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Abstract

We propose to introduce redundant interconnects for manufacturing yield and reliability improvement. By introducing redundant interconnects, the

potential for open faults is reduced at the cost of increased potential for short faults; overall, manufacturing yield and fault tolerance can be improved. We

focus on a post-processing, tree augmentation approach which can be easily integrated in current physical design flows. Our contributions are as follows:

� We formulate the problem as a variant of the classical 2-edge-connectivity augmentation problem in which we take into account such practical issues

as wirelength increase budget, routing obstacles, and use of Steiner points.

� We show that an optimum solution can always be found on the Hanan grid defined by the terminals and the corners of the feasible routing region.

� We give a compact integer program formulation which is solved in practical runtime by the commercial optimization package CPLEX for nets with

up to 100 terminals.

� We give a well-scaling greedy algorithm which has practical runtime up to 1,000 terminals, and comes on the average within 1-2% of the optimum

computed by CPLEX.

� We give a comprehensive experimental study comparing the solution quality and runtime of our methods with the best methods reported in the

literature for the related 2-edge-connectivity augmentation problem, including a sophisticated heuristic based on minimum-weight branchings [11] and a

recent genetic algorithm [17].

Experiments on randomly generated and industry testcases show that our greedy augmentation method achieves significant increase in reliability (as

measured by the percentage of biconnected tree edges) with very small increase in wirelength. For example, on 1,000 terminal nets the average percentage of

biconnected tree edges is 34 � 19% for a wirelength increase of only 1%, and 87 � 73% for a wirelength increase of 20%. SPICE simulations on industry routed

nets show that non-tree routing has the additional benefit of reducing maximum sink delay by an average of 28 � 26% compared to Steiner routing, and by an

average of 3 � 72% compared to timing optimized routing. SPICE simulations further imply that non-tree routing has smaller delay variation due to process

variability.

I. INTRODUCTION

Ever-decreasing feature sizes allow integration of millions of gates on a single chip. This integration has been enabled in

part by low defect density. However, continued reductions in defect density cannot be expected to continue in the near future.

Sensitivity of parametric (performance) yield to variability also increases as a result of performance optimization (sizing, etc.)

design flows. New design techniques must be applied to improve manufacturing yield of large-area chips, as yield becomes

an ever-greater determinant of design viability [2].

In nanometer-scale manufacturing technologies, likelihood of back-end-of-line (BEOL) defects (i.e., high-resistance via or

interconnect defects) has increased relative to that of front-end-of-line (FEOL) defects (i.e., device defects). Interconnects

are now more likely to cause circuit malfunction and/or performance or reliability degradation. Two types of catastrophic

faults arise due to BEOL defects: open circuit faults or broken interconnects due to loss of mass, and short circuit faults or
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Fig. 1. An open fault is formed due to loss of mass; a short fault is formed due to augmentation of mass.

unintended bridgings between interconnects due to augmentation of mass (Fig. 1). Manufacturing yield is directly affected

by the size of the critical area, which is the union of all centers of fixed size defects that induce IC faulty behavior. A typical

figure of merit that measures the layout’s robustness is obtained as the ratio of the total critical area to the layout area [4].

Previous works [12], [10], [2] have addressed manufacturing reliability of interconnect exclusively under the assumption

that tree topologies are used for routing all nets. In this paper we propose to introduce layout level redundancy by constructing

non-tree interconnect topologies for manufacturing yield and reliability improvement. For easier integration within existing

flows, we emphasize a post-processing, tree augmentation approach, rather than monolithic non-tree routing construction

during global or detailed routing. In adding redundant wiring, the extra wire creates more critical area for short faults, but

the redundancy makes some wires immune to open defects and thus reduces open-fault critical area. Overall, critical area and

manufacturing yield could improve. We observe that:

� The existing tradeoff between short- and open-fault critical areas in the BEOL is conducive to the approach we propose.

For current design methodologies and manufacturing processes, the probability of failure (POF) due to open defects of any

given size is more than 3 times higher than the POF due to short defects of identical size [4].

� Previous methods that improve manufacturability or reliability by “decompaction” (see, e.g., [2]) will not be as useful in

the future due to heavy restrictions on allowed spacings and pitches in nanometer-scale (
�

100nm) processes. On the other

hand, our approach would work well even with restricted spacings and pitches (but would require incremental detailed routing

capability). In fact, it can be speculated that introduction of interconnect redundancy improves uniformity of routing resource

utilization by forming “functional fill” as opposed to the present “dummy fill” methodologies.

� Tree augmentation schemes have been previously proposed in the context of clock routing for delay and skew reduction

[21] and critical net routing for delay optimization [14]. However, previous algorithms do not work well in our context, since

tree augmentation for manufacturability and reliability improvement involves different tradeoffs than tree augmentation for

delay or skew optimization.

Our Manhattan Routing Tree Augmentation (MRTA) formulation resembles the classical edge connectivity augmentation

problem [8], in which a given subgraph must be augmented at minimum cost into a 2-edge (or more generally k-edge)

connected graph.1 Finding a minimum cost k-edge-connected augmentation is NP-hard even for k � 2 [5], and much work

has been devoted to finding good heuristics and approximation algorithms, see, e.g., [7] and the references therein. The

MRTA formulation differs from the 2-edge-connectivity augmentation (E2AUG) problem in several respects:

� While E2AUG is typically formulated for graphs, MRTA has a strong geometric flavor. We consider routing trees embedded

1A graph is k-edge connected if it cannot be separated by removing less than k edges.
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in the Manhattan plane, and allow augmenting paths between any two points on the embedded tree (however, augmenting

paths must be fully contained in the feasible routing region defined by routing obstacles and design spacing rules). In partic-

ular, we allow augmenting paths that are “parallel” to (fragments of) tree edges.

