of candidate sequences
compared to exhaustively generating all sequences within edit distance D of the
reference.

3.3 Scoring candidates by linear programming

For each candidate target sequence t we compute the matching with minimum
total relative error via linear programming. Under the assumption that there are
no missing or extraneous peaks, in a feasible matching each detectable compomer
c ∈ CSα(t) must be matched to exactly one of the masses inMSα, and each mass
m ∈ MSα must be matched to at least one detectable compomer c ∈ CSα(t). For
each c ∈ CSα and m ∈ MSα, let xc,m be a variable that is set to 1 if compomer c
is matched to mass c and to 0 otherwise. Then, the minimum total relative error
of a feasible matching is given by

∑

α∈Σ zα, where zα is the optimum objective
value of the following linear program (integrality of the solution follows from



total unimodularity):

Minimize:

zα =
∑

c∈CSα

∑

m∈MSα

η(c,m)xc,m

Subject to:
∑

m∈MSα

xc,m = 1, ∀c ∈ CSα

∑

c∈CSα

xc,m ≥ 1, ∀m ∈ MSα

0 ≤ xc,m ≤ 1, ∀c ∈ CSα,m ∈ MSα

4 Experimental Results

4.1 Simulation setup

We generated reference sequences uniformly at random, varying the length be-
tween 100bp and 500bp with an increment of 50bp. Target sequences were gen-
erated by inserting at random one or two mutations. For single mutation ex-
periments we generated ten references for each length, and for each of these
references we exhaustively generated all target sequences which are different by
one deletion, one substitution, or one insertion. For two mutation experiments
we generated 100 references for each length, and for each reference we generated
one target sequence by inserting two random mutations. Consistent with cur-
rent parameters of Sequenom technology, the simulated MS data was generated
using a minimum detection threshold m0 of 1400Da and a standard deviation
on relative errors σ of 0.0001. For comparison, we also ran single mutation ex-
periments with error free MS data (σ = 0). The tolerance parameter τ used by
our reconstruction algorithm was set to 0.01 for noisy data and to 0 for error
free data.

4.2 Results

Table 1 gives the percentage of testcases for which the target is included among
the list of candidate sequences with minimum total relative error, which we
refer to as sensitivity. For single substitutions and deletions sensitivity is 100%
for reconstruction from both error free and noisy MS data generated with σ =
0.0001. For single insertions, sensitivity is at least 99.97% for any fixed reference
sequence length, with an average of 99.99% over all experiments. In experiments
with D = 2, sensitivity is 98% or higher over testcases generated with any fixed
reference sequence length and mutation type, with an overall average of 99.78%.

However, the algorithm’s reconstruction is not always unique since there can
be multiple candidate sequences with minimum LP score

∑

α∈Σ zα. Figure 2
shows the percentage of testcases for which the algorithm’s reconstruction is



Table 1. Percentage of testcases for which the true target has minimum total relative
error among all candidates.

Target length 100 150 200 250 300 350 400 450 500

1 substitution, σ = 0 100 100 100 100 100 100 100 100 100
1 deletion, σ = 0 100 100 100 100 100 100 100 100 100
1 insertion, σ = 0 100 100 99.98 99.98 99.97 99.98 99.99 99.99 99.99

1 substitution, σ = 0.0001 100 100 100 100 100 100 100 100 100
1 deletion, σ = 0.0001 100 100 100 100 100 100 100 100 100
1 insertion, σ = 0.0001 100 100 99.98 99.98 99.97 99.98 99.99 99.99 99.99

2 deletions, σ = 0.0001 99 100 100 99 99 100 100 100 100
2 insertions, σ = 0.0001 100 100 99 100 100 100 100 100 100
2 substitutions, σ = 0.0001 98 100 100 100 100 100 100 100 100

unique. As expected, this percentage is higher for shorter sequences, and grad-
ually decreases with target sequence length for any fixed mutation type and
distance threshold D. Targets that are the result of single insertions in the refer-
ence sequence have a percentage of unique reconstructions from noisy MS data
varying from 75% for sequence lengths of 100bp to 56% for sequence lengths of
500bp. This is significantly lower than the percentage of unique reconstructions
for targets obtained by single substitution (90% to 79%), respectively deletions
(90% to 75% for the same sequence length range). For single mutation experi-
ments, the percentage of unique reconstructions from noisy data generated with
σ = 0.0001 is only slightly lower than that of reconstructions from error free
data, suggesting that the algorithm is robust to levels of noise typical of current
technology. On the other hand, reconstruction uniqueness drops significantly for
experiments with two mutations.

5 Conclusions

In this abstract we presented a novel algorithm for reference assisted reconstruc-
tion of nucleic acid sequences from MS data. The algorithm combines a heuristic
preprocessing step that identifies regions of the reference sequence unambigu-
ously supported by MS data with a branch-and-bound strategy to fill in remain-
ing gaps and an LP-based algorithm for selecting candidate target sequences
with minimum total relative error. Preliminary experiments on simulated MS
data show that our algorithm has very high sensitivity (98% or higher) as mea-
sured by the percentage of testcases for which the target is included among
the list of candidate sequences with minimum total relative error. Although the
percentage of unique reconstructions is high for targets that differ from the ref-
erence by single substitutions or deletions (90% to 75%, depending on sequence
length), it drops significantly for single insertions and multiple mutation events.
In ongoing work we are extending the algorithm to relax the assumptions of
no missing/extraneous peaks and to use peak intensities for further reducing
reconstruction ambiguity.
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Fig. 2. Percentage of unique reconstructions as a function of target sequence length.
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3. Böcker, S.: SNP and mutation discovery using base-specific cleavage and MALDI-

TOF mass spectrometry. In: Proc. ISMB. pp. 44–53 (2003)
4. van den Boom, D., Ehrich, M.: Mass spectrometric analysis of cytosine methylation

by base-specific cleavage and primer extension methods 507 (2008)
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rinke, C., Cantor, C.R., Göbel, U.B., van den Boom, D.: Base-specific fragmenta-
tion of amplified 16s rRNA genes analyzed by mass spectrometry: a tool for rapid
bacterial identification. Proc. Natl. Acad. Sci. 99(10), 7039–44 (2002)


