
Algorithms for Multisample Read Binning

Gabriel Sebastian Ioan Ilie

B.S. Computer Science, University of Bucharest, Romania, 2012

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Connecticut

2013

APPROVAL PAGE

Master of Science Thesis

Algorithms for Multisample Read Binning

Presented by

Gabriel Sebastian Ioan Ilie, B.S. Computer Science

Major Advisor
Ion Măndoiu

Associate Advisor
Sanguthevar Rajasekaran

Associate Advisor
Yufeng Wu

University of Connecticut

2013

i

ACKNOWLEDGEMENTS

I would like to thank my major advisor Dr. Ion Măndoiu and Dr. Alexander
Zelikovsky for their direct contributions to this thesis. I would also like to
thank my associate advisors, friends and family for their support.

ii

TABLE OF CONTENTS

Ch. 1 : Introduction . 1

Ch. 2 : Previous Work . 6

Ch. 3 : Multisample Read Binning . 12
3.1. K-mer counting . 13
3.2. Error-removal algorithm . 14
3.3. Identifying pseudo-exons . 17

Ch. 4 : Results . 20

Ch. 5 : Conclusions and Ongoing Work . 32

Bibliography . 34

iii

LIST OF FIGURES

3.2.1 Example of tip and bubble errors . 16

iv

LIST OF TABLES

4.1 Simulated data . 21
4.2 Error removal results . 23
4.3 The correct partitioning of 31-mers . 24
4.4 Size filtering of graph components . 26
4.5 Edge correctness - union . 28
4.6 Edge correctness - sample-by-sample without bubble removal 29
4.7 Edge correctness - sample-by-sample with bubble removal 30
4.8 Correctness of graph components . 31

v

ABSTRACT

Metatranscriptomics is the study of gene expression levels in uncultured mi-

crobial communities sampled directly from their environment. In cultured

microbes, the sequencing data comes from a single clone, making assembly

and annotation tractable. However, in metatranscriptomics, the data comes

from communities with diverse microbial compositions, possibly containing

thousands of species. The assembly of transcripts from these complex samples

represents a serious computational challenge.

The development of genome-independent methods is essential because of the lack

of trusted reference genomes that can be used to guide the assembly process.

The predominant assembly formalism used for short-read datasets is the de

Bruijn graph. In a de Bruijn graph, reads are split into consecutive overlapping

words, or k-mers, which are then used to build a connectivity graph. In order

to reduce the complexity and improve the results of the assembly process,

genome-independent methods which cluster the reads into bins can be employed.

Previous methods for read clustering process single samples only. In this thesis

we propose a novel method for binning reads from N > 1 metatranscriptomics

samples. In the first stage we run a sample-by-sample error removal algorithm

to remove as many of the incorrect k-mers as possible from the de Bruijn graph.

In the second stage we use the structure of the de Bruijn graph and the N-

dimensional count vectors for each k-mer to identify paths in the de Bruijn graph

Gabriel Sebastian Ioan Ilie - University of Connecticut - 2013

that correspond to maximal substrings which appear in the same transcripts

with the same multiplicity (pseudo-exons).

In order to validate our algorithm, we simulated RNA-Seq data (both error-

free and with errors) using real expression levels of human genes from the

GNFAtlas2 project [8]. We created several different workflows for processing the

data and managed to obtain promising results. One of the biggest challenges

we faced was dealing with errors. Since our algorithms are based on k-mers

a single error in a read results in multiple erroneous k-mers. For an error rate

of 0.1% over two thirds of the k-mers are incorrect, however, we managed

to achieve a very good balance between how many correct k-mers we keep

(47,708,616 out of 49,540,693) and how many erroneous ones we keep (29,583

out of 108,528,982).

Chapter 1

Introduction

Microbial organisms are an essential part of life on Earth, as they are the primary

source of nutrients and the primary recyclers of dead matter back to available

organic form. Not only this, bacteria and archaea live in all environments

capable of sustaining any other form of life and in many cases are the sole

inhabitants of extreme environments.

Every living animal or plant shares an intimate relationship with these microor-

ganisms. It is estimated that we humans have more bacterial cells (1014) in our

bodies than our own cells (1013) [11]. Also, the development of the immune

system, Crohns disease, diabetes, obesity, cancer, attractiveness to mosquitoes

and perhaps even anxiety seem to correlate with changes in the microorganisms

inhabiting our bodies (the microbiome) [9]. Therefore, in order to understand

our own condition it is insufficient to research just our own genome, we also

need to understand the microbiome.

Microbial studies focusing on single organisms have their limits. Firstly, we can

culture only a very small percentage of the microorganisms found in nature,

which means that existent genomic data is highly biased and does not represent

a true picture of the diversity of microbial life. Secondly, microbes do not live

1

in single species communities: species interact both with each other and with

their habitats, which may include host organisms. Therefore, clonal cultures

fail to represent the interactions of organisms found in nature.

Initial studies of the microbiome were mostly surveys of the microbial com-

position of these communities done by sequencing a variable region of the

16s rRNA gene. Further advances in sequencing technologies have recently

enabled moving from sequencing 16S rRNA genes to shotgun metagenome se-

quencing, in which bulk DNA or RNA is extracted directly from environmental

samples and shotgun sequenced.

In metagenomics, shotgun sequencing is done in the same manner as in clonal

culture genomics. However, the reads obtained can come from any of the

possibly hundreds of unknown species present in the sample. Species in envi-

ronmental samples have different abundances, therefore the number of reads

coming from a genome is proportional with the relative abundance of that

genome.

The volume of sequencing data from environmental samples is several orders

of magnitude larger than that acquired in single organism genomics, increasing

the complexity of analysis. While some species account for 20% of a commu-

nity others may be present at concentrations below 0.1%, but their physiolog-

ical contributions can play an important role in the physiology of the entire

microbiome. This greatly affects how much sequence information needs to be

generated. The sequences can be analyzed using two different approaches,

2

reference-based mapping or de novo assemblies.

The reference-based mapping requires comprehensive reference genomes. In

this approach, the reads, which are a few hundred base pairs long at most, are

mapped to the closest match from the reference dataset. For most microor-

ganisms there is no reference genome available, since a large number of them

cannot be cultivated, so they will not be mapped against. Also, many microor-

ganisms vary dramatically in their gene content, for example three strains of

Escherichia Coli may have as little as 40% of their genome in common. So if

only one strain was sequenced, 60% of the genes of the other strains would not

be part of the reference and would prevent reads from being mapped to it.