� To ensure the optimal balance between vulnerability to short- and open-faults, our formulation imposes a budget on the total

length of augmentation paths and requires maximizing 2-edge connectivity subject to this constraint. In contrast, E2AUG

requires 100% 2-edge connectivity regardless of the wirelength increase.

� To enable higher quality MRTA solutions, we allow augmenting paths with one or both ends on other augmenting paths, i.e.,

at newly created Steiner points (see Figure 2). The existing literature on 2-edge-connectivity augmentation focuses almost

exclusively on the spanning subgraph formulation of the problem, in which the use of Steiner points is disallowed.

Our main contributions are as follows:

� We show that an optimum MRTA solution can always be found on the Hanan grid defined by the terminals and the corners

of the feasible routing region.

� We give integer program formulations for the MRTA problem with and without Steiner points. The compact integer program

for MRTA without Steiner points is solved in practical runtime by the commercial optimization package CPLEX for testcases

with up to 100 terminals.

� We give a well-scaling greedy algorithm which has practical runtime up to 1,000 terminals, and comes on the average

within 1-2% of the optimum computed by CPLEX. The runtime of our algorithm is O � ND � N2K ��� , where D is the runtime

of Dijkstra’s algorithm on the Hanan grid for the terminals and the corners of the feasible routing region, N is the number

of Hanan grid vertices on the given routing tree, and K is the number of augmenting paths (typically a small fraction of N).

Without routing obstacles the running time reduces to O � N2K � .
� We give a comprehensive experimental study comparing the solution quality and runtime of our methods with the best re-

ported methods for 2-edge-connectivity augmentation, including a sophisticated heuristic based on minimum-weight branch-

ings [11] and a recent genetic algorithm [17].

Experiments on randomly generated and industry testcases show that our greedy augmentation method achieves significant

increase in reliability (as measured by the percentage of biconnected tree edges) with very small increase in wirelength. For

example, on 1,000 terminal nets the average percentage of biconnected tree edges is 34 � 19% for a wirelength increase of only

1%, and 87 � 73% for a wirelength increase of 20%. SPICE simulations on industry routed nets show that non-tree routing

has the additional benefit of reducing maximum sink delay by an average of 28 � 26% compared to Steiner routing, and by an

average of 3 � 72% compared to timing optimized routing. SPICE simulations further imply that non-tree routing has smaller

delay variation due to process variability.

The rest of the paper is organized as follows. Section II gives the defect model, notations, and the problem formulation.

Section III gives the reduction to a Hanan grid, integer program formulations, and the greedy MRTA algorithm. Section IV

presents experimental results comparing the solution quality and runtime of our methods with two of the best existing methods

for 2-edge-connectivity augmentation, as well as results of SPICE simulations showing that non-tree routing has improved

interconnect delay and process variation robustness. Finally, Section V gives directions for future research.
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II. PROBLEM FORMULATION

Our problem formulation is based on the following defect model:

� Uniform defect distribution. We assume that manufacturing defects are uniformly distributed across the die area. In

particular, since we are concerned with routing reliability of large global nets, the uniform defect distribution allows us to

ignore defects at the nodes of the routing (which have negligible probability of occurrence), and consider only defects that

affect its edges.

� Stapper’s defect size distribution. We assume Stapper’s 1 � x3 distribution of defect sizes [18], [4]. Under this assumption,

the probability that a net N fails due to a short defect is proportional to the length of wires routed parallel to N at minimum

spacing, and the probability that N fails due to an open defect is proportional to the length of the net [10]. For both types of

failures, the proportionality constants are determined by process parameters and design rules.

� Single-defect faults. The occurrence probability of a fault caused by multiple defects is orders of magnitude smaller than

the occurrence probability of a fault caused by a single defect. We therefore concentrate on reducing routing vulnerability to

single defect faults, and measure routing vulnerability to open faults by the total length of bridges (i.e., routing edges whose

removal disconnects the net) of the routing.

� Open faults only. For current design methodologies and manufacturing processes (e.g., damascene copper electroplating)

the prevailing error mechanism is void formation (open faults). As noted in [4], the probability of failure (POF) due to open

defects of a given size is more than 3 times higher than the POF due to short defects of identical size. In particular, design

rule correctness guarantees that there will be no short fault induced by a defect of size smaller than the minimum spacing

between interconnects and routing obstacles. In this paper we concentrate on reducing vulnerability to open faults by adding

redundant wires. Vulnerability to short faults is maintained within desired limits by imposing an upper-bound on the amount

of added wires.

