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1 Introduction

The Steiner minimum tree problem, which asks for a minimum-length interconnection of a given set of termi-

nals in the plane, is one of the fundamental problems in Very Large Scale Integration (VLSI) physical design.

Although advances in VLSI manufacturing technologies have introduced additional routing objectives, mini-

mum length continues to be the primary objective when routing non-critical nets, since the minimum-length

interconnection has minimum total capacitance and occupies minimum amount of area.

To simplify design and manufacturing, VLSI interconnect is restricted to a small number of orientations

defining the so called interconnect architecture. Until recently, designers have relied almost exclusively on

the Manhattan interconnect architecture, which allows interconnect routing along two orthogonal directions.

However, non-Manhattan interconnect architectures – such as the Y-architecture, which allows 0◦, 120◦, and

240◦ oriented wires, and the X-architecture, which allows 45◦ diagonal wires in addition to the traditional

horizontal and vertical orientations – are becoming increasingly attractive due to the significant potential for

reducing interconnect length (see, e.g., [4, 5, 16, 22, 24, 25, 27]). A common generalization of interconnect

architectures of interest in VLSI design is that of uniform orientation metric, or λ-geometry, in which

routing is allowed only along λ ≥ 2 orientations forming consecutive angles of π/λ. The Manhattan, Y-, and

X-architectures correspond to λ = 2, 3, and 4, respectively.
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In contrast to the extensive literature on the rectilinear version of the Steiner tree problem, computing

Steiner trees in λ-geometries with λ > 2 has received much less attention in the literature. A hierarchical

Steiner tree construction was proposed by Sarrafzadeh and Wong [21]. Koh [15] showed how to compute the

optimal Steiner trees for 3 terminals under the octilinear metric (λ = 4) and proposed a heuristic inspired

by the iterated 1-Steiner heuristic of Kahng and Robins for computing rectilinear Steiner Tree. Li et al. [17]

solved the 3-terminal case for λ = 3 and proposed a simulated annealing heuristic. Generalizations of the

classical Hanan grid [11] for λ = 3 and λ = 3 are also proposed by [17] [15], but these generalizations lead

to multilevel grids typically containing too many points to be of use in designing practical algorithms.

Chiang et al. [6] proposed a simple heuristic for constructing octilinear Steiner trees that computes a

rectilinear Steiner tree for the terminals and then iteratively reduces tree length by using diagonal wires

to re-route tree edges and by sliding Steiner points. Coulston [7] proposed an exact octilinear Steiner tree

algorithm based on a two-phase approach of generating all possible full components for the given set of

terminals and then merging them to form an optimal tree. He reports that the proposed algorithm has

practical runtime for up to 25 terminals. Nielsen et al. [19] described the extension of the GeoSteiner

exact rectilinear/Euclidean Steiner tree package to arbitrary λ-geometries. GeoSteiner uses the same two-

phase approach as Coulston’s algorithm, however it incorporates highly effective prunning techniques based

on structural properties of full components to greatly improve the running time. With these improvements,

GeoSteiner is reported to compute optimal λ-geometry Steiner trees for instances with 100 random terminals

in seconds of CPU time.

Recently, there has been a growing interest in practical methods for computing near-optimal Steiner trees

for instances with up to tens of thousands of terminals. Instances of this size, e.g., scan enable nets, are

becoming more common in modern VLSI designs due to the increased emphasis on design for test. Such

nets are non-critical for chip performance and tend to consume significant routing resources, so minimizing

length is the appropriate optimization objective. Furthermore, very large Steiner tree instances are created

by reductions that model non-zero terminal dimensions, e.g., nets with pre-routes. High-quality routing of

such instances requires representing each terminal by a set of electrically equivalent points [23] and this results

in instances with as much as 100,000 points [31]. Due to combinatorial explosion and/or quadratic memory
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requirements, instances of this size cannot be solved in practical time with the existing exact methods such

as GeoSteiner or best-performing heuristics such as Iterated 1-Steiner [13] and Rajagopalan-Vazirani [18].

