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Abstract. The Quality of Service Multicast Tree Problem is a gener-
alization of the Steiner tree problem which appears in the context of
multimedia multicast and network design. In this generalization, each
node possesses a rate and the cost of an edge with length l in a Steiner
tree T connecting the source to non-zero rate nodes is l · re, where re

is the maximum node rate in the component of T − {e} that does not
contain the source. The best previously known approximation ratios for
this problem (based on the best known approximation factor of 1.549
for the Steiner tree problem in networks) are 2.066 for the case of two
non-zero rates and 4.212 for the case of unbounded number of rates.
In this paper we give improved approximation algorithms with ratios of
1.960 and 3.802, respectively. When the minimum spanning tree heuris-
tic is used for finding approximate Steiner trees, then the previously best
known approximation ratios of 2.667 for two non-zero rates and 5.542 for
unbounded number of rates are reduced to 2.414 and 4.311, respectively.
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1 Introduction

The Quality of Service Multicast Tree (QoSMT) problem appears in two different
contexts: multimedia distribution for users with different bitrate requests [8] and
the general design of interconnection networks with different grade of service
requests [7]. The problem was formulated as a natural generalization of the
Steiner tree problem under the names “Multi-Tier Steiner Tree Problem” [9]
and “Grade of Service Steiner Tree Problem” [14]. More recently, the problem
has been considered by [5, 8] in the context of multimedia distribution. This
problem generalizes the Steiner tree problem in that each node possesses a rate
and the cost of a link is not constant but depends both on the cost per unit of
transmission bandwidth and the maximum rate routed through the link.

Formally, the QoSMT problem can be stated as follows (see [5]). Let G =
(V, E, l, r) be a graph with two functions, l : E → R+ representing the length
of each edge, and r : V → R+ representing the rate of each node. Let {r0 =
0, r1, r2, . . . rN} be the range of r and Si be the set of all nodes with rate ri.
The QoSMT problem asks for a minimum cost subtree T of G spanning a given
source node s and nodes in

⋃

i≥1 Si, all of which are referred to as terminals.
The cost of an edge e in T is cost(e) = l(e)re, where re, called the rate of edge
e, is the maximum rate in the component of T − {e} that does not contain the
source. Note that the nodes in S0, i.e., zero rate nodes, are not required to be
connected to the source s, but may serve as Steiner points for the output tree
T .

The QoSMT problem is equivalent to the Grade of Service Steiner Tree Prob-
lem (GOSST) [14], which has a slightly different formulation. In GOSST there
is no source node and edge rates re should be assigned such that the minimum
edge rate on the tree path from a terminal with rate ri to a terminal with rate
rj is at least min(ri, rj). It is not difficult to see that these two formulations are
equivalent. Indeed, an instance of QoSMT can be transformed into an instance
of GOSST by assigning the highest rate to the source. The cost of an edge will
remain the same, since each edge e in a tree T will be on the path from the
source to the node of the highest rate in the component of T −{e} that does not
contain the source. Conversely, an instance of GOSST can be transformed into
a QoSMT by giving source status to any node with the highest rate.

The QoSMT/GOSST problem was studied before in several contexts. Current
et al. [7] gave an integer programming formulation for the problem and proposed
a heuristic algorithm for its solution. Colbourn and Xue [6] presented an O(r3n)
time algorithm for solving the problem on a series-parallel graph, where n is the
number of nodes and r is the number of grades of service (distinct rates). Some
results for the case of few rates were obtained by Balakrishnan et al. in [1] and
[2]. Specifically, [2] (see also [14]) suggested an algorithm for the case of two
non-zero rates with approximation ratio of 4

3α < 2.066, where α < 1.550 is the
best approximation ratio of an algorithm for the Steiner tree problem. Recently,
Charikar et al. [5] gave the first constant-factor approximation algorithm for
an unbounded number of rates. They achieved an approximation ratio of eα <
4.212.
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Steiner Tree Algorithm LCA [12] LCA +RNS[11] BR [15, 3] MST [13]

