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Abstract. The Quality of Service Steiner Tree Problem is a generaliza-
tion of the Steiner problem which appears in the context of multimedia
multicast and network design. In this generalization, each node possesses
a rate and the cost of an edge with length l in a Steiner tree T connecting
the non-zero rate nodes is l ·re, where re is the maximum rate in the com-
ponent of T −{e} that does not contain the source. The best previously
known approximation ratios for this problem (based on the best known
approximation factor of 1.549 for the Steiner tree problem in networks)
are 2.066 for the case of two non-zero rates and 4.211 for the case of
unbounded number of rates. We give better approximation algorithms
with ratios of 1.960 and 3.802, respectively. When the minimum span-
ning tree heuristic is used for finding approximate Steiner trees, then the
previously best known approximation ratios of 2.667 for two non-zero
rates and 5.542 for unbounded number of rates are reduced to 2.414 and
4.311, respectively.

1 Introduction

The Quality of Service Steiner Tree (QoSST) problem appears in two different
contexts: multimedia distribution for users with different bitrate requests [7] and
the general design of interconnection networks with different grade of service
requests [6]. The problem was formulated as a natural generalization of the
Steiner problem under the names “Multi-Tier Steiner Tree Problem” [8] and
“Grade of Service Steiner Tree Problem” [13]. More recently, the problem has
been considered by [5, 7] in the context of multimedia distribution. This problem
generalizes the Steiner tree problem in that each node possesses a rate and
the cost of a link is not constant but depends both on the cost per unit of
transmission bandwidth and the maximum rate routed through the link.
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Formally, the QoSST problem can be stated as follows (see [5]). Let G =
(V, E, l, r) be a graph with two functions, l : E → R+ representing the length
of each edge, and r : V → R+ representing the rate of each node. Let {r0 =
0, r1, r2, . . . rN} be the range of r and Si be the set of all nodes with rate ri. The
Quality of Service Steiner Tree Problem asks for a minimum cost subtree T of
G spanning a given source node s and nodes in

⋃
i≥1 Si, all of which are referred

to as terminals. The cost of an edge e in T is cost(e) = l(e)re, where re, called
the rate of edge e, is the maximum rate in the component of T − {e} that does
not contain the source. Note that the nodes in S0, i.e., zero rate nodes, do not
require to be connected to the source s but may serve as Steiner points for the
output tree T .

The QoSST problem is equivalent to the Grade of Service Steiner Tree Prob-
lem (GOSST) [13], which has a slightly different formulation. In GOSST there
is no source node and edge rates re should be assigned such that the minimum
edge rate on the tree path from a terminal with rate ri to a terminal with rate
rj is at least min(ri, rj). It is not difficult to see that these two formulations are
equivalent. Indeed, an instance of QoSST can be transformed into an instance
of GOSST by assigning the highest rate to the source. The cost of an edge will
remain the same, since each edge e in a tree T will be on the path from the
source to the node of the highest rate in the component of T −{e} that does not
contain the source. Conversely, an instance of GOSST can be transformed into
a QoSST by giving source status to any node with the highest rate.

The problem was studied before in several contexts. Current et al. [6] gave
an integer programming formulation for the problem and proposed a heuristic
algorithm for its solution. Some results for the case of few rates were obtained
in [1] and [2]. Specifically, [2] (see also [13]) suggested an algorithm for the case
of two non-zero rates with approximation ratio of 4

3α ≈ 2.065, where α ≈ 1.549
is the best approximation ratio of an algorithm for the Steiner tree problem.
Recently, [5] gave the first constant-factor approximation algorithm for an un-
bounded number of rates. They achieved an approximation ratio of eα ≈ 4.211.

In this paper we give algorithms with improved approximation factors. Our
algorithms have an approximation ratio of 1.960 when there are two non-zero
rates and an approximation ratio of 3.802 when there is an unbounded number of
rates. The improvement comes from the reuse of higher rate edges in establishing
connectivity for lower rate nodes. We give the first analysis of the gain resulting
from such reuse, critically relying on approximation algorithms for computing
k-restricted Steiner trees. To improve solution quality, we use different Steiner
tree algorithms at different stages of the computation. In particular, we use both
the Steiner tree algorithm from [11] which has the currently best approximation
ratio and the algorithm from [10] which has the currently best approximation
ratio among Steiner tree algorithms producing 3-restricted trees.