An alternative approach is de novo assembly where the reads are assembled

from scratch. Clearly this is a more computationally intensive task and posses

significant challenges. (1) Due to the differences in abundance, organisms

present at low numbers may not be sequenced to a sufficient depth while

organisms present at a high coverage may be sequenced at too great of a depth

leading to the breakage of assemblies due to sequencing errors. (2) The presence

of closely related organisms complicates the assembly. The rate of change

and consequently the similarity between genes varies greatly. For example,

ribosomal proteins evolve very slowly and are thus highly conserved, house-

keeping genes evolve at a moderate rate while some surface proteins evolve

rapidly. This leads to two different organisms potentially having identical

sequences for some genes interspersed with distantly related genes, which in

3

turn can lead to false assemblies. (3) Another great challenge is linking the

contigs to specific organisms and this can be achieved using nucleotide usage

patterns and differential coverage in case multiple samples are available.

While metagenomes provide important insights, they only provide informa-

tion about the potential functions of the microorganisms, but having any given

gene does not mean that this gene is also expressed inside the host or during a

particular condition. In order to understand the physiology of the microbiome

we need to use metatranscriptomic studies. In metatranscriptomic studies,

RNA is isolated from the microbial community, reverse transcribed, and the

resulting RNA-seq libraries are sequenced. The standard approach is to per-

form reference based-mapping, which is followed by de novo assembly of the

reads that did not map to the reference genomes. Thus analysis of metatran-

scriptomes has to deal with all of the challenges of metagenomic approaches

and the following extra challenges: (1) in addition to having a range in the

abundance levels of the organisms, genes are expressed at drastically different

levels, with elongations factors, ribosomal proteins and short regulatory RNAs

being expressed at the highest levels, while regulatory genes are expressed

at very low levels. This further increases the amount of sequence data that

needs to be obtained. (2) Strand-specificity: regulatory RNAs are short and

complementary to the mRNA. If the RNAseq libraries are not prepared in a

strand-specific fashion or not analyzed in a manner that keeps track of strand

specificity, it is challenging to differentiate regulatory RNAs from mRNA, lead-

4

ing to false expression values. (3) In contrast to eukaryotes, there are typically

no splice variants in bacteria.

In this thesis, we propose a novel method for unsupervised coverage-based multi-

sample reads binning. This new algorithm can be used as a preprocessing step

for the de novo metatranscriptome assembly of all RNA-seq samples.

5

Chapter 2

Previous Work

Metagenomic studies have provided valuable insights into the uncultured mi-

crobial world. However, because of the vast amounts of sequencing data

produced from environmental samples and the complexity of the assembly

process, many computational tools have been developed to infer species infor-

mation from raw short reads directly.

One of the primary goals of metagenomic projects is to identify the organisms

present in a sample. Because assembly of metagenomic data is so difficult,

many tools have been developed recently to classify reads into different bins

(i.e. species) based on various characteristics. These tools can be broadly split

into two categories: genome-dependent and genome-independent techniques.

Genome-dependent techniques rely on various DNA compositions patterns,

e.g. tetra-mer frequencies. The basis of these approaches is that genome G+C

content, dinucleotide frequencies, and synonymous codon usage vary among

species. However, most of these techniques achieve a reasonable performance

only for long reads. For short reads there is too much variation of DNA

composition patterns within a single genome.

Genome-independent techniques usually perform the binning based on the

6

abundances of reads or k-mers. These methods rely on the following obser-

vations: (1) the k-mer frequencies from reads of a genome are usually linearly

proportional to the genome’s abundance, and (2) sufficiently long k-mers are

usually unique in each genome.

The main drawbacks of these methods are: (1) that they group together reads

from different species if they have close abundance levels, and (2) that they do

not perform well on species with low abundances.

[12] describes a binning tool, called AbundanceBin, which can be used to

classify very short reads sampled from species with different abundance levels.

This method relies on the assumption that reads are sampled from genomes

following a Poisson distribution [4]. In this context, the reads are viewed

as coming from a mixture of Poisson distributions. Their algorithm starts by

counting the k-mers present in the reads. Under the assumption that the number

of bins is known, they use an Expectation-Maximization (EM) algorithm to infer

the parameters of the Poisson distribution, which reflect the relative abundance

levels of each bin. Afterwards, each k-mer is assigned to a bin using the fitted

Poisson distribution. The k-mer bins, are then used to classify the reads into the

same number of bins.

In the EM algorithm, the number of bins needs to be given as an input param-

eter. Because this number is often unknown, the authors have implemented

a recursive approach to determine this number automatically. This approach

works by initially splitting the dataset into two bins and continuing to recur-

7

sively split the bins while any of the following conditions are true: (1) the

predicted abundance values of the two bins differ significantly; (2) the pre-

dicted genome sizes are larger than a certain threshold; and (3) the number of

reads associated with a bin is larger than a certain threshold. The main advan-

tage of this method is that it has the ability to perform unsupervised binning

of short reads from species with different abundances.

Another approach to reads binning was proposed in [10]. A two rounds un-

supervised binning method, calledMetaCluster 5.0, to identify both low abun-

dance and high abundance species in the presence of noise. To overcome the

issue of low coverage for low abundance species, MetaCluster 5.0 separates

the high abundance reads from those of low abundance. Multiple values for

k are used to group the reads: large k for high abundance and small k for low

abundance.

In the first round, MetaCluster 5.0 filters reads from low abundance genomes as

well as reads with errors. Based on the observation that k-mer frequency from

reads of a genome is usually linearly proportional to that genome’s abundance,

reads with all 16-mers appearing rarely in the dataset are likely to be sampled

from low abundance genomes or be the result of sequencing errors. The reads

are then grouped based on common 36-mers. Each group represents a virtual

contig of a genome, groups whose virtual contigs are of length smaller than a

certain threshold are removed. The 5-mer distribution of each virtual contig is

estimated and the virtual contigs are grouped together using K-means clustering.