Runtime polynomial polynomial O(n3) [16] O(n log n + m) [10]

Best previous 4

3

1+ln 3

2
+ ε 20

9
+ ε 22

9

8

3

approximation ratio [2, 14] < 2.066 + ε < 2.223 + ε < 2.445 < 2.667

Improved ratio – 1.960+ε 2.237 2.414
Table 1. QoSMT problem with 2 rates. Runtime and approximation ratios of previ-
ously known algorithms and of the algorithms given in this paper. In the runtime, n

and m denote the number of nodes and edges in the original graph G = (V, E), respec-
tively. Approximation ratios associated with polynomial-time approximation schemes
are accompanied by a +ε to indicate that they approach the quoted value from above
and do not reach this value in polynomial time.

Steiner Tree Algorithm LCA [12] RNS[11] BR [15, 3] MST [13]

Best previous e 1+ln3

2
+ ε e 5

3
+ ε e 11

6
2e

approximation ratio [11] < 4.212 + ε < 4.531 + ε < 4.984 < 5.44

Improved ratio – 3.802 + ε 4.059 4.311
Table 2. QoSMT problem with an arbitrary number of rates. Approximation ratios of
previously known algorithms and of the algorithms given in this paper.

In this paper we give algorithms with improved approximation factors. Our
algorithms have an approximation ratio of 1.960 when there are two non-zero
rates and an approximation ratio of 3.802 when there is an unbounded number of
rates. The improvement comes from the reuse of higher rate edges in establishing
connectivity for lower rate nodes. We give the first analysis of the gain resulting
from such reuse, critically relying on approximation algorithms for computing
k-restricted Steiner trees. To improve solution quality, we use different Steiner
tree algorithms at different stages of the computation. In particular, we use both
the Steiner tree algorithm in [12] which has the currently best approximation
ratio and the algorithm in [11] which has the best approximation ratio among
Steiner tree algorithms producing 3-restricted trees.

Tables 1 and 2 summarize the results of this paper. They present previ-
ously known approximation ratios using various Steiner tree approximation al-
gorithms. Note that along with the best approximation ratios resulting from the
use of the loss-contracting algorithm in [12], we also give approximation ratios
resulting from the use of the algorithm in [11] and the more practical algorithms
in [3, 13, 15].

The rest of the paper is organized as follows. In the next section, we tighten
the analysis given in [4] for the k-restricted Steiner ratio. In Section 3, we intro-
duce the so called β-convex Steiner tree approximation algorithms and tighten
their performance bounds. We give the improved approximation algorithms for
QoSMT problem with two, respectively unbounded number of non-zero rates in
Sections 4 and 5. Finally, we conclude in Section 6.
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u v

Fig. 1. Optimal Steiner tree T represented as a complete binary tree. Extreme termi-
nals u and v form a diametrical pair of terminals, extreme edges (the path between
u and v) are shown thicker. Each Li represents the total length of a collection of
paths (e.g., dashed paths) connecting internal nodes of T to non-extreme terminals via
non-extreme edges.

2 A Tighter Analysis of the k-restricted Steiner Ratio

In this section, we tighten the analysis given in [4] for the k-restricted Steiner
ratio. The tightened results will be used later to prove the approximation ratio of
our algorithms. The exposition begins with a claim from [4] which encapsulates
several of the proofs provided in that paper. This claim is then used in a manner
slightly different from [4] to arrive at a stronger result.

We begin by introducing some definitions. A Steiner tree is called full if every
terminal is a leaf. A Steiner tree can be decomposed into components which are
full by breaking the tree up at the non-leaf terminals. A Steiner tree is called
k-restricted if every full component has at most k terminals. Let us denote the
length of the optimum k-restricted Steiner tree as optk and the length of the
optimum unrestricted Steiner tree as opt. By duplicating nodes and introducing
zero length edges, it can be assumed that a Steiner tree T is a complete binary
tree (see Figure 1). Furthermore, we may assume that the leftmost and rightmost
terminals form a diametrical pair of terminals, i.e., the distance between the
leftmost and the rightmost terminals is the largest distance between any two
vertices in the graph. The leftmost and rightmost terminals will be called extreme
terminals, and the edges on the path between them will be called extreme edges.