Table 1 summarizes the results of this paper. It presents previously known ap-
proximation ratios using various Steiner tree algorithms and the approximation
ratios produced by our method utilizing the same algorithms. Note that along
with the best approximation ratios resulting from the use of the loss-contracting
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Algorithm LCA [11] RNS[10] BR [14, 3] MST [12]

runtime polynomial polynomial O(n3) [15] O(n log n + m) [9]

#rates 2 any 2 any 2 any 2 any

previous ratio 2.066 + ε 4.211 + ε 2.222 + ε 4.531 + ε 2.444 4.934 2.667 5.44

our ratio 1.960+ε 3.802 +ε 2.059 +ε 3.802 + ε 2.237 4.059 2.414 4.311
Table 1. Runtime and approximation ratios of previously known algorithms and of the
algorithms given in this paper. In the runtime, n and m denote the number of nodes
and edges in the original graph G = (V, E), respectively.

algorithm from [11], Table 1 also gives approximation ratios resulting from the
use of the algorithm in [10] and the more practical algorithms in [3, 12, 14].

The rest of the paper is organized as follows. In next section, we tighten the
analysis given in [4] for the k-restricted Steiner ratio. In Section 3, we introduce
the so called β-convex Steiner tree approximation algorithms and tighten their
performance bounds. We give approximation algorithms for QoSST problem
with two non-zero rates and unbounded number of rates in Sections 4 and 5,
respectively, and conclude in Section 6.

2 A Tighter Analysis of the k-restricted Steiner Ratio

In this section, we tighten the analysis given in [4] for the k-restricted Steiner
ratio. The tightened results will be used later to prove the approximation ratio of
our algorithms. The exposition begins with a claim from [4] which encapsulates
several of the proofs provided in that paper. This claim is then used in a manner
slightly different from [4] to arrive at a stronger result.

We begin by introducing some definitions. A Steiner tree is called full if every
terminal is a leaf. A Steiner tree can be decomposed into components which are
full by breaking the tree up at the non-leaf terminals. A Steiner tree is called
k-restricted if every full component has at most k terminals. Let us denote the
length of the optimum k-restricted Steiner tree as optk and length of the op-
timum unrestricted Steiner tree as opt. By duplicating nodes and introducing
zero length edges, it can be assumed that a Steiner tree T is a complete binary
tree (see Figure 1). Furthermore, we may assume that the leftmost and right-
most terminals form a diametrical pair of terminals. The leftmost and rightmost
terminals will be called extreme terminals, and the edges on the path between
them will be called extreme edges.

Let the k-restricted Steiner ratio ρk be ρk = sup optk

opt , where the supremum is
taken over all instances of the Steiner tree problem. It has been shown in [4] that
ρk = (r+1)2r+s

r2r+s where r and s are obtained from the decomposition k = 2r + s,
0 ≤ s < 2r.
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u v

Fig. 1. Optimal Steiner tree T represented as a complete binary tree. Extreme termi-
nals u and v form a diametrical pair of terminals, extreme edges (the path between
u and v) are shown thicker. Each Li represents the total length of a collection of
paths (e.g., dashed paths) connecting internal nodes of T to non-extreme terminals via
non-extreme edges.

Lemma 1. [4]1 Given a Steiner tree T , there exist k-restricted Steiner trees Ti,
i = 1, 2, . . . , r2r + s such that l(Ti) = l(T ) + Li, where each Li represents the
total length of a collection of paths connecting internal nodes of T to non-extreme
terminals via non-extreme edges in such a way that each non-extreme edge of T
is counted at most 2r times in the sum L1 + L2 + · · ·+ Lr2r+s.

We now use Lemma 1 to produce a tighter bound on the length of the optimal
k-restricted Steiner tree.

Theorem 1. For every full Steiner tree T , optk ≤ ρk(l−D)+D, where l = l(T )
is the length of T and D = D(T ) is the length of the longest path in T .

Proof. Lemma 1 implies that L1 + L2 + · · · + Lr2r+s ≤ 2r(l −D). From this it
follows that there exists Lm such that Lm ≤ 2r

r2r+s(l−D). Since l(Tm) = l+Lm,
it follows that l(Tm) ≤ l + 2r

r2r+s(l −D). Therefore,

optk ≤ l(Tm)

≤ l +
2r

r2r + s
(l −D)

=
(

1 +
2r

r2r + s

)
(l −D) + D

= ρk(l −D) + D

1 The claim in [4] is stated for an optimum Steiner tree T , but optimality is not needed
in the proof.
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We now strengthen this theorem to the case of partitioned trees.

