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Abstract. The presence of genotyping errors can invalidate statistical
tests for linkage and disease association, particularly for methods based
on haplotype analysis. Becker et al. have recently proposed a simple
likelihood ratio approach for detecting errors in trio genotype data. Un-
der this approach, a SNP genotype is flagged as a potential error if the
likelihood associated with the original trio genotype data increases by a
multiplicative factor exceeding a user selected threshold when the SNP
genotype under test is deleted. In this paper we give improved error de-
tection methods using the likelihood ratio test approach in conjunction
with likelihood functions that can be efficiently computed based on a
Hidden Markov Model of haplotype diversity in the population under
study. Experimental results on both simulated and real datasets show
that proposed methods achieve significantly improved detection accu-
racy compared to previous methods with highly scalable running time.

1 Introduction

Despite recent advances in typing technologies and calling algorithms, significant
error levels remain present in SNP genotype data (see [1] for a recent survey). A
recent study of dbSNP genotype data [2] found that as much as 1.1% of about
20 million SNP genotypes typed multiple times have inconsistent calls, and are
thus incorrect in at least one dataset. When genotype data is available for related
individuals, some errors become detectable as Mendelian inconsistencies (MIs).
However, a large proportion of errors (as much as 70% in mother-father-child
trio genotype data [3, 4]) remains undetected by Mendelian consistency analysis.

Since even low error levels can lead to substantial losses in the statistical
power of linkage and association studies [5–7], error detection remains a critical
task in genetic data analysis. This task becomes particularly important in the
context of association studies based on haplotypes instead of single locus mark-
ers, where error rates as low as 0.1% may invalidate some statistical tests for
disease association [8].

An indirect approach to handling genotyping errors is to explicitly model
them in downstream statistical analyses, see, e.g., [9, 10]. While powerful, this
approach often leads to complex statistical models and impractical runtimes for
large datasets such as those generated by current large-scale association studies.
A more practical approach is to perform genotype error detection as a separate



analysis step following genotype calling. SNP genotypes flagged as putative er-
rors can then be excluded from downstream analyses or can be retyped when
high quality genotype data is required. Error detection is currently implemented
in all widely-used software packages for pedigree genotype data analysis such
as SimWalk2 [11] and Merlin [12], which detect Mendelian consistent errors by
independently analyzing each pedigree and identifying loci of excessive recom-
bination. Unfortunately, these methods are not appropriate for error detection
in genotype data from unrelated individuals or small pedigrees such as mother-
father-child trios, which require using population level linkage information.

In this paper we propose novel methods for genotype error detection extend-
ing the likelihood ratio error detection approach recently proposed by Becker et
al. [13]. While we focus on detecting errors in trio genotype data, our proposed
methods can be applied with minor modifications to genotype data coming from
unrelated individuals and small pedigrees other than trios Unlike Becker et al.,
who adopt a window-based approach and rely on creating a short list of frequent
haplotypes within each window, we use a hidden Markov model (HMM) to repre-
sent frequencies of all haplotypes over the set of typed loci. Similar HMMs have
been successfully used in recent works [14–17] for genotype phasing and disease
association. Two limitations of previous uses of HMMs in this context have been
the relatively slow (typically EM-based) training on genotype data, and the in-
ability to exploit available pedigree information. We overcome these limitations
by training our HMM on haplotypes inferred using the pedigree-aware ENT
phasing algorithm of [18], based on entropy minimization.

Becker et al. [13] use the maximum phasing probability of a trio genotype as
the likelihood function whose high sensitivity to single SNP genotype deletions
signals potential errors. The former is heuristically approximated by a compu-
tationally expensive search over quadruples of frequent haplotypes inferred for
each window. When all haplotype frequencies are implicitly represented using
an HMM, we show that computing the maximum trio phasing probability is in
fact hard to approximate in polynomial time. Despite this result, we are able
to significantly improve both detection accuracy and speed compared to [13] by
using alternate likelihood functions such as Viterbi probability and the total trio
genotype probability. We show that these alternate likelihood functions can be
efficiently computed for small pedigrees such as trios, with a worst-case runtime
increasing linearly in the number of SNP loci and the number of trios. Further
improvements in detection accuracy are obtained by combining likelihood ratios
computed for different subsets of trio members. Empirical experiments show that
this technique is very effective in reducing false positives within correctly typed
SNP genotypes for which the same locus is mistyped in related individuals.