Let the k-restricted Steiner ratio ρk be ρk = sup optk

opt
, where the supremum is

taken over all instances of the Steiner tree problem. It has been shown in [4] that

ρk = (r+1)2r+s

r2r+s
, where r and s are obtained from the decomposition k = 2r + s,

0 ≤ s < 2r.
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Lemma 1. [4] Given a Steiner tree T , there exist k-restricted Steiner trees Ti,
i = 1, 2, . . . , r2r + s such that l(Ti) = l(T ) + Li, where each Li represents the
total length of a collection of paths connecting internal nodes of T to non-extreme
terminals via non-extreme edges in such a way that each non-extreme edge of T
is counted at most 2r times in the sum L1 + L2 + · · · + Lr2r+s.

The claim in [4] is stated for an optimum Steiner tree T , but optimality is
not needed in the proof.

We now use Lemma 1 to obtain a tighter bound on the length of the optimal
k-restricted Steiner tree.

Theorem 1. For every full Steiner tree T , optk ≤ ρk(l−D)+D, where l = l(T )
is the length of T and D = D(T ) is the length of the longest path in T .

Proof. Lemma 1 implies that L1 + L2 + · · · + Lr2r+s ≤ 2r(l − D). From this it
follows that there exists Lm such that Lm ≤ 2r

r2r+s
(l−D). Since l(Tm) = l+Lm,

it follows that l(Tm) ≤ l + 2r

r2r+s
(l − D). Therefore,

optk ≤ l(Tm)

≤ l +
2r

r2r + s
(l − D)

=

(

1 +
2r

r2r + s

)

(l − D) + D

= ρk(l − D) + D

We now strengthen this theorem to the case of partitioned trees.

Corollary 1. For every Steiner tree T partitioned into edge-disjoint full com-
ponents T i,

optk ≤
∑

i

(

ρk(l(T i) − D(T i)) + D(T i)
)

Proof. Let optik be the length of the optimal k-restricted tree for the full com-
ponent T i. Then,

optk ≤
∑

i

optik ≤
∑

i

(

ρk(l(T i) − D(T i)) + D(T i)
)

3 β-Convex Steiner Tree Approximation Algorithms

In this section we introduce β-convex α-approximation Steiner tree algorithms
and show tighter upper bounds on their output when applied to the QoSMT
problem.

Definition 1. A Steiner tree heuristic A is called a β-convex α-approximation
Steiner tree algorithm if there exist an integer m and non-negative real numbers
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λi, i = 2, . . . , m, with β =
∑m

i=2 λi and α =
∑m

i=2 λiρi such that the length of
the tree computed by A, l(A), is upper bounded by

l(A) ≤
m

∑

i=2

λiopti,

where opti is the length of the optimal i-restricted Steiner tree.

The MST-algorithm [13] is 1-convex 2-approximation since its output is the
optimal 2-restricted Steiner tree of length opt2. Every k-restricted approximation
algorithm from [3] is 1-convex – the sum of coefficients in the approximation ratio
always equals to 1, e.g., for k = 3, it is 1-convex 11/6-approximation algorithm
since the output tree is bounded by 1

2opt2 + 1
2opt3. The output tree for PTAS

[11] converges to the optimal 3-restricted Steiner tree and has length (1+ ε)opt3,
therefore, it is (1 + ε)-convex 5

3 (1 + ε)-approximation algorithm. The currently

best approximation ratio of 1 +
√

3
2 is achieved by heuristic from [12] which is

not known to be β-convex for any value of β.
Given a β-convex α-approximation algorithm A, it follows from Theorem 1

that

l(A) ≤
∑

i

λiopti ≤
∑

i

λiρi(opt − D) + βD = α(opt − D) + βD (1)