8

After the first round, reads sampled from high abundance genomes have been

binned. In the second round, the remaining reads, the ones sampled from

low abundance organisms are binned. Reads whose 16-mers appear only once

are discarded (they are probably caused by errors or are from extremely low

abundance genomes). Just like in the previous round, the reads are grouped

into virtual contigs based on the frequency of their 22-mers. This time the 4-mer

distribution of each virtual contig is used to group together the reads using

K-means clustering.

The main disadvantage of the previous binning method, AbundanceBin, was

that it could not distinguish between different species which had the same rel-

ative abundances. Thanks to its two round approach MetaCluster 5.0 manages

to overcome this disadvantage and produce better results.

Common to all of the methods presented so far, is the processing of single

samples only. In [1], the authors use multiple samples with varying relative

abundances of identical target community members to perform the binning of

the reads The samples can be produced by using different extraction methods

or by spatial or temporal sampling.

Using different extraction methods, they produced two paired-end sequence

datasets with different relative abundances of community members. The larger

dataset was assembled into scaffolds, and reads from both sets were mapped

unto these scaffolds giving two coverage estimates. The different coverage is

due to extraction specific efficiencies. The binning of scaffolds is done by plot-

9

ting the two coverage estimates against each other for all scaffolds. Scaffolds

clustering together, represent possible genomes, however, in order to get good

results some manual curration is required.

Another read clustering algorithm which operates on multiple samples was

proposed in [3]. Just as in the previous binning method, they rely on the

assumption that multiple samples contain the same microbial species, possibly

in different proportions. The algorithm divides the reads from the N samples,

into b bins which correspond to the species from which they were sequenced,

b is assumed to be known.

The binning algorithm, called MultiBin, works as follows: (1) The reads from

all the samples are pooled together. A graph G = (V,E) is generated where V is

the set of reads and E corresponds to pairs of reads with a substantial overlap.

(2) A maximal independent set of G is found using a greedy algorithm. The

reads in this set are called tags and are denoted by T, each read is either a tag

or is affiliated with a single tag. For each tag t, let cti be the number of reads

from sample i substantially overlap it. (3) K-medoids clustering is performed

on the set {(ct1, ct2, . . . , ctN)|t ∈ T}, starting from a random choice of b centers.

After convergence the tags will be divided into bins, every non-tag read will

be assigned to the same bin as its affiliated (neighboring) tag read.

Single sample binning algorithms struggle to separate species which have the

same relative abundance level. Algorithms which operate on multiple sam-

ples, can overcome this disadvantage because they can use the abundance

10

differences in any of the samples to tell between such species. Another ad-

vantage of multiple sample binning is that older datasets can be combined

to improve the results of the analysis of new samples. Unfortunately, Multi-

Bin does not scale well to an increase in the number of samples because the

algorithm is quadratic in the number of reads.

11

Chapter 3

Multisample Read Binning

In this thesis, we propose a novel method for unsupervised coverage-based multi-

sample reads binning. This new algorithm can be used as a preprocessing step

for the de novo metatranscriptome assembly of N RNA-seq samples. In brief,

our method consists of the following steps: (1) we compute the N-dimensional

count vectors for each k-mer and (k+1)-mer which appears in the reads. The lists

of k-mers and (k+1)-mers present in the reads give us an implicit representation

for the de Bruijn graph in which the set of vertices is the set of k-mers and the

set of edges is the set of (k+1)-mers. (2) Next, we run different error removal

algorithms in order to remove as many of the incorrect k-mers and (k+1)-mers

as possible. We apply the error removal algorithms in different combinations

on a sample-by-sample basis, on the union of the samples or on both. (3) In the

final step of our method, we try to identify the connected components of the

de Bruijn graph that correspond to maximal substrings which are expressed in the

same transcripts with the same multiplicity, which we call pseudo-exons. In order

to identify these connected components, we use the structure of the graph and

the vectors with the counts to remove edges which connect pseudo-exons. The

identified connected components correspond to paths or cycles in the graph,

12

which can then be trivially assembled into contigs.

In the following sections we detail each of the steps outlined above and also

provide some preliminary results.

3.1 K-mer counting

For performing the counting we use a very efficient k-mer counter called Jel-

lyfish [6]. Jellyfish was designed for shared memory parallel computers with

more than one core, it uses several lock-free data structures and multi-threading

to count k-mers much faster than other tools.

Formally, for a given value of k, we count the number of occurrences of all

k-mers in each of the N samples. These counts are then normalized to obtain

samples-specific relative abundances. Most of the times, we lack information

about which strand the sequencing data comes from, therefore the counts of

complementary k-mers are summed together as they are indistinguishable. The

smaller value lexicographically between a k-mer and its reverse-complement is

called the canonical representation of that k-mer. We combine the counts over

all the samples into a list of N-dimensional vectors.

From the data obtained by Jellyfish we use not only the N-dimensional count

vectors, but also the list of canonical k-mers present in the reads, this is necessary

in order to construct the de Bruijn graph. In this graph, vertices are the canonical

k-mers. If we were to follow the classical definition of a de Bruijn graph we would

have to put a directed edge from vertex u to vertex v if the k− 1 length suffix of

13

u is the same as the k−1 prefix of v. However, we want to model only edges (or

(k+1)-mers) which appear in the reads, therefore we put an edge from vertex

u to vertex v only if there exists a (k+1)-mer in the reads such that, for itself

or its reverse-complement, the following are true: (1) the prefix of length k in

canonical form is equal to u, and (2) the suffix of length k in canonical form is

equal to v.

In order to achieve this accurate representation of connectivity in the de Bruijn

graph, knowing the set of k-mers present in the reads is not sufficient. Therefore,

besides computing the relative abundances of k-mers (or vertices), we also get

the relative abundances of (k+1)-mers (or edges).

Notice that just by knowing which k-mers and (k+1)-mers are present in the

reads we already have an implicit representation of the de Bruijn graph, so

there is no need to explicitly construct it in memory because we can efficiently

check if two vertices are connected.

Due to limitations imposed by Jellyfish, the maximum value for k is 31, we use

k = 30, so vertices are 30-mers and edges are 31-mers. For the rest of this thesis,

we will consider the vertices to be synonymous with k-mers, and edge to be

synonymous with (k+1)-mers.