In this chapter we present a highly scalable heuristic for computing near-optimal Steiner trees. Our

heuristic, referred to as the batched greedy algorithm (BGA) in the following, is graph-based and can therefore

be easily modified to handle routing in uniform orientation geometries as well as other practical considerations

such as routing obstacles, preferred directions [28], and via costs. Indeed, the results reported in Section 5

show only a small factor increase in runtime compared to the rectilinear implementation. The BGA heuristic

routes a 34k-terminals net extracted from a real design in less than 25 seconds compared to over 86 minutes

needed by the O(n2) edge-based heuristic of [2]. More importantly, this dramatic reduction in runtime is

achieved with no loss in solution quality. On random instances with more than 100 terminals our algorithm

improves over the rectilinear minimum spanning tree by an average of 11%, matching in solution quality the

edge-based heuristic of [2].

The BGA heuristic derives its efficiency from three key ideas:

• Combining the implementation proposed in [8] for the greedy triple contraction algorithm (GTCA) of

Zelikovsky [30] with the batched method introduced by the Iterated 1-Steiner heuristic of Kahng and

Robins [13].

• A new divide-and-conquer method for computing a superset of size O(n log n) of the set of O(n) triples

required by GTCA.

• A new linear size data structure that enables finding a bottleneck (i.e., maximum cost) edge on the tree

path between two given nodes in O(log n) time after O(n log n) preprocessing, with very low constants

hidden under the big O. This data structure allows computing the gain of a triple (see Section 2 for

the definition) in O(log n) time.1

The BGA heuristic requires O(n) memory and O(n log2 n) time for computing a Steiner tree over n

1Our data structure may be of interest in other applications that require computing bottleneck edges. For example, Zachari-

asen incorporated it in the beta version of the GeoSteiner 4.0 code for computing optimum geometric Steiner trees. On large

instances, computing bottleneck edges with the new data structure was found to be faster than look-up in a precomputed

matrix, most likely due to improved memory access locality [29].
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terminals. To the best of our knowledge, this is the first practical sub-quadratic heuristic with such high

performance. The O(n log n) implementation described in [2] for the edge-based heuristic requires advanced

data structures, potentially involving large hidden constants. We are not aware of any implementation

demonstrating the practical applicability of this implementation. After the publication of a preliminary

version of this work [14], Zhu et al. [32] proposed an O(n log n) octilinear Steiner tree heuristic based on

spanning graphs which is reported to run faster than BGA at the cost of a small decrease in solution quality.

The rest of the chapter is organized as follows. In Section 2 we briefly review the greedy triple contraction

algorithm of [30] and describe our new batched greedy algorithm. In the following two sections we describe

in detail two of the key BGA subroutines: in Section 3 we give the new divide-and-conquer method for

computing the set of O(n log n) triples used by BGA, while in Section 4 we describe the new data structure

for computing bottleneck edges. Finally, in Section 5 we give experimental results comparing BGA with

previous implementations of rectilinear and octilinear Steiner tree heuristics and exact algorithms on test

cases both randomly generated and extracted from recent VLSI designs.

2 The Greedy Triple Contraction and Batched Greedy Algorithms

We begin this section by introducing the Steiner tree terminology used in the rest of the chapter. A Steiner

tree for a set of terminals is a tree spanning the terminals and possibly additional points, called Steiner

points. A Steiner tree is called a full Steiner tree if all terminals are leaves (i.e., have degree 1). Any

Steiner tree T can be split into edge-disjoint full Steiner trees called the full Steiner components of T [9].

A Steiner tree T is called k-restricted if every full component of T has at most k terminals (an example

of a 3-restricted rectilinear Steiner tree is shown in Figure 1). The minimum-cost 3-restricted Steiner tree

is in general cheaper than the minimum spanning tree (MST) of the terminals (note that the MST is the

minimum-cost 2-restricted Steiner tree of the terminals).

The greedy triple contraction algorithm (GTCA) in [30] finds an approximate minimum-cost 3-restricted

Steiner tree by greedily choosing 3-restricted full components which reduce the cost of the MST. In order to

describe GTCA we need to introduce a few more notations. Let GS be the complete graph on a given set

S of terminals, and let MST (S) be the MST of GS . A triple τ is an optimal Steiner tree for a set of three
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terminals.2 We denote by center(τ) the single Steiner point of τ and by cost(τ) the cost of τ . In the graph

MST (S) ∪ τ , there are two cycles (see Figure 2(a)). To obtain an MST of this graph we should remove

the most expensive edge from each cycle. Let e1 and e2 be the two edges that must be removed and let

R(τ) = {e1, e2}. The gain of τ is gain(τ) = cost(R(τ)) − cost(τ).

