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Abstract

DNA probe arrays, or DNA chips, have emerged as a core genomic technology that enables cost-effective gene ex-

pression monitoring, mutation detection, single nucleotide polymorphism analysis and other genomic analyses. DNA

chips are manufactured through a highly scalable process, called Very Large-Scale Immobilized Polymer Synthesis

(VLSIPS), that combines photolithographic technologies adapted from the semiconductor industry with combinatorial

chemistry. Commercially available DNA chips contain more than a half million probes and are expected to exceed one

hundred million probes in the next generation. This paper is one of the first attempts to apply VLSI Computer-Aided

Design methods to the physical design of DNA chips, where the main objective is to minimize total border cost (i.e.,

the number of nucleotide mismatches between adjacent sites).

By exploiting analogies between manufacturing processes for DNA arrays and for VLSI chips, we demonstrate

the potential for transfer of methodologies from the 40-year old field of electronic design automation to the newer

DNA array design field. Our main contributions in this paper are the following. First, we propose several partitioning-

based algorithms for DNA probe placement that improve solution quality by over 4% compared to best previously

known methods. Second, we give a new design flow for DNA arrays which enhances current methodologies by adding

flow-awareness to each optimization step and introducing feedback loops. Third, we propose solution methods for

new formulations integrating multiple design steps, including probe selection, placement, and embedding. Finally, we

introduce new techniques to experimentally evaluate the scalability and suboptimality of existing and newly proposed

probe placement algorithms. Interestingly, we find that DNA placement algorithms appear to have better suboptimality

properties than those recently reported for VLSI placement algorithms [13], [15].
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2 I. INTRODUCTION

DNA probe arrays – DNA arrays or DNA chips for short – have recently emerged as one of

the core genome technologies. They provide a cost-effective method for obtaining fast and accu-

rate results in a wide range of genomic analyses, including gene expression monitoring, mutation

detection, and single nucleotide polymorphism analysis (see [42] for a survey). The number of

applications is growing at an exponential rate [25], [53], already covering a diversity of fields

ranging from health care to environmental sciences and law enforcement. The reasons for this

rapid acceptance of DNA arrays are a unique combination of robust manufacturing, massive par-

allel measurement capabilities, and highly accurate and reproducible results.

Today, most DNA arrays are manufactured through a highly scalable process, referred to as Very

Large-Scale Immobilized Polymer Synthesis (VLSIPS), that combines photolithographic technolo-

gies adapted from the semiconductor industry with combinatorial chemistry [1], [2], [22]. Similar

to Very Large Scale Integration (VLSI) circuit manufacturing, multiple copies of a DNA array are

simultaneously synthesized on a wafer, typically made out of quartz. To initiate synthesis, linker

molecules including a photo-labile protective group are attached to the wafer, forming a regular 2-

dimensional pattern of synthesis sites. Probe synthesis then proceeds in successive steps, with one

nucleotide (A, C, T, or G) being synthesized at a selected set of sites in each step. To select which

sites will receive nucleotides, photolithographic masks are placed over the wafer. Exposure to light

de-protects linker molecules at the non-masked sites. Once the desired sites have been activated

in this way, a solution containing a single type of nucleotide (which bears its own photo-labile

protection group to prevent the probe from growing by more than one nucleotide) is flushed over

the wafer’s surface. Protected nucleotides attach to the unprotected linkers, initiating the probe

synthesis process. In each subsequent step, a new mask is used to enable selective de-protection

and single-nucleotide synthesis. This cycle is repeated until all probes have been fully synthesized.

As the number of DNA array designs is expected to ramp up in coming years with the ever-

growing number of applications [25], [53], there is an urgent need for high-quality software tools

to assist in the design and manufacturing process. The biggest challenges to rapid growth of DNA

array technology are the drastic increase in design sizes with simultaneous decrease of array cell

sizes – next-generation designs are envisioned to have hundreds of millions of cells of sub-micron

size [2], [42] – and the increased complexity of the design process, which leads to unpredictability

of design quality and design turnaround time. Surprisingly enough, despite huge research efforts



3invested in DNA array applications, very few works are devoted to computer-aided optimization of

DNA array design and manufacturing. Current design practices are dominated by ad-hoc heuristics

incorporated in proprietary tools with unknown suboptimality. This will soon become a bottleneck

for the next generation of high-density arrays, such as the ones currently being designed at Perlegen

[2].