3.2 Error-removal algorithm

A very common coverage-based error removal method applied to k-mers ob-

tained from the short sequencing reads produced by Next Generation Sequenc-

14

ing technologies (NGS) is to remove unique k-mers. Usually, a k-mer which

appears only once in the reads is considered to have been caused by a sequenc-

ing error. While this assumption holds for the classical approach where just

one genome is sequenced with high average coverage, however in the context

of metatranscriptomic (and metagenomic) data, we discovered that we lose

to much information. Because of the different abundance levels, removing

unique k-mers compromises the reconstruction of low abundance transcripts

(genomes).

Much better approaches are two coverage-independent error-removal tech-

niques called tip removal and bubble removal [13]. We expect pseudo-exons

to have a path-like structure in the de Bruijn graph. Consider a read which

contains exactly one substitution somewhere in the middle. If the read is long

enough, the first k-mers produced from its 3′ end may not contain any errors,

these beginning k-mers would be correct, however, once the erroneous k-mers

are reached, these will create an extra branch (a new path) going out of the

‘’last” correct one. This “wrong” branch will either end in a leaf, creating a

tip, or if the read is long enough and we reach another “correct” k-mer it will

reconnect with the path and create a bubble see fig. 3.2.1.

In [13] the authors use 2k as the maximum length of a tip. This number is a

result of the observation that a single sequencing error can create up to (2k− 1)

erroneous k-mers. Therefore, tips or bubbles longer than 2k represent either a

genuine sequence or an accumulation of errors. Distinguishing between these

15

two cases is almost impossible.

Figure 3.2.1: X represents a tip, while C′D′ is an example of a bubble. Figure
reproduced from [13].

A “tip” is a chain of nodes that is disconnected on one end. Removing these

tips is a straightforward task, discarding this information results in only local

effects, as no connectivity is disrupted: 1) In order to find the tips, we first find

the leaves of the de Bruijn graph. 2) We sort these leaves from the least abundant

one (the sum of the coverages in all samples) to the most abundant one. 3) We

start from the least abundant tip and process each of them in non-decreasing

order of coverage. We start from the leaf and go over the path starting from

it (tips have to be paths) to determine or not it is part of a tip. If a tip is

detected, then we remove all edges between the vertices which are part of it.

By processing tips in this manner we prioritize the removal of low abundance

tips. We expect true paths which come from low abundance transcripts to be

longer than the length maximum allowed tip length.

For bubble removal, [13] describes an algorithm called Tour Bus. Two paths

redundant if they start and end at the same nodes (forming a “bubble”) and

contain similar sequences. Detection of redundant paths is done through a

16

Dijkstra-like breadth-first search. If the sequences of two redundant paths are

judged to be similar enough, they are merged. Notice that these error removal

techniques are applied directly to the graph, therefore they remove errors in

the k-mers and (k+1)-mers simultaneously.

In our implementation of bubble removal, we require that the two (redundant)

paths have the same length. We remove the least abundant one only if the

ratio between the abundant one and the sum of the two is higher than some

threshold.

An improvement we are considering is to add an extra step, before the error

removal process, to try and correct the reads. One such error correction tool,

which is designed for RNA-seq data, is called SEECER [5]. SEECER is a proba-

bilistic tool, which uses a hidden Markov Model to perform error correction; it

can handle not only sequencing errors but also non-uniform abundance levels

and alternative splicing. Using error correction algorithms on the reads before

performing the counting of k-mers might improve our current results.

3.3 Identifying pseudo-exons

Pseudo-exons are defined as connected components of the de Bruijn graph that

correspond to maximal substrings which appear in the same transcripts with the same

multiplicity. Note that, if we ignore self-edges, pseudo-exons are paths or chordless

cycles. Chordless cycles are cycles such that no two vertices are connected by

an edge which does not belong to the cycle.

17

Regarding the de Bruijn graph, notice that for each k-mer (vertex) we can de-

fine in and out degrees relative to its canonical representation. If the canonical

representation of a k-mer matches the 5′ end of one of its edges or its reverse

complement, then we consider this edge to be outgoing, otherwise we say its

an incoming edge.

In the error corrected graph, we expect paths to correspond to pseudo-exons. We

distinguish between the following cases: (1) if a k-mer is on a path, meaning

it has in-degree and out-degree at most one, we keep it; (2) if a k-mer has out

degree (in degree) greater then 1, then we remove all edges, but we keep the

most abundant one ((k+1)-mer): if the ratio between its relative frequency and

that of the sum of the other edges going out (coming in) of the current vertex,

is greater than a threshold ε ∈ (0, 1), and if the correlation between the current

node’s vector of counts and the other ones is above a threshold ρ ∈ (0, 1),

otherwise we discard it. We expect the abundances of true k-mers to dominate

the abundances of erroneous ones by a very large factor, so ε should be close

to 1.

Assuming the data did not contain any sequencing errors, then finding the

pseudo-exons would be easy because all we would need to do is remove all

of the (incoming/outgoing) edges for which at least one of its end points has

(in/out) degree more than 1. Because real data is not perfect, the edge removal

procedure needs to be able to distinguish between real edges and false ones. We

expect that if an incorrect edge “survives” the error-removal step, its relative

18

coverage will be much smaller than the correct edges coming out of the same

vertex, so, in this case, we would keep only the correct edge and discard all the

others because the ratio of the correct one and the sum of the others would be

greater than ε. However, if there are two correct edges coming out of the same

vertex we want to remove both of them. In this case, the ratio between their

relative abundances should be smaller than ε so both edges are removed.

19

Chapter 4

Results

In order to validate our method we simulated short RNA-seq reads from 10

different human tissues: amygdala, appendix, bonemarrow, bronchial epithe-

lial cells, heart, kidney, liver, lung, ovary and pancreas. The tissues and their

expression levels have been extracted from the GNF Atlas dataset [8]. This

dataset contains tissue-specific RNA expression levels for 19, 371 genes. The

genes were extracted from the HG18 reference human genome dataset down-

loaded from the UCSC Genome Browser. For these experiments we limited

ourselves to only one isoform per gene.