GTCA (see Figure 3) repeatedly adds a triple τ with the largest gain and contracts it, i.e., collapses

the three terminals of τ into a single new terminal. Contraction of a triple is conveniently implemented by

adding two new zero-cost edges A(τ) = {e′
1
, e′

2
} between the three terminals of τ (see Figure 2(b)). It is easy

to see that addition of A(τ) changes the MST of GS – in the updated MST the two edges in A(τ) replace

the two edges in R(τ). Finally, GTCA adds all chosen triples to the original MST of GS and outputs the

MST of this union.

Theorem 1 [1] The cost of the rectilinear Steiner tree constructed by GTCA is at most 1.3125 times more

than the optimal Steiner tree.

Fößmeier, Kaufmann and Zelikovsky [8] prove that in order to achieve an approximation ratio of 1.3125

in Theorem 1 it is sufficient to consider only empty tree triples of terminals. A triple τ is empty if the

minimum rectangle bounding the triple does not contain any other terminals and is a tree triple if the center

c of τ is adjacent to all terminals of the triple in MST (S + c) (or, equivalently, if gain(τ) > 0). As shown

in [8], there are at most 36n empty tree triples. Even so, finding the best triple in Step 3 of GTCA is

very time consuming. An efficient O(n2 log n) time implementation of GTCA should maintain dynamic

minimum spanning trees for which, to date, there is no data structure able to handle instances with tens of

thousands of nodes in practical running time. Existing data structures are difficult to implement and involve

big asymptotic constants, see Cattaneo et al. [3] for a recent empirical study.

Our new heuristic, the batched greedy algorithm (BGA) (see Figure 4) adopts the batched method from

[13], substantially reducing running time by relaxing the greedy rule used to select triples in GTCA. After

contracting a triple we continue by picking the best triple among those with unchanged gain; in general

this may not be the best triple overall. Note that a triple τ can change its gain only if one of the edges in

2The optimum Steiner tree of 3 given terminals can be computed in constant time under the common uniform orientation

metrics, including rectilinear [11] and octilinear [16] metrics.



3 GENERATION OF TRIPLES 6

R(τ) is removed when contracting other triple – if none of the contracted triples removes edges from R(τ)

then the gain of τ is unchanged. When done with one such batched phase (the body of the while loop in

Step 4) it is still possible to have positive gain triples. Therefore, we recompute triple gains and repeat the

batched phase selection until no positive gain triples are left. To enable further improvements, we add the

centers of triples selected in Step 4 to the terminal set then iterate Steps 2–5 (which constitute a round of

the algorithm) until no more centers are added to the tree.

In next section we show how to compute in O(n log n) time a set of O(n log n) triples containing all empty

tree triples (see Theorem 3). Then, in Section 4 we describe a data structure which enables computing

a bottleneck edge on the tree path between any two given nodes in O(log n) time after O(n log n) time

preprocessing. Since computing the gain of a triple amounts to 3 bottleneck edge computations, this leads

to an O(n log2 n) time implementation of the batched phase algorithm. This gives the following:

Theorem 2 The running time of the batched greedy algorithm is O(Pn log2 n), where P is the total number

of batched phases and n is the number of terminals.

In practice the total number of phases P is small and can be bounded by a constant. Thus, the runtime

of BGA is O(n log2 n).

3 Generation of Triples

In this section we show how to compute in O(n log n) time a set of O(n log n) triples containing all empty

tree triples. For simplicity we assume that terminals are in general position, i.e., no two of them share the

same x- or y-coordinate. This assumption is not restrictive since we can always break ties, e.g., according

to terminal IDs.

In a triple, the terminal which does not share x- and y-coordinates with the center is called diagonal.

There are 4 types of triples depending on where the diagonal terminal lies with respect to the center: a

triple is called north-west if the diagonal terminal is in the north-west quadrant of the center (see Figure

1); north-east, south-west, and south-east triples are defined similarly. We will use the divide and conquer

method to find O(n log n) north-west triples containing all north-west empty tree triples. Triples of the other
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types are obtained by reflection and application of the same algorithm.