We use the following notations throughout the paper :

1. P � set of terminals for the given net

2. T � P � � given routing tree over terminals of P

3. pT � u � v � � the unique path in tree T between u � v � T

4. a � u � v � � augmenting path, assumed to be a shortest path between u and v within the feasible routing region (i.e., avoiding

the given routing obstacles)

5. A � set of augmenting paths

6. G � T � A � augmented routing graph

7. bridges � G � � set of all bridge edges of G; an edge � u � v � is a bridge of G if its removal disconnects G

8. l � G � � total length of routing graph G

9. l � A � � total length of augmenting paths

10. lbridges � G � � total length of bridge edges of G; in our defect model the probability of failure due to open faults for the

routing G is proportional to lbridges � G �
11. la � u � v � � length of augmenting path a � u � v �
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Fig. 2. Initial routing tree T and a set of augmenting paths. Remaining bridges are shown as thin lines.

12. lbridgesG � u � v � � l � pT � u � v ��� bridges � G � � � total length of bridge edges on path pT � u � v �
13. FRR � rectilinear feasible routing region2

14. F � set of corner vertices of the rectilinear feasible routing region FRR

15. H � P � F � � Hanan grid over the points in P � F , obtained by taking the union of vertical and horizontal lines through the

points

16. HV � P � F � � the set of vertices of H � P � F �
17. N ��� T � HV � P � F ��� � number of Hanan grid points on the routing tree T

The problem of maximally increasing the reliability to open faults by adding a bounded amount of wire redundancy to an

already routed net is formulated as follows:

Manhattan Routing Tree Augmentation (MRTA) Problem

Given:

1. Rectilinear feasible routing region FRR,

2. Rectilinear Steiner routing tree T within FRR, and

3. Wirelength budget W .

Find: Set of augmenting paths A within the FRR such that:

(a) Total length of augmenting paths is at most W , i.e., l � A � �
W , and

(b) Total length l � T ��� lbridges � G � of edges of T which are non-bridges in G � T � A is maximum.

III. EXACT AND HEURISTIC ALGORITHMS FOR THE MRTA PROBLEM

We begin this section by showing that, despite the seemingly continuous solution space (due to the flexibility in choosing

endpoints of augmenting paths), an optimum solution can always be found on the Hanan grid defined by the terminals and the

corners of the feasible routing region. Based on this result, in Section III-B we give a compact integer linear program (ILP)

2The feasible routing region FRR is formed by enlarging the neighboring wires and routing obstacles by the minimum design spacing rules. The initial

routing T as well as the augmenting paths A must be within the FRR to guarantee design rule correctness.
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Fig. 3. (i) If augmenting path a connects two parallel edges, then l � G � remains constant when a slides horizontally, and for at least one direction lbridges � G �
does not increase. (ii) Otherwise, a can be re-embedded along the Hanan grid lines.

formulation for the MRTA problem in which Steiner points are disallowed, and an ILP with exponentially many constraints

for the MRTA problem with Steiner points. Finally, in Section III-C we describe an efficient greedy MRTA heuristic.

A. Reduction to Hanan Grid

Theorem 1: There exists an optimum MRTA solution with all augmenting paths embedded on the Hanan grid defined by

terminals and corners of the rectilinear feasible routing region.

Proof: If both ends of an augmenting path are Hanan grid vertices then clearly the whole augmenting path (which is a

shortest path within the given rectilinear feasible routing region) can be routed along the Hanan grid. Assume that an optimum

MRTA solution G � T � A has a non-Hanan augmenting path a ending at a point p which is not a Hanan grid vertex. Let l

and r be the vertical Hanan grid lines immediately to the left and right of p, and let h be the horizontal line through p. There

are two cases to consider:

(i) If the augmenting path a has the other end strictly between l and r on a horizontal edge of G, then, by optimality, it follows

that a is a straight line segment. Sliding a horizontally does not change the total length l � G � , and there exists a horizontal

sliding direction (either sliding towards l or sliding towards r) which does not increase the bridge length lbridges � G � (see

Fig. 3(i)). By sliding a in this direction until it reaches the closest grid line we obtain another optimum solution for which the

length of augmenting paths not embedded on the Hanan grid is reduced by an amount equal to the length of a.

(ii) Otherwise, let q be the first point, starting from p, where a crosses again l � h � r (such a point must exist, since every

augmenting path creates a cycle with the rest of G). The portion of a between p and q can be re-embedded as an L shape along

the Hanan grid (Fig. 3(ii)). Again, this gives an optimum solution with strictly shorter augmenting path length not embedded

on the Hanan grid.

The theorem follows by repeating the above transformations (and the symmetrical vertical transformations) until all augment-

ing edges are completely embedded on the grid.

Remark. Notice that Theorem 1 does not guarantee that all augmenting path endpoints are Hanan grid vertices. It is easy to

see that, due to the wirelength budget, endpoints which are not Hanan grid vertices may be required. However, Theorem 1

implies that this happens only when the augmenting path is parallel to an edge of the augmented tree T .
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B. Integer Program Formulations

Theorem 1 implies that the optimum MRTA can be found by considering only augmenting paths which are shortest paths

between arbitrary vertices on the Hanan grid H � P � F � , plus, possibly, augmenting paths which are parallel to fragments of

tree edges.