For simulating sequencing reads we used an open-source tool called Grinder

[2]. Grinder was particularly useful because it is able to simulate environmental

microbial communities. We used this feature to simulate tissue specific error free

Illumina RNA-seq datasets, by giving it as input the set of transcripts (instead

of genomes) and the expression levels (instead of abundance levels) associated

with the tissues. We simulated 30 million paired-end reads of length 50 for each

dataset. However, Grinder has one very big disadvantage and that is the fact

that it is very slow. Because of this, we could not use Grinder to simulate

sequencing errors, instead we wrote our own program which uses the error

20

free reads to simulate sequencing data with an error rate of 0.1% per base. We

simulated only one type of errors. substitutions because these are the most

common ones in Illumina sequencing datasets.

#transcript errors #read 31-mers
31-mers #correct #wrong #missing

49,611,691 0% 49,546,279 0 65,412
0.1% 49,540,693 108,528,982 70,998

Table 4.1: This table shows the number of 31mers which appear in the reads
(compared with the transcripts), how many erroneous 31-mers are introduced
and how many 31-mers are missing.

Information about the 31-mers present in the two sequencing multi-samples

(error free and with 0.1% error) is summarized in Table 4.1. What stands out

immediately is that even with perfect (error free) data, we still don’t cover

the entire transcriptome because there are missing 31-mers. This is caused

by transcripts which have ultra-low abundances across all tissues. Another

interesting observation is that after adding errors, more than two thirds of

the 31-mers are incorrect (i.e. they don’t appear in the transcriptome). If a

sequencing error is located between positions 20 and 30 of a read then all

the 30-mers (vertices) extracted from that read are incorrect. Because of the

massive amount of erroneous 31-mers produced by sequencing errors, good

error-correction algorithms are essential to obtaining good results.

To see how to remove the erroneous 31-mers, we try different combinations

of the two error correction algorithms and apply them on a sample by sample

basis (and perform the union of the files later). We also try different parameters

21

for the error removal to see which performs the best.

We encode the operations performed on the data in the following way: (1)

union means that all current samples are merged together; (2) tips l means that

we apply the tip removal algorithm for a maximum tip length of l; (3) bubbles t

we apply the bubble removal algorithm on the current dataset with a coverage

threshold of t; (4) partitioning x is the graph partitioning algorithm.

For example: sample-by-sample + tips 21 + union + tips60 + partitioning 0.97,

means that: we apply the tip removal on a sample-by-sample basis with, then

we perform the union of the samples, we apply tip removal again, this time

we allow a maximum tip length of 60 and finally we partition the graph. The

results for several such processing flows are summarized in Table 4.2.

In Table 4.2 for tip removal we chose 21 and 60 as maximal tip lengths because:

(1) the sequencing reads we simulated have a length of 50, therefore 21 is the

number of 30-mers (vertices) produced by a read; (2) in [13] the authors of Velvet

recommend 2k as the optimal value for the maximum length of a tip. From

our data we can see that when we perform tip removal on a sample-by-sample

basis using a value of 60, this gives us worse results than using 21, whereas

for the union of the samples the situation is exactly the opposite. Just from the

data in this table, the sequence of operations on the 14th row seems to achieve

the best balance between missing correct 31-mers and the remaining erroneous

31-mers.

However, note that just by the data in this table we can not decide which

22

al
go

ri
th

m
#3

1m
er

s
#c

or
re

ct
#w

ro
ng

#m
is

si
ng

#w
ro

ng
+

#m
is

si
ng

un
io

n
15

8,
06

9,
67

5
49

,5
40

,6
93

10
8,

52
8,

98
2

5,
58

6
10

8,
53

4,
56

8
un

io
n

+
ti

ps
21

71
,2

64
,0

38
49

,5
00

,4
72

21
,7

63
,5

66
45

,8
07

21
,8

09
,3

73
un

io
n

+
ti

ps
60

61
,3

45
,8

59
49

,2
22

,1
06

12
,1

23
,7

53
32

4,
17

3
12

,4
47

,9
26

un
io

n
+

ti
ps

21
+

bu
bb

le
s

0.
97

61
,4

83
,0

94
49

,4
35

,3
76

12
,0

47
,7

18
11

0,
90

3
12

,1
58

,6
21

un
io

n
+

ti
ps

60
+

bu
bb

le
s

0.
97

51
,5

64
,9

46
49

,1
57

,0
10

2,
40

7,
93

6
38

9,
26

9
2,

79
7,

20
5

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
62

,8
50

,1
66

49
,1

41
,3

47
13

,7
08

,8
19

40
4,

93
2

14
,1

13
,7

51

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

un
io

n
49

,3
22

,0
32

42
,7

50
,0

85
6,

57
1,

94
7

6,
79

6,
19

4
13

,3
68

,1
41

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
+

ti
ps

21
60

,1
25

,9
21

49
,1

07
,7

72
11

,0
18

,1
49

43
8,

50
7

11
,4

56
,6

56

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
+

ti
ps

60
53

,9
01

,0
05

48
,5

52
,6

35
5,

34
8,

37
0

99
3,

64
4

6,
34

2,
01

4

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

un
io

n
+

ti
ps

60
47

,5
56

,5
84

42
,5

11
,6

20
5,

04
4,

96
4

7,
03

4,
65

9
12

,0
79

,6
23

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

59
,9

50
,9

07
49

,1
40

,3
56

10
,8

10
,5

51
40

5,
92

3
11

,2
16

,4
74

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

45
,4

29
,7

98
42

,7
45

,8
12

2,
68

3,
98

6
6,

80
0,

46
7

9,
48

4,
45

3
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

un
io

n
+

ti
ps

21
+

bu
bb

le
s

0.
97

56
,5

23
,5

23
49

,0
57

,2
08

7,
46

6,
31

5
48

9,
07

1
7,

95
5,

38
6

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
49

,5
33

,3
47

48
,5

02
,5

71
1,

03
0,

77
6

1,
04

3,
70

8
2,

07
4,

48
4

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
43

,4
85

,9
97

42
,4

71
,5

27
1,

01
4,

47
0

7,
07

4,
75

2
8,

08
9,

22
2

Ta
bl

e
4.

2:
R

es
ul

ts
fo

r
di

ff
er

en
tc

om
bi

na
ti

on
s

of
th

e
er

ro
r

re
m

ov
al

al
go

ri
th

m
s

ru
n

on
th

e
sa

m
pl

es
w

it
h

0.
1%

er
ro

r
ra

te
.