For finding north-west triples we recursively partition the terminals into (almost) equal halves with a

bisector line parallel to line y = −x. Let LB (left-bottom) and TR (top-right) be the half-planes defined by

the bisector line, and let D, R, and B be the diagonal, right, and bottom terminals of a north-west triple

that is intersected by the bisector line (see Figure 5). We distinguish the following 4 cases:

Case 1: D, R ∈ TR and B ∈ LB. Figure 6 (a) illustrates how to compute for each diagonal terminal D the

unique terminal R that can serve as a right terminal in an empty north-west triple with D as the diagonal

terminal. All terminals in TR are processed in x-ascending order as follows: (1) if the next terminal has y

larger then the current terminal, then a dashed pointer is set from the next to the current terminal, and then

the current terminal is advanced to the next terminal; (2) otherwise, a solid pointer is set from the current

terminal to the next one, and the current terminal is moved back along the dashed pointer (if it exists,

otherwise the current terminal is advanced to the next). Clearly this procedure is linear since the runtime

is proportional to the number of pointers established and each terminal has at most two pointers (one solid

and one dashed). When processing of the points in TR is finished, each solid arc connects a terminal D with

the leftmost terminal in TR lower than and to the right of D, i.e., with the unique terminal R that can serve

as a right terminal in an empty north-west triple with D as the diagonal terminal.

In order to find all Case 1 north-west triples, we must find for each solid arc (D, R) in TR the node B in

LB which can complete the triple, i.e., the node B with maximum y-coordinate in the vertical strip defined

by D and R. This is done in linear time by one traversal of the terminals in LB in x-ascending order (i.e.,

strip by strip) while computing the highest point in each strip.

Case 2: B, R ∈ TR and D ∈ LB. For each terminal R, the unique terminal in TR that can serve as the

bottom terminal in an empty north-west triple with R as the right terminal (i.e., the highest terminal in TR

lower and to the left of R) can be found by a procedure similar to the one in Step 1. Cf. [8], an arc (R, B)

in TR is completed into a tree north-west triple only when the diagonal node D is the closest to R (and

therefore to B) in the octant of LB containing points higher than R. To find the diagonal points D for each

arc (R, B) in TR, we simultaneously traverse terminals in TR in y-ascending order and terminals in LB in

(x − y)-ascending order as follows:
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While there are unprocessed terminals in both TR and LB, do

• Advance in TR until we reach a terminal R which has an arc to the associated B

• Advance in LB until we reach a terminal D higher than R

• Assign D to R

Note that triples found bye the above procedure are not necessarily empty. With a more careful imple-

mentation it is possible to avoid generating non-empty triples, however this would not change the asymptotic

number of triples generated or the worst-case running time of the algorithm.

Case 3: R ∈ TR and D, B ∈ LB. It is equivalent to the case 1 after reflection over bisector.

Case 4: D ∈ TR and B, R ∈ LB. It is equivalent to the case 2 after reflection over bisector.

Theorem 3 A set of size O(n log n) containing all empty tree triples can be computed in O(n log n) time.

Proof. Each north-west empty tree triple crossing the dividing diagonal must fall in one of the 4 cases

considered and finding all crossing triples takes linear time. Thus, the running time is given by the recurrence

T (n) = 2T (n/2)+O(n), i.e., T (n) = O(n log n). The number of triples generated by the divide-and-conquer

algorithm is also O(n log n) by the same recurrence; notice that each recursive step generates a linear number

of triples. The same argument applies to the other 3 triple types. ut

4 Computing maximum cost edge on a tree path

It is easy to see that computing the gain of a triple τ and the edges in R(τ) reduces to finding bottleneck (i.e.,

most expensive) edges on the tree paths between pairs of terminals in τ . The hierarchical greedy preprocessing

(HGP) algorithm given in Figure 7 computes for a given tree on n terminals two auxiliary arrays, parent

and edge, with at most 2n− 1 elements each. Using these arrays, the bottleneck tree edge between any two

terminals u and v can be found in O(log n) using the algorithm in Figure 8.

Assuming that edges are sorted in ascending order of cost, HGP is equivalent to the following recursive

procedure. First, for each node u, direct the cheapest edge incident to u, away from u, and save its index in
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edge(u). As a result some edges remain undirected, some become unidirected, and some become bidirected.

In the subgraph induced by the (uni- and bi-) directed edges, each connected component consists of a

bidirected edge with two (possibly empty) arborescences attached to its ends. HGP collapses each such

connected component K into a single node q, then sets parent(u) to q for every u ∈ K. Since each connected

component contains at least one bidirected edge, no more than n/2 collapsed component nodes are created.