We first give an integer linear program (ILP) formulation for MRTA without Steiner points and without augmenting paths

parallel to fragments of tree edges. To formulate this version of the problem as an integer program, we assign to each pair of

vertices u � v � T � HV � P � F � a 0/1 variable xu � v indicating whether or not the augmenting path a � u � v � connecting u and v is

used in the augmentation, i.e.,

xu � v �

�� � 1 : a � u � v � � A

0 : a � u � v ���� A
(1)

Also, we assign to each edge � u � v � � T a 0/1 variable yu � v indicating whether or not � u � v � is contained in a cycle of T � A, i.e.,

yu � v �

�� � 1 : � u � v � � T � bridges � T � A �
0 : otherwise

(2)

Let Tu and Tv denote the two subtrees obtained from T after removing edge � u � v � � T . Since Steiner points are disallowed,

it follows that � u � v � is contained in a cycle of T � A if and only if A contains an augmenting path between Tu and Tv, i.e., if

and only if there exist i � Tu and j � Tv such that a � i � j � � A. Thus, yu � v � 1 if and only if ∑i � Tu � j � Tv xi � j � 1. The following

integer program captures the MRTA without Steiner points and without augmenting paths parallel to fragments of tree edges.

Here, l � u � v � denotes the length of edge � u � v � � T and la � u � v � denotes the length of the augmenting path between u and v.

maximize ∑�
u � v 	
� T yu � vl � u � v � (3)

such that

∑
u � v � T � HV

�
P � F 	 xu � v la � u � v � �

W

∑
i � Tu � j � Tv

xi � j � yu � v ��
 � u � v � � T

xu � v � � 0 � 1 � ��
 u � v � T � HV � P � F �

yu � v � � 0 � 1 � ��
 � u � v � � T

In ILP (3), the objective is to maximize the total length of biconnected tree edges. The first constraint enforces the wire-

length budget, and the following set of constraints ensures (based on the previous observation) that only edges of T contained

in cycles of T � A are counted in the objective function.

We now modify ILP (3) to allow the use of augmenting paths parallel to fragments of tree edges. Such augmenting paths

can further increase the total biconnected length, e.g., by fully utilizing the wirelength budget. The key observation is that we

do not need to know the exact location of the parallel augmenting paths, and hence we do not need individual 0/1 variables

for each such such path. It suffices to know their total length, represented in the following program by the variable P. This
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length is now added to the left-hand side of the wirelength budget constraint, and also contributes directly to the objective

function (i.e., to the total length of biconnected tree edges). The resulting integer program formulation is the following.

maximize P � ∑�
u � v 	
� T yu � vl � u � v � (4)

such that

P � ∑
u � v � T � HV

�
P � F 	 xu � vla � u � v � �

W

∑
i � Tu � j � Tv

xi � j � yu � v � 
 � u � v � � T

xu � v � � 0 � 1 � ��
 u � v � T � HV � P � F �

yu � v � � 0 � 1 � ��
 � u � v � � T

P � 0

Similar to ILPs (3) and (4), the ILP formulation for MRTA with Steiner points uses 0/1 variables yu � v indicating whether or

not tree edges � u � v � are biconnected, and a variable P representing the total length of augmenting paths parallel to (fragments

of) tree edges. In order to capture the possible use of Steiner points as ends of augmenting paths, we now use a 0/1 variable

xe for each edge e in the Hanan grid H � P � F � . The ILP sets xe to 1 if any augmenting path uses e, and to 0 otherwise. The

ILP formulation for MRTA with Steiner points is:

maximize P � ∑�
u � v 	
� T yu � vl � u � v � (5)

such that

P � ∑
e � H � P � F 	 xel � e � � W

∑
e � X xe � yu � v � 
 � u � v � � T � X � Xu � v

xe � � 0 � 1 � ��
 e � H � P � F �

yu � v � � 0 � 1 � ��
 � u � v � � T

P � 0

Here l � u � v � is the length of edge � u � v � � T , l � e � is the length of Hanan grid edge e, and, for every � u � v � � T , Xu � v is the set of

all Hanan grid cuts separating the two connected components, Tu and Tv, of T � � u � v � .
As in (3) and (4), the objective is to maximize the total length of biconnected tree edges (including those biconnected by

adding augmenting paths parallel to fragments of tree edges), and the first constraint of (5) is enforcing the wirelength budget.

Ensuring that yu � v is set to 1 only if edge � u � v � � T is biconnected requires now an exponential number of constraints. The

formulation is based on the classic Max-Flow Min-Cut theorem, which guarantees that there exists a path between Tu and Tv

consisting solely of edges e with xe set to 1 if every cut separating Tu from Tv contains at least one such edge.
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Input: Rectilinear feasible routing region FRR with corners F, routing tree T for P within FRR, wirelength budget W
Output: Set of augmenting paths A with l � A � �

W

1. bridges � G ��� G � T , A � /0, V � T � HV � P � F �
2. For each u � V , compute the lengths la � u � v � of the shortest paths from u to each v � V by running Dijkstra’s algorithm with u as the source
3. For each node u � V , compute the length lbridgesG � u � v � of the bridges between u and each v � V by a depth first search traversal of T with u as

the source
4. Find, among paths a � u � v � with l � A ��� la � u � v � �

W , an augmenting path a � u 	
� v 	 � maximizing lbridgesG � u � v ��� la � u � v �
5. If lbridgesG � u 	
� v 	 ��� la � u 	
� v 	 ��� 1 then

A � A � a � u 	
� v 	 � , G � G � a � u 	�� v 	 �
bridges � G ��� bridges � G ��� pT � u 	
� v 	 �
V � V � � a � u 	
� v 	 ��� HV � P � F � �
For each u � a � u 	�� v 	 ��� HV � P � F � , compute the lengths la � u � v � of the shortest paths from u to each v � V by running Dijkstra’s algorithm with u
as the source
Go to Step 3

6. Else Exit

Fig. 4. The greedy MRTA algorithm.