Let OPT be the optimum cost QoSMT tree T , and let ti be the length of
rate ri edges in T . Then,

cost(OPT ) =

N
∑

i=1

riti

Let OPTk be the subtree of the optimal QoS Multicast tree OPT induced by
edges of rate ri, i ≥ k. The tree OPTk spans the source s and all nodes of rate
rk and, therefore, an optimal Steiner tree connecting s and rate-rk nodes cannot
be longer than

l(OPTk) =
N

∑

i=k

ti

The main idea of the proposed algorithms for the QoSMT problem is to reuse
connections for the higher rate nodes when connecting lower rate nodes. When
connecting nodes of rate rk, we collapse nodes of rate strictly higher than rk into
the source s thus allowing to reuse higher rate connections for free. Let Tk be an
approximate Steiner tree connecting the source s and all nodes of rate rk after
collapsing all nodes of rate strictly higher than rk into the source s and treating
all nodes of rate lower than rk as Steiner points. If we apply an α-approximation
Steiner tree algorithm for finding Tk, then the resulted length can be bounded
as follows

l(Tk) ≤ αl(OPTk) = αtk + αtk+1 + . . . + αtN
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(c)(a) (b)

Fig. 2. (a) The subtree OPTk of the optimal QoS Multicast tree OPT induced by
edges of rate ri, i ≥ k. Edges of rate greater than rk (shown as solid lines) form a
Steiner tree for s ∪ Sk+1 ∪ . . . SN (filled circles); attached triangles represent edges of
rate rk. (b) Partition of OPTk into edge-disjoint connected components OPT i

k each
containing a single terminal of rate ri, i > k. (c) A connected component OPT i

k which
consists of a path Di

k containing all edges of rate ri, i > k, and attached Steiner trees
containing edges of rate rk.

The following lemma shows that if the tree Tk is obtained using β-convex α-
approximation Steiner tree algorithm, then we can obtain a tighter upper bound
on the length of Tk.

Lemma 2. Given an instance of the QoSMT problem, the cost of the tree Tk

computed by a β-convex α-approximation Steiner tree algorithm is at most

cost(Tk) ≤ αrktk + β(rktk+1 + rktk+2 + · · · + rktN )

Proof. Let OPTk be the subtree of the optimal QoS Multicast tree OPT induced
by edges of rate ri, i ≥ k. By duplicating nodes and introducing zero length
edges, it can be assumed that OPTk+1 is a complete binary tree with the set of
leaves consisting of the source s and all nodes of rate at least rk+1. The edges of
rate rk form subtrees attached to the tree OPTk+1 connecting rate rk nodes to
OPTk+1 (see Figure 2(a)).

Note that edges of any binary tree T can be partitioned into the edge-disjoint
paths connecting internal nodes with leaves as follows. Each internal node v
(including the degree-2 root) is split into two nodes v1 and v2 such that v1

becomes a leaf incident to one of the downstream edges and v2 becomes a degree-
2 node (or a leaf if v is the root) incident to an edge connecting v to its parent (if
v is not the root) and another downstream edge. Since each node is incident to a
downstream edge, each resulted connected component will be a path containing
exactly one leaf of T connected to an internal node of T .

