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1 Introduction

Recent advances in Single Nucleotide Polymorphism (SNP) genotyping tech-
nologies have made possible large scale genome-wide association studies that
promise to uncover the genetic basis of complex human diseases. The validity
of associations uncovered by these studies critically depends on the accuracy of
the genotype data. Despite recent progress in genotype calling algorithms, SNP
genotyping errors remain present at levels that can invalidate statistical test for
disease association, particularly for methods based on haplotype analysis. Fur-
thermore, since causal SNPs are unlikely to be typed directly due to the limited
coverage of current genotyping platforms, imputation of genotypes at untyped
SNP loci has recently emerged as a powerful technique for increasing the power
of association studies [8, 10, 12, 7].

In this poster we introduce GEDI, a software package for Genotype Error

Detection and Imputation of genotypes at untyped SNP loci based on reference
haplotypes such as those available in HapMap. Detection of genotyping errors
and imputation of missing genotypes is based on multi-locus genotype likelihoods
efficiently computed using a Hidden Markov Model (HMM) that captures the
Linkage Disequilibrium (LD) observed in the population under study. With a
runtime that scales linearly both in the number of markers and the number of
typed individuals, GEDI is able to handle very large datasets while achieving
high accuracy rates for both error detection and imputation.

2 Methods

At the core of GEDI is a left-to-right HMM used to represent haplotype frequen-
cies in the underlying population [5]. Our HMM has a structure similar to that of
models recently used for other haplotype analysis problems including genotype
phasing, testing for disease association, and imputation [6, 8–11]. The HMM has
K states for every SNP locus, where K is a user-specified parameter (typically
a small constant, we used K = 7 in our experiments). Although each state can
emit each allele with non-zero probability, during model training emission prob-
abilities of most states are strongly biased towards one allele or another. Unlike
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the models in [8, 10], which estimate a single recombination rate for every pair
of consecutive SNP loci, our model has independent transition probabilities for
all pairs of states corresponding to consecutive SNP loci. All model parameters
(emission and transition probabilities) are estimated from haplotype data using
the classical Baum-Welch algorithm [1]. Intuitively, the HMM represents a num-
ber of K founder haplotypes along high-probability “horizontal” paths of states,
while capturing observed recombinations between pairs of founder haplotypes
via probabilities of “non-horizontal” transitions.

For imputation of genotypes at untyped SNP loci, HMM training must be
done using haplotypes from a reference panel (such as HapMap) that includes
both the typed SNPs and the SNPs to be imputed. For genotype error detection
and imputation of missing genotypes at typed SNP loci the training can be done
based either on reference haplotypes or on haplotypes inferred from the available
genotype data for the population under study. The latter option is to be preferred
particularly when genotype data is available for families of related individuals,
which enables high accuracy haplotype inference. To facilitate HMM training
when only genotype data is available, GEDI automatically performs haplotype
inference using the highly scalable ENT phasing algorithm of [4].

We denote by 0 and 1 the major and minor alleles at every SNP locus, by 0, 1,
and 2 the three possible SNP genotypes (homozygous major/minor, respectively
heterozygous), and by ’?’ a missing SNP genotype. The probability of a multi-
locus haplotype H ∈ {0, 1}n under a trained HMM model M , denoted P (H |M),
is the sum over all possible HMM paths π of length n of the joint probability that
M follows path π and emits H . P (H |M) can be computed in O(nK2) time using
the standard forward algorithm. Similarly, the probability under M of a mul-
tilocus genotype G ∈ {0, 1, 2, ?}n is given by P (G|M) =

∑

P (H |M)P (H ′|M),
where the sum is over all pairs of haplotypes (H, H ′) compatible with G, and can
be computed efficiently in O(nK3) time using an optimized two-path version of
the forward algorithm [9].

Let Ggi←x denote the multilocus genotype obtained from G by replacing
the i-th SNP genotype with x, where x ∈ {0, 1, 2}. After HMM training, GEDI
computes all probabilities P (Ggi←x|M) for i = 1, . . . , n and x ∈ {0, 1, 2}. This
is done in O(nK3) time per multilocus genotype using the speed-up idea of [9]
in combination with a forward-backward algorithm. For a missing genotype gi

imputation is done by replacing gi with x∗ = argmaxx∈{0,1,2}P (Ggi←x|M). For
each non-missing genotype gi, GEDI computes the log-likelihood ratio

log

(

maxx∈{0,1,2} P (Ggi←x|M)

P (G|M)

)

Genotype gi is replaced by x∗ = argmaxx∈{0,1,2}P (Ggi←x|M) and flagged as
a potential error whenever the log-likelihood ratio exceeds either a global or
locus-specific detection threshold specified by the user.

GEDI also implements extensions of the above error detection and imputa-
tion methods to the case when the input is genotype data of related individuals.
In this case testing/imputation is still done one SNP genotype at a time, but



imputation probabilities and log-likelihood ratios are computed over genotype
data of entire mother-father-child trios (see [5] for more details). When input
genotype data includes family trios, GEDI has the additional option of automat-
ically estimating locus-specific detection thresholds based on allele frequencies
and observed Mendelian inconsistency rates using the method of [3].

3 Experimental Results

In this section we provide preliminary results on GEDI’s imputation accuracy;
error detection accuracy with an earlier version of GEDI can be found in [5].
We started our experiment from the genotype data of the 1958 birth cohort of
the WTCCC study [2]. 1,444 individuals from this cohort were typed using both
the Affymetrix 500k platform and a custom Illumina chip containing 15k SNPs.
In our experiment we used the Affymetrix data in conjunction with the CEU
HapMap haplotypes to impute genotypes at the SNP loci present of the Illumina
chip and not on the Affymetrix chip. The actual Illumina genotypes were then
used to estimate imputation accuracy.

In Figure 1 we compare different estimates of the frequency of 0 alleles for
Illumina SNPs on chromosome 1. As shown in Figure 1(a), allele frequencies
estimated from the HapMap CEU haplotypes are well corelated with allele fre-
quencies derived from the Illumina genotypes, suggesting that the HapMap CEU
haplotypes are a good reference panel for the 1958 birth cohort. Figure 1(b)
shows that allele frequencies learned by the HMM used in GEDI match very
well allele frequencies in the HapMap haplotypes that are used to train it, sug-
gesting that the Baum-Welch training method is appropriate. Finally, Figure
1(c) shows a high corelation between allele frequencies derived from genotypes
imputed by GEDI and those derived from Illumina genotypes. Indeed, over all
chromosomes GEDI achieves a 1.5% discordance between Illumina genotype calls
and genotypes imputed with a confidence of 95% confidence or higher. A compre-
hensive evaluation of GEDI’s imputation accuracy and comparison with existing
imputation methods including [8, 10, 12, 7] is ongoing.
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Fig. 1. Estimates of the frequency of 0 alleles for Illumina SNPs on chromosome 1. (a)
HapMap based estimates vs. estimates based on Illumina genotypes; (a) GEDI HMM
estimates vs. HapMap based estimates; (c) Imputation based estimates vs. estimates
based on Illumina genotypes.
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