Remark. We note that, despite its exponential size, the fractional relaxation of ILP (5) can still be solved in polynomial

time, e.g., by using the Ellipsoid algorithm [6] with a separation oracle that runs a min-cut algorithm for each � u � v � � T to

check feasibility of any given solution. This can be combined with a standard branch-and-bound procedure for finding the

optimum integer solution. However, the resulting runtime is likely to be much higher than that required for solving ILPs (3)

and (4).

C. The Greedy MRTA Algorithm

In this section we propose a greedy algorithm for the MRTA problem. Our algorithm (see Fig. 4) iteratively adds an

augmenting path a � u � v � that maximizes the ratio lbridgesG � u � v � � la � u � v � between the length of bridge edges between u and

v and the length of the augmenting path. In every step the algorithm considers only augmenting paths a � u � v � that fit within

the remaining wirelength budget and have lbridgesG � u � v � � la � u � v � � 1 (since otherwise it is better to simply use augmenting

paths parallel to tree edges).

In order to efficiently compute the best augmenting path in each greedy iteration, we precompute the length of all shortest

augmenting paths a � u � v � by running Dijkstra’s algorithm with each u � T � HV � P � F � as the source. Further, we compute

bridge edge lengths lbridgesG � u � v � by executing one depth-first search traversal of T from each u � T � HV � P � F � . Whenever

an augmenting path a is added to G, we update the set of possible augmenting path endpoints to include Hanan grid vertices

on a, and compute the lengths of all shortest augmenting paths originating at these points with � a � HV � P � F ��� more runs of

Dijkstra’s algorithm. It can be checked that the number of possible augmenting path endpoints does not exceed 2N throughout

the algorithm, where N � � T � HV � P � F ��� . Thus, with this implementation, the greedy algorithm runs in O � ND � N2K ���
time, where D is the runtime of Dijkstra’s algorithm on H � P � F � 3 and K is the number of augmenting paths (typically a small

fraction of N). Without routing obstacles Dijkstra’s algorithm becomes unnecessary since la � u � v � is given by the rectilinear

distance between u and v. In this case the greedy algorithm runs in O � N2K � time.

3For a Fibonacci heap implementation of Dijkstra’s algorithm [3], D � O ���P � F � 2 log �P � F � � . Since edges of H � P � F � have positive integer weights, it is

possible to improve the asymptotic bound on the running time by replacing Dijkstra’s algorithm with Thorup’s recent linear-time single-source shortest path

algorithm [19]. For Thorup’s algorithm, D becomes proportional to the number of vertices and edges in H � P � F � , i.e., D � O ���P � F � 2 � .
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IV. EXPERIMENTAL RESULTS

We compare our integer program and the greedy MRTA algorithm with two existing algorithms:

� A greedy best-drop heuristic in [11] which selects augmentation edges by finding minimum-weight branching in an appro-

priately defined directed graph. The best-drop heuristic is reported to find high-quality solutions for a host of connectivity

problems, including 2-edge-connectivity augmentation with no wirelength budget.4

� A genetic algorithm enhanced by using a compact edge set representation, problem specific variation operators and a

stochastic local improvement algorithm to reduce solution space [17].

We implement three versions of the greedy MRTA algorithm:

(a) Considering all augmenting paths a � u � v � for which u � v are either terminals, Steiner points, or corners of edges of T .

(b) Considering all augmenting paths a � u � v � for which u � v � T � HV � P � F � , i.e., all paths in (a) plus paths with one or both

ends at the projection of a terminal on an edge of T .

(c) Considering all augmenting paths a � u � v � for which u � v � � T � A � � VH � P � F � , i.e., all paths in (b) plus paths with one

or both ends at the projection of a terminal on an already added augmenting path.

The (c) version of the greedy MRTA algorithm gave almost identical results to the (b) version in experiments with 1 � 20%

wirelength budget and 5 � 20 terminals, and therefore we omit its results.

We also implemented versions (a) and (b) for the Best-Drop and ILP algorithms. Version (b) of the ILP algorithm corre-

sponds to solving exactly the integer program formulation (4); version (a) is based on the same formulation written for the

smaller set of allowed augmenting paths. Formulation (5), which allows the use of arbitrary paths on the Hanan grid and

insertion of new Steiner points, was not used in the experiments due to the prohibitive running time required by its solution.

The integer program (4) was solved using the CPLEX 7.0 MIP optimizer, the other three algorithms were implemented

in C/C++ and compiled with g++ version 2.95. All experiments were conducted on a SUN SPARC Ultra-10 workstation

with 256MB memory. For each instance size n � � 5 � 10 � 50 � 100 � 500 � 1000 � we generated 100 instances uniformly at random

from a 10 � 000 � 10 � 000 grid. For each instance, a Steiner minimum tree is constructed using the ER heuristic [1] and then

augmented (assuming no routing obstacles) by the four compared algorithms. Table I shows the statistics on the number of

nodes (including wire turns), number of leaves, and total wirelength of the initial trees.