23

dataset intra inter
31-mers partitioning - transcripts 49,441,494 170,197

31-mers partitioning - reads 49,376,188 170,091

Table 4.3: The correct partitioning of 31-mers into intra-component edges (if they
are part of a component (pseudo-exon)) or inter-component edges (if they connect
two separate components). This numbers are computed for the 31-mers present
in the transcripts and for the subset of these which is present in the reads.

sequence is best because this table tells us nothing about the partitioning of the

graph.

The partitioning step tries to remove edges from the de Bruijn graph such

that the remaining connected components are paths (corresponding to pseudo-

exons). For the data which we simulated, we know the correct partitioning of

the edges (see Table 4.3, therefore one way of scoring the output produced by

our algorithm is to compute the error statistics based on the classification of

the edges: if we keep an edge - intra component edge, or if we discard it -

inter component edge. Therefore, true positives are edges which are correctly

labelled as intra-component, false positives are inter-component edges which

we label as intra, false negatives are intra component edges which we label as

inter and true negatives are edges which we correctly label as inter component

edges.

After partitioning we also filter out small clusters, this helps us further reduce

the number of erroneous 31-mers. We filter out graph components which

have strictlyfewer vertices than some threshold. Those thresholds are: 0 (no

filtering), 21 and 60. We also compare two different partitioning methods:

24

(1) if we encounter two or more outgoing(incoming) edges we remove all of

them (partitioning with a coverage threshold of 1), and (2) partitioning using

a coverage threshold of 0.97 (meaning that we keep one edge if it is more

abundant than the others)j. This comparison can be viewed in Table 4.4.

From this data it is easy to see that removing all edges outgoing (incoming)

from the graph is not as good as using a slightly tolerant coverage threshold

such as 0.97. Also, it is clear that filtering components smaller 60 is better than

the alternatives. Therefore, from now on we will only report results obtained

by partitioning using a coverage threshold of 0.97 and filtering using 60.

As can be seen from the data in Table 4.4, adding the partitioning and filtering

stages helps a lot with removing erroneous 31-mers while still keeping most of

the correct edges.

In tables Table 4.5, Table 4.6 and Table 4.7, we look at the performance of the

partition and filtering algorithms (coverage threshold 0.97 and filtering by 60)

for different combinations of the error removal algorithms, and also compare

the results of the same sequence of operation on error free data with the results

on data with 0.1% errors. Of note is the sequence ”sample-by-sample + tips

21 + bubbles 0.97 + union + tips 21 + bubbles 0.97 + partitioning 0.97” from

table Table 4.7, which gets the number of wrong 31-mers down to 29, 583 (out

of 108, 528, 982) while still maintaining most of the correct 31-mers 47, 708, 616

(out of 49, 540, 693).

Finally, in Table 4.8 we show some statistics about the components produced by

25

al
go

ri
th

m
m

in
im

um
co

m
po

ne
nt

si
ze

tp
fp

fn
tn

er
ro

ne
ou

s
31

m
er

s

un
io

n
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
0.

97
0

48
,9

73
,7

25
14

,0
58

21
,7

34
14

7,
49

3
2,

12
8,

42
8

21
48

,7
51

,3
23

7,
96

4
8,

50
2

61
,4

35
1,

50
0,

43
7

60
48

,0
76

,4
10

5,
81

1
6,

45
4

42
,3

64
40

,2
58

un
io

n
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
1

0
48

,8
91

,9
04

9,
54

7
10

3,
55

5
15

2,
00

4
2,

13
4,

45
6

21
48

,5
52

,6
19

4,
86

4
49

,1
64

64
,3

49
1,

50
5,

93
3

60
47

,8
22

,3
10

3,
30

9
38

,0
10

45
,8

47
42

,0
44

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

0
48

,3
28

,3
21

19
,7

46
15

,2
75

13
9,

22
9

88
3,

36
9

21
48

,1
33

,2
12

12
,1

65
6,

30
0

58
,4

88
52

9,
82

2
60

47
,5

16
,2

24
9,

28
1

5,
08

0
40

,2
40

46
,5

70

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

1

0
48

,2
84

,2
34

12
,4

80
59

,3
62

14
6,

49
5

88
6,

21
1

21
48

,0
06

,6
97

7,
25

7
23

,5
15

62
,2

58
53

2,
03

1
60

47
,3

62
,1

15
5,

25
7

18
,2

31
43

,9
43

46
,5

86

Ta
bl

e
4.

4:
Si

ze
fil

te
ri

ng
of

gr
ap

h
co

m
po

ne
nt

s

26

the graph partitioning algorithm. From this data we can see that after filtering,

most of the ”surviving” components contain only correct 30-mers (vertices).

Also, we looked at the components obtained from several of the processing

pipelines and the overwhelming majority are (as we expected) paths.

27

al
go

ri
th

m
er

ro
rs

tp
fp

fn
tn

er
ro

ne
ou

s
31

m
er

s
un

io
n

+
pa

rt
it

io
ni

ng
1

0

48
,4

29
,0

81
1,

93
0

7
50

,8
60

0
un

io
n

+
ti

ps
21

+
pa

rt
it

io
ni

ng
1

48
,4

31
,7

07
2,

14
2

7
50

,8
41

0
un

io
n

+
ti

ps
60

+
pa

rt
it

io
ni

ng
1

48
,4

32
,5

65
2,

46
2

7
50

,8
64

0
un

io
n

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

1
48

,3
44

,2
59

2,
96

7
6

49
,5

14
0

un
io

n
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
1

48
,3

45
,0

34
3,

28
3

6
49

,5
28

0
un

io
n

+
pa

rt
it

io
ni

ng
0.

97

0.
1

34
,2

66
,0

48
4,

86
1

10
4,

18
5

44
,3

81
1,

71
8,

33
8

un
io

n
+

ti
ps

21
+

pa
rt

it
io

ni
ng

0.
97

48
,3

17
,0

28
4,

84
3

7,
17

9
45

,4
53

31
,8

68
un

io
n

+
ti

ps
60

+
pa

rt
it

io
ni

ng
0.

97
48

,1
12

,5
28

5,
14

8
7,

05
1

45
,5

05
50

,3
85

un
io

n
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
0.

97
48

,2
81

,2
23

5,
48

2
6,

55
9

42
,2

29
22

,2
09

un
io

n
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
0.