The rest of the paper is organized as follows. We introduce basic notations
in Section 2 and describe the structure of the HMM used to represent haplotype
frequencies in Section 3. Then, in Section 4 we present the likelihood ratio frame-
work for error detection, and in Section 5 we describe three likelihood functions
that can be efficiently computed using the HMM. Finally, we give experimental
results assessing the error detection accuracy of our methods on both simulated
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Fig. 1. The structure of the Hidden Markov Model for n=5 SNP loci and K=4 founders.

and real datasets in Section 6, and conclude with ongoing research directions in
Section 7.

2 Preliminaries

We start by introducing the basic definitions and notations used throughout the
paper. We denote the major and minor alleles at a SNP locus by 0 and 1. A SNP

genotype represents the pair of alleles present in an individual at a SNP locus.
Possible SNP genotype values are 0/1/2/?, where 0 and 1 denote homozygous
genotypes for the major and minor alleles, 2 denotes the heterozygous genotype,
and ? denotes missing data. SNP genotype g is said to be explained by an ordered
pair of alleles (σ, σ′) ∈ {0, 1}2 if g =?, or σ = σ′ = g when g ∈ {0, 1}, or σ 6= σ′

when g = 2.
We denote by n the number of SNP loci typed in the population under study.

A multi-locus genotype (or simply genotype) is a 0/1/2/? vector G of length n,
while a haplotype is a 0/1 vector H of length n. An ordered pair (H, H ′) of
haplotypes explains multi-locus genotype G iff, for every i = 1, . . . , n, the pair
(H(i), H ′(i)) explains G(i). A trio genotype T = (Gm, Gf , Gc) consists of multi-
locus genotypes for the mother, father, and child of a nuclear family. An ordered
4-tuple (H1, H2, H3, H4) of haplotypes is said to explain a trio T = (Gm, Gf , Gc)
iff (H1, H2) explains Gm, (H3, H4) explains Gf , and (H1, H3) explains Gc.

3 Hidden Markov Model

The HMM used to represent haplotype frequencies has a similar structure to
HMMs recently used in [14–17] (see Figure 1). This structure is fully determined
by the number of SNP loci n and a user-specified number of founders K (typically
a small constant, we used K = 7 in our experiments). Formally, the HMM is
specified by a triple M = (Q, γ, ε), where Q is the set of states, γ is the transition
probability function, and ε is the emission probability function. The set of states
Q consists of disjoint sets Q0 = {q0}, Q1, Q2, . . . , Qn, with |Q1| = |Q2| = · · · =
|Qn| = K, where q0 denotes the start state and Qj , 1 ≤ j ≤ n, denotes the set



of states corresponding to SNP locus j. The transition probability between two
states a and b, γ(a, b), is non-zero only when a and b are in consecutive sets. The
initial state q0 is a silent state, while every other state q emits allele σ ∈ {0, 1}
with probability ε(q, σ). The probability with which M emits a haplotype H
along a path π starting from q0 and ending at a state in Qn is given by:

P (H, π|M) = γ(q0, π(1))ε(π(1), H(1))
∏n

i=2
γ(π(i − 1), π(i))ε(π(i), H(i)) (1)

In [14, 15], similar HMMs were trained from genotype data using variants
of the EM algorithm. Since EM-based training is generally slow and cannot be
easily modified to take advantage of phase information that can be inferred from
available family relationships, we adopted the following two-step approach for
training the HMM. First, we use a highly scalable algorithm based on entropy
minimization [18] to infer haplotypes for all individuals in the sample. The phas-
ing algorithm can handle genotypes related by arbitrary pedigrees, and has been
shown to yield high phasing accuracy as measured by the so called switching

error. In the second step we use the classical Baum-Welch algorithm to train
the HMM based on the inferred haplotypes.

4 Likelihood ratio approach to error detection

Our detection methods are based on the likelihood ratio approach of Becker et
al. [13]. We call likelihood function any function L assigning non-negative real-
values to trio genotypes, with the further constraint that L is non-decreasing
under data deletion. Let T = (Gm, Gf , Gc) denote a trio genotype, x ∈ {m, f, c}
denote one of the individuals in the trio (mother, father, or child), and i denote
one of the n SNP loci. The trio genotype T(x,i) is obtained from T by marking
SNP genotype Gx(i) as missing. The likelihood ratio of SNP genotype Gx(i)

is defined as
L(T(x,i))

L(T ) . Notice that, by L’s monotony under data deletion, the

likelihood ratio is always greater or equal to 1. A SNP genotype Gx(i) will be
flagged as a potential error whenever the corresponding likelihood ratio exceeds
a user specified detection threshold t.