Table II gives the number of augmenting paths, percentage of biconnected tree edges, and runtime for versions (a) and (b) of

the greedy MRTA, Best-Drop, and ILP algorithms. The results show that (b)-versions of the algorithms achieve significantly

better solution quality than (a)-versions for small wirelength increased budgets; in the case of the greedy MRTA algorithm

version (b) is better than version (a) by as much as 18 � 54%. Table III gives the results obtained by the greedy MRTA,

Best-Drop, Genetic, and ILP algorithms when there is no restriction on the added wirelength.

The results show that the greedy MRTA algorithm is the fastest of the compared algorithms, scaling up to 1 � 000 sinks.

For 1 � 20% wirelength budgets the greedy MRTA algorithm is also outperforming the other heuristics in solution quality,

finding solutions within 1-2% of the optimum computed by CPLEX for all wirelength budgets. The much slower Best-Drop

and Genetic heuristics outperform greedy MRTA only for unlimited wirelength budget and small number of sinks, and then

4We have modified the code in [11] to enforce a specified wirelength budget.
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#Sinks #Nodes #Leaves Length

5 9.09 3.60 14801.50

10 19.68 6.32 23926.63

20 40.63 10.85 34660.11

50 103.77 25.38 54305.56

100 207.99 50.17 75806.31

200 417.24 98.19 106486.30

500 1045.48 241.68 167176.87

1000 2087.66 480.93 234839.26

TABLE I

INITIAL ROUTING STATISTICS (AVERAGES OVER 100 RANDOM INSTANCES OF EACH SIZE).

by a very small amount.

The tradeoff curves between biconnectivity and wirelength increase achieved by the ILP, Greedy, and Best-Drop algorithms

on random testcases with 20 sinks are given in Figure 5. The tradeoff curves are well above the 1:1 tradeoff achieved by wire

doubling, which was included in the figure as a comparison term. For wirelength increase budgets of around 20%, the achieved

biconnectivity is more than 3 times larger than the increase in wirelength, and therefore the decrease in open critical achieved

by biconnectivity is very likely much greater than the increase in short critical area due to the extra wirelength. Figure 6 shows

the tradeoff curves between optimum biconnectivity and the higher wirelength increase caused by the presence of obstacles

(again for random 20 sink nets). The tradeoff remains favorable to overall manufacturing reliability improvements even when

augmenting paths have an average detour length of as much as 50%.

As expected, MRTA biconnectivity increases with the wirelength budget, e.g., it increases from 34 � 19% under 1% wire-

length budget to 87 � 73% under 20% wirelength budget for 1000 sink instances. Interestingly, the biconnectivity also increases

significantly with the number of sinks, e.g., from 1 � 12% for 5 sinks to 34 � 19% for 1000 sinks for 1% wirelength budget. Table

IV shows statistics for the first augmenting path added by greedy MRTA. This path has a ratio between biconnected length

and wirelength increase as large as 80 for 1,000 sinks, and already achieves a significant improvement in routing reliability at

a very low wirelength increase cost.

The impact of non-tree augmentation on maximum delay and delay variation due to process variability was verified by

running SPICE simulation on two sets of 14 instances each. The first set consisted of non-critical nets extracted from a

recent industry design and routed by Cadence WarpRouter using minimum-area optimization, while the second set consisted

of randomly generated nets routed using the timing-driven P-Tree algorithm [13] with buffer insertion disabled and identical

sink required-arrival times. Each interconnect was represented by a Π model and driven by a 1 � 8V voltage source with a

ramped input signal of 150ps slew time. 50% delay from the source to each sink was simulated based on 180nm ITRS

predictive technology model beta version [9] with the following parameters: unit wire resistance r � 0 � 040Ω � µm, unit wire

capacitance c � 0 � 259 f F � µm, sink capacitance ct � 63 � 358 f F and source driving resistance Rb � 139 � 434Ω.
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Greedy(a) Greedy(b) Best-Drop(a) Best-Drop(b) ILP(a) ILP(b)

WL #Sinks #AUG %BI CPU #AUG %BI CPU #AUG %BI CPU #AUG %BI CPU #AUG %BI CPU #AUG %BI CPU

Incr. EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC EDGE CONN SEC

5 0.45 1.12 0.00 0.63 2.12 0.00 0.45 1.12 0.04 0.51 1.12 0.09 0.01 1.12 0.00 0.15 2.12 0.00

10 1.66 1.07 0.00 2.76 1.85 0.00 1.56 1.01 2.88 2.03 1.01 27.71 0.06 1.07 0.00 0.40 1.85 0.00

20 2.82 1.31 0.01 4.74 2.18 0.05 2.76 1.07 102.93 5.00 2.04 6976.65 0.28 1.32 0.01 1.25 2.19 0.18

50 4.75 2.01 0.08 7.54 2.86 1.23 - - - - - - 1.51 2.04 0.38 - - -

1% 100 6.04 2.79 0.42 9.46 3.84 11.59 - - - - - - 2.43 2.86 2.97 - - -

200 5.69 17.73 1.59 - - - - - - - - - - - - - - -

500 8.59 29.57 15.08 - - - - - - - - - - - - - - -

1000 11.26 34.19 78.12 - - - - - - - - - - - - - - -

5 0.79 2.12 0.00 1.07 3.14 0.00 0.76 2.12 0.07 0.90 2.31 0.16 0.01 2.12 0.00 0.16 3.14 0.00