The procedure is repeated on the tree induced by collapsed components until there is a single node left. The

total runtime of HGP is O(n log n) because of the edge sorting in Step 1, remaining HGP steps require O(n)

time.

Clearly, edge costs decrease along any directed path of a connected component K. Therefore, if u and

v are two vertices of K, then the index of the maximum cost edge on the tree path between u and v is

max{edge(u), edge(v)}. If u and v are in different components K and K ′, we need to compute the maximum

between edge(u), edge(v), and the maximum index of the most expensive edge on the path between K and K ′

in the tree T with collapsed connected components. The algorithm in Figure 8 is an iterative implementation

of this recursive definition. Since the hierarchy of collapsed connected components has a depth of at most

log n, we get:

Theorem 4 The algorithm in Figure 8 finds the maximum cost edge on the tree path connecting two given

nodes in O(log n) time after O(n log n) time for hierarchical greedy preprocessing.

5 Experimental Results

Comprehensive experimental evaluation indicates that the Iterated 1-Steiner heuristic of Kahng and Robins

[13] significantly outperforms in solution quality the rectillinear Steiner tree heuristics proposed prior to 1992

[12]. Since then, the edge-based heuristic of Borah, Owens, and Irwin [2], and the iterated Rajagopalan-

Vazirani (IRV) heuristic [18] have been reported to match or slightly exceed Iterated 1-Steiner in solution

quality. However, among these best-performing heuristics only the edge-based heuristic can be applied to

instances with tens of thousands of terminals, since current implementations of Iterated 1-Steiner and IRV

require quadratic memory. Besides Borah’s O(n2) implementation of the edge-based heuristic, we compared
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our O(n log2 n) batched greedy algorithm to the recent O(n log2 n) Prim-based heuristic of Rohe [20]. For

comparison purposes, we also include results from our implementation of the Guibas-Stolfi O(n log n) rec-

tilinear MST algorithm [10], and, whenever possible, the optimum Steiner trees computed using the beta

version of the GeoSteiner 4.0 algorithm recently announced in [19].

All heuristics and MST algorithms were run on a dual 1.4 GHz Pentium III Xeon server with 2GB of

memory running Red Hat Linux 7.1. The GeoSteiner code using the CPLEX 6.6 linear programming solver

was run on a 360 MHz SUN Ultra 60 workstation with 2 GB of memory under SunOS 5.7. The test bed

for our experiments consisted of two categories of instances: instances drawn uniformly at random from a

1, 000, 000 × 1, 000, 000 grid, ranging in size between 100 and 500,000 terminals, and a set of 8 testcases

extracted from recent industrial designs, ranging in size between 330 and 34,000 terminals.

Table 1 gives the percent improvement over the rectilinear MST and running time (in CPU seconds)

for experiments on rectilinear instances. On random instances, the batched greedy heuristic matches or

slightly exceeds in average solution quality the edge-based heuristic of [2]. Both batched greedy and the

edge-based heuristic improve the rectilinear MST by an average of 11% in our experiments. This is roughly

1% more than the average improvement achieved by the Prim-based heuristic of [20], and is within 0.7% of

the optimum average improvement for the sizes for which the optimum could be computed using GeoSteiner.

Results on VLSI instances show that the relative performance of the heuristics is the same to that observed

on random instances. However, the improvement over the rectilinear MST and the gaps between heuristics

are smaller in this case.

The results in Table 1 show that the batched greedy algorithm is highly scalable. Even though batched

greedy is not as fast as the MST or the Prim-based heuristic of [20], it can easily handle up to hundreds

of thousands of terminals in minutes of CPU time. Compared to Borah’s O(n2) implementation of the

edge-based heuristic, batched greedy is two or more orders of magnitude faster as soon as the number of

terminals gets into the tens of thousands.

The batched greedy algorithm can be easily adapted to other cost metrics. We have implemented and

experimented with an octilinear version of the batched greedy algorithm, modifications to other uniform

orientation geometries can be done easily. The only required modifications are in the distance formula and
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in the procedure for finding the optimum Steiner point of a triple. The octilinear distance between points

(x, y) and (x′, y′) is equal to max{|x − x′|, |y − y′|} + (
√

2 − 1) min{|x − x′|, |y − y′|}; this is always smaller

than the rectilinear distance, |x − x′| + |y − y′|, unless the two points are on the same horizontal or vertical

line, in which case the two distances are equal. The computation of the optimum Steiner point of a triple in

the octilinear metric can be done in constant time using the method described in [16].