The likelihood function used by Becker et al. [13] is the maximum trio phasing
probability,

L(T ) = max
(H1,H2,H3,H4)

P (H1)P (H2)P (H3)P (H4) (2)

where the above maximum is computed over all 4-tuples (H1, H2, H3, H4) of
haplotypes that explain T . The use of maximum trio phasing probability as
likelihood function is intuitively appealing, since one does not expect a large
increase in this probability when a single SNP genotype is deleted.

The computational complexity of computing the maximum trio phasing prob-
ability L(T ) depends on the encoding used to represent haplotype frequencies.
When all N = 2n haplotype frequencies are given explicitly, computing L(T )
can be trivially done in O(N4) time. Unfortunately this representation can only
be used for a small number n of SNP loci. To maintain practical running time,



Becker et al. [13] adopted a heuristic approach that relies on creating a short
list of haplotypes with frequency exceeding a certain threshold (computed using
the FAMHAP software package [19]) followed by a pruned search over 4-tuples
of haplotypes from the list. Due to the high computation cost of the search al-
gorithm, the list of haplotypes must be kept very short (between 50 and 100
for the experiments reported in [13]), which makes the approach applicable only
for short windows of consecutive SNP loci. This limits the amount of linkage
information that could be used in error detection, explaining at least in part
the high number of false positives observed in [13] within correctly typed SNP
genotypes located in the neighborhood SNP genotypes that are mistyped in the
same individual.

The HMM described in previous section provides a compact implicit rep-
resentation of all haplotype frequencies that can be used for large numbers of
SNP loci. The problem of computing L(T ) based on the HMM is formalized as
follows:

HMM-based maximum trio phasing probability: Given an HMM model
M of haplotype diversity with n SNP loci and K founders and a trio genotype
T = (Gm, Gf , Gc), compute

L(T |M) = max
(H1,H2,H3,H4)

P (H1|M)P (H2|M)P (H3|M)P (H4|M) (3)

where the maximum is computed over all 4-tuples (H1, H2, H3, H4) of haplotypes
that explain T .

Computing P (H |M) for a given haplotype H can be easily done in O(nK)
time by using a standard forward algorithm, and thus the probability of any
given 4-tuple (H1, H2, H3, H4) that explains T can also be computed within the
same time bound. Unfortunately, as stated in the following theorem whose proof
we omit due to space constraints, approximating the HMM-based maximum
trio phasing probability is hard under some standard computational complexity
assumption.1

Theorem 1. For every ε > 0, L(T |M) cannot be approximated within a factor

of O(n
1
4−ε) for any ε > 0, unless ZPP=NP.

In next section we propose alternative likelihood functions that are efficiently
computable based on an HMM model of haplotype diversity, even for very large
numbers of SNP loci.

1 A proof similar to that of Theorem 1 shows that, when haplotype frequencies are
represented using an HMM, computing the maximum phasing probability for a single

multi-locus genotype is hard to approximate within a factor of O(n
1
2
−ε) for any

ε > 0, unless ZPP=NP, thus solving a problem left open in [15].



5 Efficiently computable likelihood functions

In this section we consider three alternatives to the likelihood function used in
[13], and describe efficient algorithms for computing them given an HMM model
of haplotype diversity.

5.1 Viterbi probability

The probability with which the HMM M emits four haplotypes (H1, H2, H3, H4)
along a set of 4 paths (π1, π2, π3, π4) is obtained by a straightforward extension
of (1). The first proposed likelihood function is the Viterbi probability, defined,
for a given trio genotype T , as the maximum probability of emitting haplotypes
that explain T along four HMM paths. Viterbi probability can be computed
using a “4-path” extension of the classical Viterbi algorithm as follows.