We break the binary tree OPTk+1 into edge-disjoint paths described above
(see Figure 2(b)) and then consider each such path along with all nodes of
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Input: Graph G = (V, E, l) with two nonzero rates r1 < r2, source s, terminal sets S1

of rate r1 and S2 of rate r2, Steiner tree α1-approximation algorithm A1 and a
β-convex α2-approximation algorithm A2

Output: Low cost QoSMT spanning all terminals

1. Compute an approximate Steiner tree ST1 for s
S

S1

S

S2 using algorithm A1

2. Compute an approximate Steiner tree T2 for s
S

S2 (treating all other points as
Steiner points) using algorithm A1. Next, contract T2 into the source s and
compute the approximate Steiner tree T1 for s and remaining rate r1 points using
algorithm A2. Let ST2 be T1

S

T2

3. Output the minimum cost tree among ST1 and ST2

Fig. 3. QoSMT approximation algorithm for two non-zero rates

rate rk that are attached to it. This results in a decomposition of OPTk into
edge-disjoint connected components OPT i

k, where each component consists of a
path Di

k = OPT i
k ∩ OPTk+1 and attached Steiner trees with edges of rate rk

(see Figure 2(c)). Furthermore, note that the total length of the paths Di
k is

l(OPTk+1) = tk+1 + tk+2 + · · · + tN .
Now we decompose the tree Tk along these full components OPT i

k and, by
Corollary 1, we get:

l(Tk) ≤
∑

i

[

α(l(OPT i
k) − Di

k) + βDi
k

]

= αtk + β(tk+1 + tk+2 + · · · + tN )

The lemma follows by multiplying the last inequality by rk.

4 QoSMT Approximation Algorithm for Two Non-Zero

Rates

In this section we give a generic approximation algorithm for the QoSMT prob-
lem with two non-zero rates (see Figure 3) and analyze its approximation ratio.

Recall that an edge e has rate ri if the largest node rate in the component
of T − {e} that does not contain the source is ri. Let the optimal Steiner tree
in G have cost opt = r1t1 + r2t2, with t1 being the total length of the edges of
rate r1 and t2 being the total length of the edges of rate r2. The algorithm in
Figure 3 uses as subroutines two Steiner tree algorithms: an algorithm A1 with an
approximation ratio of α1, and a β-convex algorithm A2 with an approximation
ratio of α2. It outputs the minimum cost Steiner tree between the tree ST1
obtained by running A1 with a set of terminals containing the source and the
nodes with both high and low non-zero rate, and the tree ST2 obtained by
running A1 with a set of terminals containing the source and all high rate nodes,
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contracting the resulting tree into the source, and running A2 with a set of
terminals containing the contracted source and the low rate nodes.

Theorem 2. The algorithm in Figure 3 has an approximation ratio of

max

{

α2, max
r

α1
α1 − α2r + βr

α1 − α2r + βr2
opt

}

Proof. We can bound the cost of ST1 by cost(ST1) ≤ α1r2(t1 + t2). To obtain
a bound on the cost of ST2 note that cost(T2) ≤ α1r2t2, and that, by Lemma
2, cost(T1) ≤ α2r1t1 + βr1t2.

Thus, the following two bounds for the costs of ST1 and ST2 follow:

cost(ST1) ≤ α1r2t1 + α1r2t2

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2

We distinguish the following two cases:
Case 1: Let βr1 ≤ (α2 − α1)r2. Then

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2

≤ α1r2t2 + α2r1t1 + (α2 − α1)r2t2

≤ α2(r2t2 + r1t1)

= α2opt

Case 2: Let βr1 > (α2 − α1)r2. Then the following two values are positive

x1 =
r1

α1r2
(βr1 − (α2 − α1)r2)

x2 = r2 − r1

We will bound the following linear combination

x1cost(ST1) + x2cost(ST2) =
r1(βr1 − (α2 − α1)r2)

α1r2
cost(ST1) + (r2 − r1)cost(ST2)

≤ r1(βr1 − (α2 − α1)r2)(t1 + t2)

+(r2 − r1)(α1r2t2 + α2r1t1 + βr1t2)

= ((β − α2)r
2
1 + r1r2α1)t1 + ((β − α2)r1r2 + r2

2α1)t2

= ((β − α2)r1 + r2α1)(r1t1 + r2t2)

≤ (βr1 + α1r2 − α2r1)opt (2)

Let Approx be the cost of the tree produced by our approximation algorithm.
The inequality (2) implies that