97
48

,0
76

,4
10

5,
81

1
6,

45
4

42
,3

64
40

,2
58

Ta
bl

e
4.

5:
Ed

ge
co

rr
ec

tn
es

s
co

m
pu

te
d

by
ap

pl
yi

ng
th

e
er

ro
r

re
m

ov
al

al
go

ri
th

m
s

on
th

e
un

io
n

of
th

e
sa

m
pl

es
.

28

al
go

ri
th

m
er

ro
rs

tp
fp

fn
tn

er
ro

ne
ou

s
31

m
er

s
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
pa

rt
it

io
ni

ng
1

0

47
,8

94
,0

88
2,

93
8

6
48

,8
41

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
60

+
un

io
n

+
pa

rt
it

io
ni

ng
1

42
,7

56
,4

99
8,

44
5

6
39

,1
72

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
ti

ps
21

+
pa

rt
it

io
ni

ng
1

47
,8

98
,4

33
3,

25
2

6
48

,8
78

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
ti

ps
60

+
pa

rt
it

io
ni

ng
1

47
,8

99
,4

81
4,

21
0

6
48

,7
78

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
60

+
un

io
n

+
ti

ps
60

+
pa

rt
it

io
ni

ng
1

42
,7

87
,3

51
10

,8
28

6
39

,1
57

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97

0.
1

45
,1

96
,2

71
7,

23
7

92
,1

87
36

,7
78

25
,4

85
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
60

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97
40

,6
01

,1
94

12
,5

80
54

,5
97

31
,2

48
69

,6
88

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
+

ti
ps

21
+

pa
rt

it
io

ni
ng

0.
97

47
,7

33
,3

17
7,

88
4

4,
13

4
42

,3
91

33
,8

94
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
ti

ps
60

+
pa

rt
it

io
ni

ng
0.

97
47

,5
39

,2
13

8,
75

8
5,

47
1

42
,3

89
50

,9
70

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

un
io

n
+

ti
ps

60
+

pa
rt

it
io

ni
ng

0.
97

41
,6

29
,5

03
15

,1
30

6,
31

0
33

,0
96

98
,2

23

Ta
bl

e
4.

6:
Ed

ge
co

rr
ec

tn
es

s
co

m
pu

te
d

by
ap

pl
yi

ng
th

e
ti

p
re

m
ov

al
al

go
ri

th
m

on
a

sa
m

pl
e-

by
-s

am
pl

e
ba

si
s,

th
en

pe
rf

or
m

in
g

th
e

un
io

n
an

d
ap

pl
yi

ng
th

e
er

ro
r

re
m

ov
al

on
ce

m
or

e
fo

r
so

m
e

of
th

e
se

qu
en

ce
s.

29

al
go

ri
th

m
er

ro
rs

tp
fp

fn
tn

er
ro

ne
ou

s
31

m
er

s
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

un
io

n
+

pa
rt

it
io

ni
ng

1

0%

47
,8

94
,2

71
2,

99
2

6
48

,6
13

0
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

un
io

n
+

pa
rt

it
io

ni
ng

1
42

,7
57

,0
19

8,
54

4
6

38
,9

28
0

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

1
47

,8
87

,2
79

4,
00

8
6

48
,0

63
0

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

1
47

,8
88

,6
04

5,
00

7
6

47
,9

49
0

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

1
42

,7
86

,4
71

11
,7

38
6

38
,2

69
0

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97

0.
1%

45
,1

97
,3

25
7,

31
2

92
,0

43
36

,5
10

21
,8

59
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

un
io

n
+

pa
rt

it
io

ni
ng

0.
97

40
,6

01
,1

89
12

,6
92

54
,4

61
30

,9
69

65
,8

25
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

un
io

n
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
pa

rt
it

io
ni

ng
0.

97
47

,7
08

,6
16

8,
39

5
3,

72
9

40
,2

33
29

,5
83

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

47
,5

16
,2

24
9,

28
1

5,
08

0
40

,2
40

46
,5

70

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

41
,6

17
,5

83
15

,5
70

5,
95

5
31

,0
84

94
,0

43

Ta
bl

e
4.

7:
Ed

ge
co

rr
ec

tn
es

s
co

m
pu

te
d

by
ap

pl
yi

ng
th

e
er

ro
r

re
m

ov
al

al
go

ri
th

m
s

on
a

sa
m

pl
e-

by
-s

am
pl

e
ba

si
s,

th
en

pe
rf

or
m

in
g

th
e

un
io

n
an

d
ap

pl
yi

ng
th

e
er

ro
r

re
m

ov
al

on
ce

m
or

e
fo

r
so

m
e

of
th

e
se

qu
en

ce
s.

30

al
go

ri
th

m
er

ro
rs

#c
om

po
ne

nt
s

#c
om

po
ne

nt
s

w
hi

ch
do

no
tc

on
ta

in
in

co
rr

ec
t

31
-m

er
s

SE
N

SI
T

IV
IT

Y
PP

V
F-

sc
or

e

un
io

n
+

pa
rt

it
io

ni
ng

1
0

43
,2

85
43

,2
85

97
.7

8%
10

0%
98

.8
7%

un
io

n
+

pa
rt

it
io

ni
ng

0.
97

0.
00

1

22
9,

64
9

22
6,

20
7

67
.8

9%
98

.5
0%

80
.3

8%
un

io
n

+
ti

ps
21

+
pa

rt
it

io
ni

ng
0.

97
45

,9
55

44
,0

60
93

.7
5%

95
.8

8%
94

.8
0%

un
io

n
+

ti
ps

60
+

pa
rt

it
io

ni
ng

0.
97

43
,9

10
40

,2
81

87
.6

1%
91

.7
4%

89
.6

2%
un

io
n

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

45
,5

48
43

,8
09

93
.6

6%
96

.1
8%

94
.9

0%
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

43
,4

97
40

,0
41

87
.5

2%
92

.0
5%

89
.7

3%
sa

m
pl

e-
by

-s
am

pl
e

+
ti

ps
21

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97
18

2,
79

9
18

1,
22

8
90

.8
7%

99
.1

4%
94

.8
2%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

un
io

n
+

pa
rt

it
io

ni
ng

0.
97

17
2,

31
6

16
6,

19
6

80
.2

0%
96

.4
5%

87
.5

8%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
+

ti
ps

21
+

pa
rt

it
io

ni
ng

0.
97

60
,9

19
58

,2
05

92
.9

7%
95

.5
4%

94
.2

4%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

un
io

n
+

ti
ps

60
+

pa
rt

it
io

ni
ng

0.
97

59
,8

66
55

,4
47

89
.4

9%
92

.6
2%

91
.0

3%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

un
io

n
+

ti
ps

60
+

pa
rt

it
io

ni
ng

0.
97

10
8,

19
2

99
,2

44
77

.5
5%

91
.7

3%
84

.0
5%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97
18

2,
74

8
18

1,
26

5
90

.9
0%

99
.1

9%
94

.8
6%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

+
pa

rt
it

io
ni

ng
0.