For every 4-tuple q = (q1, q2, q3, q4) ∈ Q4
j , let Vf (j; q) denote the maximum

probability of emitting alleles that explain the first j SNP genotypes of trio T
along a set of 4 paths ending at states (q1, q2, q3, q4) (we will refer to these values
as the forward Viterbi values). Also, let Γ (q′, q) = γ(q′1, q1)γ(q′2, q2)γ(q′3, q3)γ(q′4, q4)
be the probability of transition in M from the 4-tuple q′ ∈ Q4

j−1 to the 4-tuple

q ∈ Q4
j . Then, Vf (0; (q0, q0, q0, q0)) = 1 and

Vf (j; q) = E(j; q) max
q′∈Q4

j−1

{Vf (j − 1; q′)Γ (q′, q)} (4)

Here, E(j; q) = max(σ1,σ2,σ3,σ4)

∏4
i=1 ε(qi, σi), where the maximum is computed

over all 4-tuples (σ1, σ2, σ3, σ4) that explain T ’s SNP genotypes at locus j.
For a given trio genotype T , the Viterbi probability of T is given by V (T ) =
maxq∈Q4

n
{Vf (n; q)}.

The time needed to compute forward Viterbi values with the above recur-
rences is O(nK8), where n denotes the number of SNP loci and K denotes the
number of founders. Indeed, for each one of the O(K4) 4-tuples q ∈ Q4

j , com-

puting the maximum in (4) takes O(K4) time. A O(K3) speed-up is achieved
by computing, in order:

Pre1(j; q1, q
′

2, q
′

3, q
′

4) = maxq′

1∈Qj
{Vf (j; (q′1, q

′

2, q
′

3, q
′

4))γ(q′1, q1)}
Pre2(j; q1, q2, q

′

3, q
′

4) = maxq′

2∈Qj
{Pre1(j; (q1, q

′

2, q
′

3, q
′

4))γ(q′2, q2)}
Pre3(j; q1, q2, q3, q

′

4) = maxq′

3∈Qj
{Pre2(j; (q1, q2, q

′

3, q
′

4))γ(q′3, q3)}
Vf (j + 1; q) = E(j + 1; q) maxq′

4∈Qj
{Pre3(j; (q1, q2, q3, q

′

4))γ(q′4, q4)}

for each SNP locus j = 1, . . . , n and all 4-tuples (q1, q
′

2, q
′

3, q
′

4) ∈ Qj+1 × Q3
j ,

(q1, q2, q
′

3, q
′

4) ∈ Q2
j+1×Q2

j , (q1, q2, q3, q
′

4) ∈ Q3
j+1×Qj , respectively q = (q1, q2, q3, q4) ∈

Q4
j+1. A similar speed-up idea was used in the context of single genotype phasing

by Rastas et al. [15].
To apply the likelihood ratio test, we also need to compute Viterbi proba-

bilities for trios with one of the SNP genotypes deleted. A näıve approach is to
compute each of these probabilities from scratch using the above O(nK5) algo-
rithm. However, this would result in a runtime that grows quadratically with



the number of SNPs. A more efficient algorithm is obtained by also computing
backward Viterbi values Vb(j; q), defined as the maximum probability of emitting
alleles that explain genotypes at SNP loci j + 1, . . . , n of trio T along a set of
4 paths starting at the states of q ∈ Q4

j . Once forward and backward Viterbi
values are available, the Viterbi probability of a modified trio can be computed
in O(K5) time by using again the above speed-up idea, for an overall runtime of
O(nK5) per trio.

5.2 Probability of Viterbi haplotypes

The Viterbi algorithm described in previous section yields, together with the 4
Viterbi paths, a 4-tuple of haplotypes which we refer to as the Viterbi haplotypes.
Viterbi haplotypes for the original trio can be computed by a standard traceback
algorithm. Similarly, Viterbi haplotypes corresponding to modified trios can be
computed without increasing the asymptotic runtime via a bi-directional trace-
back. The second likelihood function that we considered is the probability of
Viterbi haplotypes, which is obtained by multiplying individual probabilities of
Viterbi haplotypes. The probability of each Viterbi haplotype can be computed
using a standard forward algorithm in O(nK) time. Unfortunately, Viterbi paths
for modified trios can be completely different from each other, and the proba-
bility of each of them must be computed from scratch by using the forward
algorithm. This results in an overall runtime of O(nK5 + n2K) per trio.