Approx = min{cost(ST1), cost(ST2)}

=
x1 min{cost(ST1), cost(ST2)}+ x2 min{cost(ST1), cost(ST2)}

x1 + x2
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≤ x1cost(ST1) + x2cost(ST2)

x1 + x2

≤ βr1 + α1r2 − α2r1
r1

α1r2

(βr1 − (α2 − α1)r2) + r2 − r1
opt

≤ α1
βr1r2 + α1r

2
2 − α2r1r2

βr2
1 − (α2 − α1)r2r1 + α1r2

2 − α1r1r2
opt

≤ α1
α1 − α2r + βr

α1 − α2r + βr2
opt

where r = r1

r2

.

Summarizing the two cases we obtain that Approx is at most the maximum
of two values – α2opt and α1

α1−α2r+βr

α1−α2r+βr2 opt – which proves the theorem.

We can use Theorem 2 to obtain numerical bounds on the approximation
ratios of our solution. Using that α1 = 1+ ln 3/2+ ε for the algorithm from [12],
α2 = 5/3 + ε for the algorithm from [11], α1 = α2 = 11/6 for the algorithm
from [3], and α1 = α2 = 2 for the MST heuristic, and β → 1 for all of the above
algorithms (except for the algorithm from [12]), we maximize the expression in
Theorem 2 to obtain the following theorem.

Theorem 3. If the algorithm from [12] is used as A1 and the algorithm from
[11] is used as A2, then the approximation ratio of the QoSMT algorithm in
Figure 3 is 1.960 + ε. If the algorithm from [11] is used in place of both A1 and
A2, then the approximation ratio is 2.059 + ε. If the algorithm from [3] is used
in place of both A1 and A2, then the ratio is 2.237. If the MST heuristic is used
in place of both A1 and A2, then the ratio is 2.414.

5 Approximation Algorithm for the QoSMT with

Unbounded Number of Rates

In this section, we propose an algorithm for the case of a graph with arbitrarily
many non-zero rates r1 < r2 < · · · < rN . Our algorithm (see Figure 4) is a
modification of the algorithm in [5]. As in [5], node rates are rounded up to the
closest power of some number a starting with ay, where y is picked uniformly at
random between 0 and 1. In other words, we round up node rates to numbers in
the set {ay, ay+1, ay+2, . . .}. The only difference is that we contract each approx-
imate Steiner tree, Tk, constructed over nodes of rounded rate ay+k, instead of
simply taking their union as in [5]. This allows contracted edges to be reused at
zero cost by Steiner trees connecting lower rate nodes. The following analysis of
this improvement shows that it decreases the approximation ratio from 4.211 to
3.802.

Let Topt be the optimal QoS Multicast tree, and let ti be the total length
of the edges of Topt with rates rounded to ay+i. First, we prove the following
technical lemma:
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Input: Graph G = (V, E, l), source s, sets Si of terminals with rate ri, positive
number a, and α-approximation β-convex Steiner tree algorithm
Output: Low cost QoSMT spanning all terminals

1. Pick y uniformly at random between 0 and 1. Round up each rate to the closest
power of some number a starting with ay, i.e., round up to numbers in the set
{ay, ay+1, ay+2, . . .}. Form new terminal sets S′

i which are unions of terminal sets
with rates rounded to the same number r′

i

2. T ← ∅
3. For each non-zero rounded rate r′

i, in decreasing order, do:

Find an α-approximate Steiner tree Ti spanning s
S

S′

i

T ← T ∪ Ti

Contract Ti into source s

4. Output T

Fig. 4. Approximation algorithm for multirate QoSMT

Lemma 3. Let S be the cost of Topt after rounding node rates as in Figure 4,
i.e., S =

∑n

i=0 tia
y+i. Then,

S ≤ a − 1

ln(a)
cost(Topt)