97
17

2,
24

6
16

6,
23

0
80

.2
3%

96
.5

1%
87

.6
2%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
21

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

60
,6

77
58

,0
34

92
.9

0%
95

.6
4%

94
.2

5%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

21
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

59
,6

13
55

,2
56

89
.4

4%
92

.6
9%

91
.0

4%

sa
m

pl
e-

by
-s

am
pl

e
+

ti
ps

60
+

bu
bb

le
s

0.
97

+
un

io
n

+
ti

ps
60

+
bu

bb
le

s
0.

97
+

pa
rt

it
io

ni
ng

0.
97

10
7,

98
7

99
,1

25
77

.5
7%

91
.7

9%
84

.0
8%

Ta
bl

e
4.

8:
C

or
re

ct
ne

ss
of

th
e

co
m

po
ne

nt
s

ob
ta

in
ed

af
te

r
pa

rt
it

io
ni

ng
an

d
fil

te
ri

ng
.

Th
e

se
ns

it
iv

it
y

is
th

e
pe

rc
en

ta
ge

of
th

e
30

-m
er

s
fo

un
d

in
th

e
tr

an
sc

ri
pt

om
e

w
hi

ch
ar

e
pr

es
en

ti
n

th
e

co
m

po
ne

nt
s

w
hi

ch
ar

e
co

un
te

d
in

co
lu

m
n

4.
T

he
PP

V
is

th
e

pe
rc

en
ta

ge
of

cl
us

te
rs

w
hi

ch
do

no
tc

on
ta

in
an

y
w

ro
ng

30
-m

er
s.

31

Chapter 5

Conclusions and Ongoing Work

In ongoing work we are planning to assemble the components obtained from

the processing pipelines into sequences and align them unto the (meta)transcriptome.

We expect that using this information and the reads, we will be able to perform

the reconstruction of the (meta)transcriptome.

We validate our algorithm using simulated RNA-Seq data (both error-free and

with errors). We created several dierent workflows for processing the data and

managed to obtain promising results. One of the biggest challenges we faced

was dealing with errors. Since our algorithms are based on k-mers a single

error in a read results in multiple erroneous k-mers. For an error rate of 0.1%

over two thirds of the k-mers are incorrect, however, we managed to achieve

a good balance between how many correct k-mers we keep (47,708,616 out of

49,540,693) and how many erroneous ones we keep (29,583 out of 108,528,982).

The microbiome is an essential part of life on Earth. Studies of environmen-

tal samples which have focused on single organism fail to capture the true

picture of the diversity of microbial life. In order to better understand these

microbial communities and the interactions between their members and their

habitat we need to develop more efficient and more accurate methods for an-

32

alyzing metatranscriptomic data. We hope that the work presented in this

thesis shows the potential of genome-independent multi-sample approaches.

In particular, we hope that these methods will become a standard part of the

metatranscriptomics toolkit and help to further improve our understanding of

the microbiome.

33

Bibliography

[1] Mads Albertsen, Philip Hugenholtz, Adam Skarshewski, Kåre L Nielsen,
Gene W Tyson, and Per H Nielsen. Genome sequences of rare, un-
cultured bacteria obtained by differential coverage binning of multiple
metagenomes. Nature biotechnology, 31(6):533–538, 2013.

[2] Florent E Angly, Dana Willner, Forest Rohwer, Philip Hugenholtz, and
Gene W Tyson. Grinder: a versatile amplicon and shotgun sequence
simulator. Nucleic acids research, 40(12):e94–e94, 2012.

[3] Yael Baran and Eran Halperin. Joint analysis of multiple metagenomic
samples. PLoS computational biology, 8(2):e1002373, 2012.

[4] Eric S Lander and Michael S Waterman. Genomic mapping by finger-
printing random clones: a mathematical analysis. Genomics, 2(3):231–239,
1988.

[5] Hai-Son Le, Marcel H Schulz, Brenna M McCauley, Veronica F Hinman,
and Ziv Bar-Joseph. Probabilistic error correction for rna sequencing.
Nucleic acids research, 41(10):e109–e109, 2013.

[6] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for effi-
cient parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–
770, 2011.

[7] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M
Tiedje, and C Titus Brown. Scaling metagenome sequence assembly with
probabilistic de bruijn graphs. Proceedings of the National Academy of Sci-
ences, 109(33):13272–13277, 2012.

[8] Andrew I Su, Tim Wiltshire, Serge Batalov, Hilmar Lapp, Keith A Ching,
David Block, Jie Zhang, Richard Soden, Mimi Hayakawa, Gabriel Kreiman,
et al. A gene atlas of the mouse and human protein-encoding transcrip-
tomes. Proceedings of the National Academy of Sciences of the United States of
America, 101(16):6062–6067, 2004.

[9] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett,
Rob Knight, and Jeffrey I Gordon. The human microbiome project. Nature,
449(7164):804–810, 2007.

34

[10] Yi Wang, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Meta-
cluster 5.0: a two-round binning approach for metagenomic data for low-
abundance species in a noisy sample. Bioinformatics, 28(18):i356–i362, 2012.

[11] John C Wooley, Adam Godzik, and Iddo Friedberg. A primer on metage-
nomics. PLoS computational biology, 6(2):e1000667, 2010.

[12] Yu-Wei Wu and Yuzhen Ye. A novel abundance-based algorithm for
binning metagenomic sequences using l-tuples. Journal of Computational
Biology, 18(3):523–534, 2011.

[13] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short
read assembly using de bruijn graphs. Genome research, 18(5):821–829,
2008.

35