Table 2 gives results obtained by the octilinear versions of the Guibas-Stolfi MST, O(n2) edge-based,

batched greedy, and GeoSteiner 4.0 algorithms. Octilinear batched greedy is almost always better than the

octilinear edge-based heuristic, and very close to optimum for the instances for which the latter is available.

Furthermore, octilinear batched greedy remains highly scalable, with just a small factor increase in runtime

compared to the rectilinear version.

6 Conclusions

Non-critical nets with tens of thousands of terminals are becoming more common in modern designs due

to the increased emphasis on design for test. Even a single net of this size can render quadratic Steiner

tree algorithms impractical, given the stringent constraints on routing runtime (e.g., designers expect

full chip global and detailed routing to be completed overnight). In this chapter we have given a high-

quality O(n log2 n) heuristic that can practically handle these nets without compromising solution qual-

ity. Since our heuristic is graph-based, it can be easily modified to handle other practical considera-

tions, such as routing obstacles, preferred directions, and via costs. A C++ implementation of BGA

is freely available as part of the MARCO Gigascale Silicon Research Center VLSI CAD Bookshelf at

http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/FastSteiner/.
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Table 1: Percent improvement over MST and CPU time of the compared rectilinear Steiner tree algorithms

#Term. MST Prim-Based Edge-Based Batched Greedy GeoSteiner 4.0

Len.(µm) CPU %Imp. CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)

100 85169.9 0.0005 9.78 0.001 10.97 0.006 10.99 0.003 11.66 0.555

500 184209.7 0.0036 10.08 0.007 11.12 0.216 11.17 0.081 11.76 15.205

1000 258926.8 0.0079 10.04 0.014 10.96 0.939 10.99 0.230 11.61 117.916

5000 573178.8 0.0501 10.02 0.082 11.02 56.348 11.05 1.903 — —

10000 809343.5 0.1268 10.04 0.191 11.01 415.483 11.05 5.192 — —

50000 1808302.7 1.2330 10.05 1.320 11.01 16943.777 11.06 69.043 — —

100000 2555821.9 3.1150 10.08 3.143 11.04 61771.928 11.08 195.589 — —

500000 5710906.8 22.9130 10.07 20.570 — — 11.08 1706.765 — —

VLSI instances

337 247.7 0.0020 5.96 0.000 6.50 0.060 6.43 0.040 6.75 16.040

830 675.6 0.0055 3.10 0.010 3.19 0.320 3.20 0.080 3.26 9.480

1944 452.2 0.0165 6.86 0.040 7.77 3.640 7.85 0.400 8.15 1304.270

2437 578.8 0.0217 7.09 0.040 7.96 5.740 7.96 0.680 8.34 13425.310

2676 887.2 0.0235 8.07 0.040 8.99 5.340 8.93 0.770 9.38 430.800

12052 2652.7 0.1378 7.65 0.180 8.46 540.840 8.45 5.230 — —

22373 13962.5 0.3419 8.99 0.480 9.83 2263.760 9.85 13.060 — —

34728 9900.5 0.5455 8.16 0.690 9.01 5163.060 9.05 24.200 — —
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Table 2: Percent improvement over MST and CPU time of the compared octilinear Steiner tree algorithms

#Term. MST Edge-Based Batched Greedy GeoSteiner 4.0

Len.(µm) CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)

100 72375.1 0.0005 4.28 0.530 4.43 0.010 4.75 11.608

500 155611.7 0.0036 4.12 13.410 4.29 0.118 4.60 311.991

1000 219030.8 0.0079 4.12 54.641 4.25 0.296 4.59 1321.382

5000 484650.5 0.0506 4.17 1466.296 4.31 2.820 — —

10000 684409.5 0.1217 4.13 5946.815 4.28 8.362 — —

50000 1528687.2 1.1940 4.16 147210.395 4.30 116.419 — —

100000 2160629.4 3.1060 — — 4.32 476.307 — —

500000 4826839.1 23.0610 — — 4.31 6578.840 — —

VLSI instances

337 219.0 0.0020 2.92 5.690 2.99 0.050 3.13 72.960

830 630.4 0.0055 0.93 27.610 0.90 0.120 1.07 195.190

1944 407.2 0.0167 3.33 202.030 3.47 0.750 4.01 5279.870

2437 523.1 0.0218 3.67 345.330 3.77 0.820 4.29 7484.730

2676 780.2 0.0236 3.41 392.340 3.51 1.310 3.89 6080.050

12052 2372.3 0.1417 3.63 7517.680 3.72 10.800 — —

22373 12069.8 0.3447 3.65 25410.340 3.74 21.380 — —

34728 8724.9 0.5427 3.64 62971.090 3.74 25.160 — —
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North-west triple of terminals