10 2.20 2.21 0.00 3.33 3.29 0.00 2.12 2.04 3.96 2.67 2.04 37.70 0.13 2.21 0.00 0.58 3.29 0.00

20 3.42 2.92 0.01 5.16 4.26 0.06 3.46 2.14 129.56 4.00 3.64 5843.05 0.63 2.93 0.02 1.79 4.28 0.25

50 5.45 4.81 0.09 7.85 6.11 1.27 - - - - - - 1.94 4.91 0.42 - - -

2% 100 5.61 19.49 0.38 9.24 21.18 11.23 - - - - - - 2.00 19.57 3.10 - - -

200 7.15 33.77 1.97 - - - - - - - - - - - - - - -

500 10.23 42.34 17.79 - - - - - - - - - - - - - - -

1000 16.28 45.14 112.15 - - - - - - - - - - - - - - -

5 1.48 5.56 0.00 1.78 6.31 0.00 1.49 5.09 0.14 1.65 5.32 0.30 0.06 5.56 0.00 0.20 6.31 0.00

10 2.89 6.35 0.00 3.96 8.29 0.00 2.99 5.37 5.40 3.46 5.52 48.37 0.41 6.36 0.00 1.10 8.32 0.0

20 4.07 9.25 0.01 6.25 11.69 0.07 4.56 6.36 163.72 7.00 8.00 6691.95 1.42 9.56 0.03 2.37 12.10 0.29

50 5.48 34.17 0.09 8.37 35.55 1.32 - - - - - - 1.97 34.95 0.46 - - -

5% 100 7.23 46.95 0.48 11.48 48.16 13.67 - - - - - - 3.35 47.90 3.52 - - -

200 10.42 55.74 2.82 - - - - - - - - - - - - - - -

500 18.28 59.81 31.54 - - - - - - - - - - - - - - -

1000 31.91 61.29 218.11 - - - - - - - - - - - - - - -

5 2.12 11.30 0.00 2.31 12.24 0.00 2.11 9.89 0.20 2.26 10.44 0.41 0.13 11.30 0.00 0.31 12.30 0.00

10 3.58 14.41 0.00 4.48 17.95 0.00 3.92 10.84 7.11 4.48 12.04 61.73 0.91 14.46 0.01 1.67 18.11 0.02

20 4.26 30.53 0.01 5.98 35.56 0.06 4.98 23.68 173.12 6.00 28.25 5516.75 1.52 31.15 0.04 2.49 36.32 0.33

50 6.60 56.95 0.11 9.76 58.58 1.51 - - - - - - 2.96 58.04 0.58 - - -

10% 100 10.05 65.87 0.66 14.22 66.76 16.69 - - - - - - 5.55 67.00 5.81 - - -

200 15.99 71.33 4.28 - - - - - - - - - - - - - - -

500 33.28 73.56 56.77 - - - - - - - - - - - - - - -

1000 62.14 74.49 420.91 - - - - - - - - - - - - - - -

5 2.30 23.90 0.00 2.66 27.21 0.00 2.58 21.41 0.24 2.79 23.61 0.50 0.36 23.90 0.00 0.66 27.20 0.00

10 3.70 38.13 0.00 5.07 43.96 0.01 4.11 32.87 7.19 4.58 35.97 58.41 1.32 39.01 0.01 1.93 45.10 0.03

20 5.45 64.94 0.01 7.49 66.92 0.08 6.21 58.30 195.86 6.00 61.11 5879.08 2.15 66.64 0.05 3.36 68.54 0.47

50 10.12 77.96 0.16 37.94 79.13 5.48 - - - - - - 5.10 79.56 0.93 - - -

20% 100 17.05 83.29 1.10 123.99 83.88 133.99 - - - - - - 10.56 84.44 8.62 - - -

200 34.08 85.86 8.98 - - - - - - - - - - - - - - -

500 82.16 87.15 137.62 - - - - - - - - - - - - - - -

1000 164.74 87.73 1093.20 - - - - - - - - - - - - - - -

TABLE II

COMPARISON OF GREEDY MRTA, BEST-DROP, AND CPLEX ILP (ALL RESULTS ARE AVERAGES OVER 100 RANDOM INSTANCES). (A) VERSIONS

USE ONLY TERMINALS OR STEINER POINTS OF T AS ENDPOINTS OF AUGMENTATION PATHS, (B) VERSIONS CAN USE ALL HANAN GRID VERTICES

THAT ARE ON TREE EDGES.
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Greedy(a) Best-Drop(a) Genetic(a) ILP(a)

WL #SINKS #AUG %WL CPU #AUG %WL CPU #AUG %WL CPU #AUG %WL CPU

Budget EDGE INC SEC EDGE INC SEC EDGE INC SEC EDGE INC SEC

5 3.76 78.33 0.00 3.35 77.90 0.26 3.52 77.86 0.01 1.07 77.86 0.00

10 6.46 59.70 0.00 5.97 58.19 7.54 6.10 57.97 0.52 1.79 57.97 0.01

20 10.93 46.82 0.03 10.25 45.77 226.71 9.81 45.59 4.43 3.21 45.58 0.07

50 26.20 40.16 0.41 - - - 20.85 39.44 37.35 7.33 38.64 0.98

100% 100 51.10 36.27 3.26 - - - 39.48 39.30 181.08 13.30 35.11 8.21

200 100.49 34.10 26.12 - - - - - - - - -

500 245.63 32.85 405.45 - - - - - - - - -

1000 484.47 32.27 3160.24 - - - - - - - - -

TABLE III

COMPARISON OF GREEDY MRTA, BEST-DROP, GENETIC, AND ILP ALGORITHMS FOR UNLIMITED WIRELENGTH BUDGET (AVERAGES OVER 100

RANDOM INSTANCES).
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Fig. 5. Tradeoff curves between average biconnectivity and average wirelength increase (both measured as percentage of the original tree length) for the