Proof. Our proof follows the proof of Lemma 4 in [5]. First, note that an edge
e used at rate r in Topt will be used at the rate ay+m, where m is the smallest
integer i such that ay+i is no less than r. Indeed, e is used at rate r in Topt if
and only if the maximum rate of a node connecting to the source via e is r, and
every such node will be rounded to ay+m. Next, let r = ax+m. If x ≤ y, then the
rounded up cost is ay−x times the original cost; otherwise, if x > y, is ay+1−x

times the original cost. Hence, the expected factor by which the cost of each
edge increases is

∫ x

0

ay+x−1dy +

∫ 1

x

ay−xdy =
a − 1

ln a

By linearity of expectation, the expected cost after rounding of Topt is

S ≤ a − 1

ln a
cost(Topt)

Theorem 4. The algorithm given in Figure 4 has an approximation ratio of

min
a

(

(α − β)
a − 1

ln a
+ β

a

ln a

)

Proof. Let Approx be the cost of the tree returned by the algorithm in Figure
4, and Approxk be the cost of the tree Tk constructed by the algorithm when
considering rate rk. Then, by Lemma 2,

Approxk ≤ αay+ktk + βay+k+1tk+1 + βay+k+2tk+2 + · · · + βay+ntn
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where n is the total number of rates after rounding. Thus, we obtain the following
upper bound on the total cost of our approximate solution.

Approx ≤ αt1a
y + βt2a

y + βt3a
y + · · ·+ βtn−1a

y + βtnay

+ αt2a
y+1 + βt3a

y+1 + · · ·+ βtn−1a
y+1 + βtnay+1

. . .

+ αtn−1a
y+n−1 + βtnay+n−1

+ αtnay+n

= (α− β)S + β ·















t1a
y + t2a

y + t3a
y + · · ·+ tn−1a

y + tnay

+ t2a
y+1 + t3a

y+1 + · · ·+ tn−1a
y+1 + tnay+1

. . .

+ tn−1a
y+n−1 + tnay+n−1

+ tnay+n















≤ (α−β)S+β·

















































...

t1a
y−n+1

...

t1a
y−n+2 + t2a

y−n+2
...

t1a
y−n+3 + t2a

y−n+3 + t3a
y−n+3

...
...

...
. . .

...

t1a
y−1 + t2a

y−1 + t3a
y−1 + · · ·+ tn−1a

y−1
...

t1a
y + t2a

y + t3a
y + · · ·+ tn−1a

y + tnay

+ t2a
y+1 + t3a

y+1 + · · ·+ tn−1a
y+1 + tnay+1

. . .

+ tn−1a
y+n−1 + tnay+n−1

+ tnay+n

















































≤ (α−β)S+βS

(

1 +
1

a
+

1

a2
+ · · ·

)

≤ (α−β)
a − 1

ln a
cost(Topt)+β

a

ln a
cost(Topt)

where the last inequality follows from Lemma 3.

Numerically, we obtain approximation ratios of 3.802, 4.059, respectively
4.311, when the β-convex α-approximation Steiner tree algorithm used in Figure
4 is the algorithm in [11], [3], respectively the MST heuristic.

Remark. The algorithm in Figure 4 can be easily derandomized using the same
techniques as in [5]



Approximation Algorithms for the QoS Multicast Tree Problem 13

6 Conclusions and Open Problems

In this paper we have considered a generalization of the Steiner problem in which
each node possesses a rate and the cost of an edge with length l in a Steiner
tree T connecting the terminals is l · re, where re is the maximum rate in the
component of T −{e} that does not contain the source. We have given improved
approximation algorithms finding trees with a cost at most 1.960 (respectively
3.802) times the minimum cost for the case of two (respectively unbounded
number of) non-zero rates. Our improvement is based on the analysis of the
gain resulting from the reuse of higher rate edges in the connectivity of the
lower rate edges. An interesting open question is to extend this analysis to the
case of three non-zero rates. The best known approximation factor for this case,
is α(5 + 4

√
2)/7 < 2.359 [2, 14].
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