5.3 Total trio genotype probability

The third considered likelihood function is the total trio genotype probability,
i.e., the total probability P (T ) with which M emits any four haplotypes that
explain T along any 4-tuple of paths. Using again the forward algorithm, P (T )

can be computed as
∑

q∈Q4
n

p(n; q), where p(0; (q0, q0, q0, q0)) = 1 and

p(j; q) =
∑

q′∈Q4
j

p(j − 1; q′)Γ (q′, q)
∑

(σ1,σ2,σ3,σ4)

4∏

i=1

ε(qi, σi) (5)

The second sum in last equation is computed over all 4-tuples (σ1, σ2, σ3, σ4)
that explain T ’s SNP genotypes at locus j. Using the speed-up techniques from
Section 5.1, we obtain an overall runtime of O(nK5) per trio.

6 Experimental results

6.1 Experimental setup

HMM-based genotype error detection algorithms using the three likelihood func-
tions described in Section 5 were implemented in C++. Since the detection ac-
curacy of the three likelihood functions is very similar, we report here accuracy
results only for the total trio genotype probability.



We tested the performance of our methods on both synthetic datasets and a
real dataset obtained from Becker et al. [13]. Synthetic datasets were generated
following the methodology of [13]. We started from the real dataset in [13], which
consists of 551 trios genotyped at 35 SNP loci spanning a region of 91,391 base
pairs from chromosome 16. The FAMHAP software [19] was used to estimate
the frequencies of the haplotypes present in the population. The 705 haplotypes
that had positive FAMHAP estimated frequencies were used to derive synthetic
datasets with 551 trios as follows. For each trio, four haplotypes were randomly
picked by random sampling from the estimated haplotype frequency distribution.
Two of these haplotypes were paired to form the mother genotype, and the
other two were paired to form the father genotype. We created child genotypes
by randomly picking from each parent a transmitted haplotype (assuming that
no recombination is taking place). To make the datasets more realistic, missing
data was inserted into the resulting genotypes by replicating the missing data
patterns observed in the real dataset.

Errors were inserted to the genotype data using the random allele model [20].
Under this model, we selected each (trio, SNP locus) pair with a probability of
δ (δ was set to 1% in all our experiments). For each selected pair, we picked
uniformly at random one of the non-missing alleles and flipped its value. Similar
detection accuracy was obtained in experiments in which we simulated recom-
bination rates of up to 0.01 between adjacent SNPs, and in experiments where
errors were inserted using the random genotype, heterozygous-to-homozygous,
and homozygous-to-heterozygous error models described in [20].

6.2 Results on synthetic datasets

Following the standard practice, we first removed the trivially detected MI errors
by marking child SNP genotypes involved in MIs as missing (similar results were
obtained by marking all three SNP genotypes as missing).

Figure 2 shows the distributions of log-likelihood ratios (computed using
the total trio genotype probability as likelihood function) for error and non-
error SNP genotypes in both parents and children. These results are based on
averages over 10 synthetic instances of 551 trios typed at 35 SNP loci, with errors
inserted using the random allele model with δ = 1%.

It is known that there is an asymmetry in the amount of information gained
from trio genotype data about children and parent haplotypes: while each of
the two child haplotypes are constrained to be compatible with two genotypes,
only one of the parent haplotypes has the same degree of constraint. This asym-
metry was shown to make errors in children more likely to result in MIs [3, 4].
As shown by the histograms in Figure 2, the asymmetry also results in a much
sharper separation between errors and non-errors in children than in parents.
Surprisingly, the histogram of log-likelihood ratios for non-error SNP genotypes
in children has a significant peak between 3 and 4. Upon inspection, we found
that these SNP genotypes are at loci for which parents have inserted errors. A
similar bias towards higher false positive rates in correctly typed SNP genotypes
for which the same locus is mistyped in related individuals has been noted for
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Fig. 2. Histograms of log-likelihood ratios for parents (left) and children (right) SNP
genotypes, computed based on trios (top) or by using the minimum of uno, duo, and
trio log-likelihood ratios.

other pedigree-based error detection algorithms [21]. To reduce this bias, we
propose a simple technique of combining multiple likelihood ratios computed for
different subsets of trio members. Under this combined approach, henceforth re-
ferred to as TotalProb-Combined, for each SNP genotype we compute likelihood
ratios using the total probability of (a) the trio genotype, (b) the duo genotypes
formed by parent-child pairs, and (c) the individual’s genotype by itself. Like-
lihood ratios (b) and (c) can be computed without increasing the asymptotic
running time via simple modifications of the algorithm in Section 5.3. A SNP
genotype is then flagged as a potential error only if all above likelihood ratios
exceed the detection threshold.