Corollary 1. For every Steiner tree T partitioned into edge-disjoint full com-
ponents T i,

optk ≤
∑

i

(
ρk(l(T i)−D(T i)) + D(T i)

)

Proof. Let optik be the length of the optimal k-restricted tree for the full com-
ponent T i. Then,

optk ≤
∑

i

optik ≤
∑

i

(
ρk(l(T i)−D(T i)) + D(T i)

)

3 β-Convex Steiner Tree Approximation Algorithms

In this section we introduce β-convex Steiner tree approximation algorithms and
show tighter upper bounds on their output when applied to the QoSST problem.

Definition 1. An α-approximation Steiner tree algorithm A is called β-convex
if the length of the tree it produces, l(A), is upper bounded by a linear combination
of optimal k-restricted Steiner trees, i.e.,

l(A) ≤
m∑

i=2

λiopti

and the approximation ratio is equal to

α =
m∑

i=2

λiρi

where λi ≥ 0, i = 2, . . . , m and

β =
m∑

i=2

λi

The algorithms from [12, 3, 10] are β-convex, while the currently best approx-
imation algorithm from [11] is not known to be β-convex.

Given a β-convex α-approximation algorithm A, it follows from Theorem 1
that

l(A) ≤
∑

i

λiopti ≤
∑

i

λiρi(opt−D) + βD = α(opt−D) + βD (1)

Let OPT be the optimum cost QoSST tree T , and let ti be the length of rate
ri edges in T . Then,

cost(OPT ) =
N∑

i=1

riti

Below we formulate the main property that makes β-convex Steiner tree approx-
imation algorithms useful for QoSST approximation.
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(c)(a) (b)

Fig. 2. (a) The subtree OPTk of the optimal QoS Steiner tree OPT induced by edges
of rate ri, i ≥ k. Edges of rate greater than rk (shown as solid lines) form a Steiner
tree for s ∪ Sk+1 ∪ . . . SN (filled circles); attached triangles represent edges of rate rk.
(b) Partition of OPTk into edge-disjoint connected components OPT i

k each containing
a single terminal of rate ri, i > k. (c) A connected component OPT i

k which consists of
a path Di

k containing all edges of rate ri, i > k, and attached Steiner trees containing
edges of rate rk.

Lemma 2. Given an instance of the QoSST problem, let Tk be the Steiner tree
computed for s and all nodes of rate rk by a β-convex α-approximation Steiner
tree algorithm after collapsing all nodes of rate strictly higher than rk into the
source s and treating all nodes of rate lower than rk as Steiner points. Then,

cost(Tk) ≤ αrktk + β(rktk+1 + rktk+2 + · · ·+ rktN )

Proof. We can visualize the subtree OPTk of the optimal QoS Steiner tree OPT
induced by edges of rate ri, i ≥ k as in Figure 2(a), with nodes of rate rk forming
subtrees attached to the tree OPTk+1 that spans all nodes with rate higher
than rk and the source. We break OPTk+1 into edge disjoint paths connecting
each terminal with an appropriately chosen non-extreme node as illustrated in
Figure 2(b). A proof that this kind of decomposition is always possible can be
found in [14]. We then consider each such path along with all nodes of rate
rk that are attached to it. This results in a decomposition of OPTk into edge-
disjoint connected components OPT i

k, where each component consists of a path
Di

k = OPT i
k ∩ OPTk+1 and attached Steiner trees with edges of rate rk (see

Figure 2(c)). Furthermore, note that the total length of Di
k’s is l(OPTk+1) =

tk+1 + tk+2 + · · ·+ tN .
Now we decompose the tree Tk along these full components OPT i

k and by
Corollary 1 we get:

l(Tk) ≤
∑

i

[
α(l(OPT i

k)−Di
k) + βDi

k

]

= αtk + β(tk+1 + tk+2 + · · ·+ tN )
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Input: Graph G = (V, E, l) with two nonzero rates r1 < r2, source s, terminal sets S1

of rate r1 and S2 of rate r2, Steiner tree α1-approximation algorithm A1 and a
β-convex α2-approximation algorithm A2

Output: Low cost QoSST spanning all terminals

1. Compute an approximate Steiner tree ST1 for s
S

S1

S
S2 using algorithm A1

2. Compute an approximate Steiner tree T2 for s
S

S2 (treating all other points as
Steiner points) using algorithm A1. Next, contract T2 into the source s and
compute the approximate Steiner tree T1 for s and remaining rate r1 points using
algorithm A2. Let ST2 be T1

S
T2

3. Output the minimum cost tree among ST1 and ST2

Fig. 3. QoSST approximation algorithm for two non-zero rates

The lemma follows by multiplying the last inequality by rk.