Diagonal terminal

Full Components

center 

Figure 1: A 3-restricted rectilinear Steiner tree partitioned into full components. The dark full component

is a north-west triple.
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 edges A

Cycle 1

New zero-cost

e1

e2

Most expensive

triple

(a) (b)

Cycle 2
edges R

e1’

e2’

(τ)

τ (τ)

Figure 2: The MST of GS (a) before and (b) after contraction of the triple τ . The gain of the dashed triple

is the difference between the cost of most expensive edges R(τ) = {e1, e2} in each of the two cycles of T ∪ τ

and the cost of τ . Two new zero-cost edges A(τ) = {e′
1
, e′

2
} replace e1 and e2 in the updated MST.
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Input: Set S of terminals
Output: 3-restricted Steiner tree T spanning S

1. T ←MST (GS)

2. F ← ∅

3. Repeat forever

Find a triple τ with maximum gain

If gain(τ ) ≤ 0, then go to Step 4

F ← F ∪ {τ} // Add τ

T ← T −R(τ ) + A(τ ) // Contract τ

4. Output MST (F ∪MST (GS))

Figure 3: The greedy triple contraction algorithm.
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Input: Set S of terminals
Output: Steiner tree T spanning S

1. Compute the minimum spanning tree of S, MST (S)

2. Compute a set Triples, of size O(n log n), containing all empty tree triples

3. SP ← ∅

4. While Triples 6= ∅ do

For each τ ∈ Triples compute R(τ ), A(τ ), and gain(τ ), discarding triples with non-positive gain

Sort Triples in descending order of gain

Unmark all edges of MST (S)

For each τ ∈ Triples do

If both edges in R(τ ) are unmarked, then mark them and replace them in the MST with the two
edges in A(τ ), i.e., MST (S)←MST (S)−R(τ ) + A(τ )

SP ← SP + center(τ )

5. If SP = ∅ then return the minimum spanning tree of S, else

S ← S + SP

Compute the minimum spanning tree of S and discard all Steiner points with degree 1 or 2

Go to Step 2

Figure 4: The batched greedy algorithm.
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Figure 5: Four cases of partitioning of a north-west triple.
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Figure 6: Case 1: (a) Finding the right terminal for each diagonal terminal, e.g., if D = 1, then R = 5, if

D = 3, then R = 4, etc. (b) Finding highest terminals in the strips corresponding to consecutive terminals.
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Input: Weighted tree T = (V, E, cost) with V = {1, 2, . . . , n}
Output: Arrays parent(i) and edge(i), i = 1, . . . , 2n− 1

1. Sort tree edges e1, . . . , en−1 in ascending order of cost

2. Initialization:

next← n

For each i = 1, 2, . . . , 2n− 1 do

parent(i)← NIL

edge(i)← NIL

3. For each edge ei = (u, v), i = 1, . . . , n− 1, do

While u 6= v and parent(u) 6= NIL and parent(v) 6= NIL do

u← parent(u)

v ← parent(v)

If parent(u) = parent(v) = NIL, then

next← next + 1

parent(u)← parent(v)← next

edge(u)← edge(v)← i

If parent(u) = NIL and parent(v) 6= NIL, then

parent(u)← parent(v)

edge(u)← i

If parent(u) 6= NIL and parent(v) = NIL, then

parent(v)← parent(u)

edge(v)← i

4. Output the arrays parent(i) and edge(i)

Figure 7: The hierarchical greedy preprocessing algorithm.
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Input: Tree edges e1, . . . , en−1 in ascending order of cost, arrays parent(i) and edge(i), i = 1, . . . , 2n− 1, and
nodes u, v ∈ V

Output: Maximum cost edge on the tree path between u and v

1. index← −∞,

2. While u 6= v do

index← max{index, edge(u), edge(v)}

u← parent(u)

v ← parent(v)

3. Return eindex

Figure 8: Subroutine for computing the maximum cost edge on the tree path between nodes u and v.