To assess the accuracy of our error detection methods we use receiver op-
erating characteristic (ROC) curves, i.e., plots of achievable sensitivity vs. false
positive rates, where

– the sensitivity is defined as the ratio between the number of Mendelian
consistent errors flagged by the algorithm and the total number of Mendelian
consistent errors inserted; and

– the false positive rate is defined as the ratio between the number of non-errors
flagged by the algorithm and the total number of non-errors.

Figure 3 shows the ROC curves for TotalProb-Combined and for flagging
algorithms that use single log-likelihood ratios computed from the total proba-
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Fig. 3. Comparison with FAMHAP accuracy for parents (left) and children (right).

bility of uno/duo/trio genotypes. We also included ROC curves for two versions
of the algorithm of [13], which test one SNP genotype at a time (FAMHAP-
1) or simultaneously test the mother/father/child SNP genotypes at a locus
(FAMHAP-3). The results show that simultaneous testing yields low detection
accuracy, particularly in parents, and it is therefore not advisable. The combined
algorithm yields the best accuracy of all compared methods. The improvement
over the trio-based version is most significant in parents, where, surprisingly,
uno and duo log-likelihood ratios appear to be more informative than the trio
log-likelihood ratio.

6.3 Results on real data from [13]

For simplicity, in previous section we used the same detection threshold in both
children and parents. However, histograms in Figure 2 suggest that better trade-
offs between sensitivity and false positive rate can be achieved by using differen-
tial detection thresholds. For the results on the real dataset from Becker et al.
[13] (Table 1) we independently picked parent and children thresholds by find-
ing the minimum detection threshold that achieves false positive rates of 0.1-1%
under log-likelihood ratio distributions of simulated data.

Unfortunately, for this dataset we do not know all existing genotyping errors.
Becker et al. resequenced all trio members at a number of 41 SNP loci flagged
by their FAMHAP-3 method with a detection threshold of 104. Of the 41 × 3
resequenced SNP genotypes, 26 (12 in children and 14 in parents) were identified
as being true errors, 90 were confirmed as originally correct. The error status
of remaining 7 resequenced SNP genotypes is ambiguous due to missing calls in
either the original or resequencing data. The “True Positive” columns in Table
1 give the number of TotalProb-Combined flags among the 26 known errors, the
“False Positive” columns give the number of flags among the 90 known non-
errors, and the “Unknown Signals” columns give the number flags among the
57,739 SNP genotypes for which the error status is not known (since resequencing
was not performed or due to missing calls). With a predicted false positive rate



Total Signals True Positives False Positives Unknown Signals
FP rate 1% 0.5% 0.1% 1% 0.5% 0.1% 1% 0.5% 0.1% 1% 0.5% 0.1%

Parents 218 127 69 9 9 8 1 0 0 208 118 61
Children 104 74 24 11 11 11 3 3 2 90 60 11

Total 322 201 93 20 20 19 4 3 2 298 178 72

Table 1. Results of TotalProb-Combined on Becker et al. dataset.

of 0.1%, TotalProb-Combined detects 11 out of the 12 known errors in children,
and 8 out of the 14 known errors in parents, with only 2 false positives (both
in children). TotalProb-Combined also flags 72 SNP genotypes with unknown
error status, 61 of which are in parents. We conjecture that most of these are
true typing errors missed by FAMHAP-3, which, as suggested by the simulation
results in Figure 3, has very poor sensitivity to errors in parent genotypes. We
also note that the number of Mendelian consistent errors in parents is expected
to be more than twice higher than the number of Mendelian consistent errors
in children, due on one hand to the fact that there are twice more parents than
children and on the other hand to the higher probability that errors in parents
remain undetected as Mendelian inconsistencies [3, 4].

7 Conclusions

In this paper we have proposed high-accuracy methods for detection of errors
in trio genotype data based on Hidden Markov Models of haplotype diversity.
The runtime of our methods scales linearly with the number of trios and SNP
loci, making them appropriate for handling the datasets generated by current
large-scale association studies. In ongoing work we are exploring the use of
locus dependent detection thresholds, methods for assigning p-values to error
predictions, and iterative methods which use maximum likelhood to correct MIs
and SNP genotypes flagged with a high detection threshold, then recompute log-
likelihoods to flag additional genotypes. Finally, we are exploring integration of
population-level haplotype frequency information with typing confidence scores
for further improvements in error detection accuracy, particularly in the case of
unrelated genotype data.
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