4 QoSST Approximation Algorithm for Two Non-Zero
Rates

In this section we give a generic approximation algorithm for the QoSST Steiner
tree problem with two non-zero rates (see Figure 3) and analyze its approxima-
tion ratio.

Recall that an edge e has rate ri if the largest rate of a node in the component
of T − {e} that does not contain the source is ri. Let the optimal Steiner tree
in G have cost opt = r1t1 + r2t2, with t1 being the total length of the edges
of rate r1 and t2 being the total length of the edges of rate r2. Let α1 be the
approximation ratio of algorithm A1 and let α2 be the approximation ratio of
the β-convex algorithm A2. Then, the following theorem holds:

Theorem 2. The approximation ratio of the algorithm from Figure 3 is

max
{

α2, max
r

α1
α1 − (α2 − β)r
βr2 + α1 − α2r

}

Proof. We can bound the cost of ST1 by cost(ST 1) ≤ α1r2(t1 + t2). To obtain
a bound on the cost of ST2 note that cost(T2) ≤ α1r2t2, and that, by Lemma
2, cost(T1) ≤ α2r1t1 + βr1t2.

Thus, the following two bounds for the costs of ST 1 and ST 2 follow:

cost(ST 1) ≤ α1r2t1 + α1r2t2

cost(ST 2) ≤ α1r2t2 + α2r1t1 + βr1t2

We distinguish between the following two cases:
Case 1: If βr1 − (α2 − α1)r2 ≤ 0, then cost(ST 2) ≤ α2(r2t2 + r1t1) = α2opt.
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Case 2: If βr1 − (α2 − α1)r2 ≥ 0, then let

x1 =
βr2

1 + (α1 − α2)r1r2

α1r2(α1r2 − α2r1 + βr1)

x2 =
r2 − r1

α1r2 − α2r1 + βr1

It is easy to check that

x1cost(ST 1) + x2cost(ST 2) ≤ opt

which implies that

Approx ≤ 1
x1 + x2

opt

In turn, this simplifies to

Approx ≤ α1
α1 − (α2 − β)r
βr2 − α2r + α1

opt

where r = r1
r2

.

We can use Theorem 2 to obtain numerical bounds on the approximation
ratios of our solution. Using α1 = 1+ln 3/2 for the algorithm from [11], α2 = 5/3
for the algorithm from [10], α1 = α2 = 11/6 for the algorithm from [3], and
α1 = α2 = 2 for the MST heuristic, and β → 1 for all of the above algorithms,
we maximize the expression in Theorem 2 to obtain the following theorem.

Theorem 3. If the algorithm from [11] is used as A1 and the algorithm from
[10] is used as A2, then the approximation ratio of the QoSST algorithm in
Figure 3 is 1.960. If the algorithm from [3] is used in place of both A1 and A2,
then the ratio is 2.237. If the MST heuristic is used in place of both A1 and A2,
then the ratio is 2.414.

5 Approximation Algorithm for QoSST with Unbounded
Number of Rates

In this section, we propose an algorithm for the case of a graph with arbitrarily
many non-zero rates r1 < r2 < · · · < rN . Our algorithm is a modification of the
algorithm in [5]. A description of the algorithm is given in Figure 4. As in [5], node
rates are rounded up to the closest power of some number a starting with ay,
where y is picked uniformly at random between 0 and 1. In other words, we round
up node rates to numbers in the set {ay, ay+1, ay+2, . . .}. The only difference is
that we contract each approximate Steiner tree, Approxk, constructed over nodes
of rounded rate ay+k, instead of simply taking their union as in [5]. This allows
contracted edges to be reused at zero cost by Steiner trees connecting lower rate
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Input: Graph G = (V, E, l), source s, sets Si of terminals with rate ri, positive
number a, and α-approximation β-convex Steiner tree algorithm
Output: Low cost QoSST spanning all terminals

1. Pick y uniformly at random between 0 and 1. Round up each rate to the closest
power of some number a starting with ay , i.e. round up to numbers in the set
{ay , ay+1, ay+2, . . .}. Form new terminal sets S′

i which are unions of terminal sets
with rates rounded to the same number r′

i

2. Approx← ∅
3. Repeat until all terminals are contracted into the source s:

Find an α-approximate Steiner tree Approxi spanning s
S

S′
i

Approx← Approx∪ Approxi

Contract Approxi into source s

4. Output Approx

Fig. 4. Approximation algorithm for multirate QoSST

nodes. The following analysis of this improvement shows that it decreases the
approximation ratio from 4.211 to 3.802.