ILP, Greedy, and Best-Drop algorithms on random nets with 20 sinks. The 1:1 tradeoff achieved by wire doubling is included as a reference.
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Fig. 6. Tradeoff curves between optimum biconnectivity and wirelength increase (both measured as percentage of the original tree length) for varying

average detours caused by obstacles (random nets with 20 sinks).

For evaluating robustness to process variability we used an experiment which models systematic variation sources such as

lens aberrations which cover 5-10mm ranges [16], [15], i.e., ranges that are larger than those covered today by unbuffered

interconnect. Assuming 100% wire width correlation, we ran our simulations under three scenarios: nominal wire width, wire

width reduced by dw � 6 � 67%, and wire width increased by dw � 6 � 67%. For each scenario we computed unit length wire

capacitance using the formulas in [20] for parallel lines between two planes, including area, fringe, and coupling capacitances.

The maximum 50% sink delay and its variation in percents are reported for the two sets of test instances in Tables V and VI.

In these tables, the results under 0% wirelength budget correspond to the initial (area, respectively timing-optimized) routing

trees.

Results for non-critical nets (Table V) show that non-tree augmentation continuously reduces maximum source-to-sink

delays in most of the instances in our experiments (except net10). An average of 28 � 26%, and maximum of 62 � 15% delay

reduction can be achieved (for net12) with 20% wirelength budget. Non-tree augmentation also decreases the effect of

process variation in most non-critical instances (except net4). An average of 13 � 79%, and maximum of 28 � 86% delay variation

reduction is observed (for net12) when comparing nominal wire width w and w � dw wire width. Results for timing-optimized

interconnect trees (Table VI) show that non-tree augmentation still decreases the maximum source-to-sink delay by an average

of 3 � 72% and a maximum of 39 � 04%. However, in some instances maximum source-to-sink delay can increase by as much as
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6 � 47% due to non-tree augmentation. Non-tree augmentation decreases process variation in all the timing-optimized instances,

with an average of 3 � 24% and a maximum of 12 � 17%.

An explanation of the above results is that non-tree augmenting paths can decrease interconnect source-to-sink delay by

forming shorter connections, but can also increase interconnect delay due to increased capacitance.5 The probability for non-

tree augmentation to form a shorter connection between the source and a critical sink is smaller in timing-optimized intercon-

nect, which results in smaller improvements in maximum delay and delay variability. In general our non-tree augmentation

scheme achieves better improvements in interconnect delay and variability for non-critical, area-optimized interconnects.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed the introduction of redundant interconnect as a post-routing optimization for manufacturing

yield, reliability, and process variation robustness improvement. We have formulated the problem as a variant of the clas-

sic NP-hard 2-edge connectivity augmentation and proposed both practical integer program formulations and a well-scaling

greedy algorithm which comes within 1-2% of the optimum on the average. Experiments on both randomly generated and

industry testcases show that our methods achieve a significant increase in reliability (as measured by the percentage of bicon-

nected tree edges) with very small increases in wirelength. Furthermore, SPICE simulations show that redundant interconnect

also decreases maximum sink delay and delay variation due to process variability.

Our ongoing research explores simultaneous consideration of both open and short critical area in the augmentation process

and chip level evaluation of the proposed algorithms. In particular, we are experimenting with modified augmenting path

costs that take into account (1) the increase in short critical area due to routing extra wire adjacent to existing nets, and (2)

routing congestion information. We are also studying optimal net ordering heuristics to be used in conjunction with the greedy

augmentation algorithm, as well as extensions of the greedy algorithm to simultaneous augmentation of an entire set of nets

(e.g., extracted from a sliding window of fixed size).
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WIRELENGTH INCREASE, PERCENTAGE OF BICONNECTED TREE EDGES, lbridgesG � u � v ��� la � u � v � RATIO, AND CPU RUNTIME DUE TO FIRST MRTA

AUGMENTATION PATH (AVERAGES OVER 100 RANDOM INSTANCES).
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WLB 0% 1% 5% 20%

net1 1551.1 � 4.13% 1564.3 1478.9 873.3 � 3.78%

net2 366.3 � 3.55% 374.7 327.2 345.1 � 2.89%
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net14 562.5 � 3.91% 558.4 545.5 263.4 � 2.66%

TABLE V

MAXIMUM SPICE SINK DELAYS (ns) AND DELAY VARIATIONS (PERCENTS) UNDER NOMINAL AND UNIFORMLY 6 � 67% INCREASED/DECREASED

WIRE WIDTHS FOR 14 NETS WITH 52–56 SINKS EXTRACTED FROM AN INDUSTRY DESIGN. INITIAL TREES ARE CONSTRUCTED USING CADENCE

WARPROUTER USING MINIMUM-AREA OPTIMIZATION.
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