Let Topt be the optimal QoS Steiner tree, and let ti be the total length of the
edges of Topt with rates rounded to ay+i. First, we prove the following technical
lemma:

Lemma 3. Let S be the cost of Topt after rounding node rates as in Figure 4,
i.e., S =

∑n
i=0 tia

y+i. Then,

S ≤ a− 1
ln(a)

cost(Topt)

Proof. First, note that an edge e used at rate r in Topt will be used at the rate
ay+m, where m is the smallest integer i such that ay+i is no less than r. Indeed,
e is used at rate r in Topt if and only if the maximum rate of a node connecting
to the source via e is r, and every such node will be rounded to ay+m. Next,2

let r = ax+m. If x ≤ y then the rounded up cost is ay−x times the original cost;
otherwise, if x > y, is ay+1−x times the original cost. Hence, the expected factor
by which the cost of each edge increases is

∫ x

0

ay+x−1dy +
∫ 1

x

ay−xdy =
a− 1
ln a

By linearity of expectation, the expected cost after rounding of Topt is

S ≤ a− 1
ln a

cost(Topt)

2 Our proof follows the proof of Lemma 4 in [5]
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Theorem 4. The approximation ratio of the algorithm given in Figure 4 is

min
a

(
(α − β)

a− 1
ln a

+ β
a

ln a

)

Proof. Let Approxk be the tree added when considering rate rk. Then, by Lemma
2,

cost(Approxk) ≤ αay+ktk + βay+k+1tk+1 + βay+k+2tk+2 + · · ·+ βay+ntn

where n is the total number of rates after rounding. Thus, we obtain the
following upper bound on the total cost of our approximate solution.

cost(Approx) ≤ αt1a
y + βt2a

y + βt3a
y + · · ·+ βtn−1a

y + βtnay

+ αt2a
y+1 + βt3a

y+1 + · · ·+ βtn−1a
y+1 + βtnay+1

. . .
+ αtn−1a

y+n−1 + βtnay+n−1

+ αtnay+n

= (α−β)S+β×




t1a
y + t2a

y + t3a
y + · · ·+ tn−1a

y + tnay

+ t2a
y+1 + t3a

y+1 + · · ·+ tn−1a
y+1 + tnay+1

. . .
+ tn−1a

y+n−1 + tnay+n−1

+ tnay+n




≤ (α−β)S+β×




...

t1a
y−n+1

...

t1a
y−n+2 + t2a

y−n+2
...

t1a
y−n+3 + t2a

y−n+3 + t3a
y−n+3

...
...

...
. . .

...

t1a
y−1 + t2a

y−1 + t3a
y−1 + · · ·+ tn−1a

y−1
...

t1a
y + t2a

y + t3a
y + · · ·+ tn−1a

y + tnay

+ t2a
y+1 + t3a

y+1 + · · ·+ tn−1a
y+1 + tnay+1

. . .
+ tn−1a

y+n−1 + tnay+n−1

+ tnay+n




≤ (α−β)S+βS

(
1 +

1
a

+
1
a2

+ · · ·
)

≤ (α−β)
a− 1
ln a

cost(Topt)+β
a

ln a
cost(Topt)

where the last inequality follows from Lemma 3.
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Numerically, we obtain approximation ratios of 3.802, 4.059, respectively
4.311, when the α-approximation β-convex Steiner tree algorithm used in Figure
4 is the algorithm in [10], [3], respectively the MST heuristic.
Remark. The algorithm in Figure 4 can be easily derandomized using the same
techniques as in [5]

6 Conclusions and Open Problems

In this paper we have considered a generalization of the Steiner problem in which
each node possesses a rate and the cost of an edge with length l in a Steiner
tree T connecting the terminals is l · re, where re is the maximum rate in the
component of T −{e} that does not contain the source. We have given improved
approximation algorithms finding trees with a cost at most 1.960 (respectively
3.802) times the minimum cost for the case of two (respectively unbounded
number of) non-zero rates. Our improvement is based on the analysis of the
gain resulting from the reuse of higher rate edges in the connectivity of the
lower rate edges. An interesting open question is to extend this analysis to the
case of three non-zero rates. The best known approximation factor for this case,
is α(5 + 4

√
2)/7 ≈ 2.358 [2, 13].
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