In this paper we exploit the similarities between manufacturing processes for DNA arrays and

VLSI chips and demonstrate significant potential for transfer of electronic design automation

methodologies [19], [49] to the newer DNA array design field. Our main contributions in this

paper are the following:

• A new DNA probe array placement algorithm that recursively places the probes on the chip in

a manner similar to top-down VLSI placers, via a centroid-based strategy, and a new technique

for asynchronous re-embedding of placed probes within the mask sequence. Experimental results

show that combining the new algorithms results in average improvement of 4.0% over best previous

flows (Section III).

• A new design flow for DNA arrays, which enhances current methodologies by adding flow-

awareness to each optimization step and introducing feedback loops (Section IV). In particular, we

propose new solution methods that integrate probe placement and embedding with probe selection

(Section IV-A).

• A comprehensive experimental study demonstrating significant solution quality improvements

for the enhanced methodologies. In particular, we show that 5-7% improvement in border length

can be achieved over the highest-quality scalable flow previously reported in the literature [35],

[38] by a tighter integration of probe placement and embedding (Section IV-B). Furthermore, we

show that an additional improvement in border length of up to 15% can be achieved by integrating

probe selection with probe placement and embedding (Section IV-C).

• New techniques for studying and quantifying the performance of probe placement and embed-

ding algorithms, including the development of benchmarks with known optimal cost and scaling

suboptimality experiments similar to recent studies in the VLSI CAD field (Section V).

The organization of the paper is as follows. Section 2 introduces the various steps in the DNA

array design flow and the problems addressed in this work. Section 3 briefly summarizes previous

work on DNA array physical design. Section 4 gives the new partitioning-based probe placement

algorithm. We also analyze the proposed algorithm runtime complexity and compare its perfor-



4mance against other border minimization algorithms. Section 5 presents new enhancements for

the DNA array design flow. These enhancements, inspired by similar techniques developed in

VLSI CAD design, lead to further reductions in border length. Finally, Section 6 quantifies the

suboptimality and optimality of various probe placement and embedding heuristics.

II. DNA ARRAY DESIGN FLOW

In this section we introduce the main steps of the design flow for DNA arrays, noting the sim-

ilarity to the VLSI design flow and briefly reviewing previous work. The application of this flow

to the design of a DNA chip for studying gene expression in the Herpes B virus is described in

[8]. We later discuss (in Section IV) how the current DNA array design flow may be enhanced by

adding flow-awareness to each optimization step and introducing feedback loops between steps -

techniques that have proved very effective in the VLSI design context [19], [49].

A. Probe Selection

Analogous to logic synthesis in VLSI design, the probe selection step is responsible for im-

plementing the desired functionality of the DNA array. Although probe selection is application-

dependent, several underlying selection criteria are common to all designs, regardless of the in-

tended application [1], [2], [41], [7], [33], [44].

First, in order to meet array functionality, the selected probes must have low hybridization energy

for their intended targets and high hybridization energy for all other target sequences. Hence, a

standard way of selecting probes is to select a probe of minimum hybridization energy from the

set of probes which maximizes the minimum number of mismatches with all other sequences [41].

Second, since selected probes must hybridize under similar operating conditions, they must have

similar melting temperatures.1 Finally, to simplify array design, probes are often constrained to be

substrings of a predetermined nucleotide deposition sequence. Typically, there are multiple probe

candidates satisfying these constraints.

B. Deposition Sequence Design

The number of synthesis steps directly affects manufacturing time and the number of masks in

the mask set, and also directly affects the quantity of defective probes synthesized on the chip.

1At the melting temperature, two complementary strands of DNA are as likely to be bound to each other as they are to be

separated. A practical method for estimating the melting temperature is suggested in [33].



5Therefore, a basic optimization in DNA array design is to minimize the number of synthesis steps.

In the simplest model, this optimization has been reformulated as the classical shortest common su-

persequence (SCS) problem [39], [51]: Given a finite alphabet Σ (for DNA arrays Σ = {A,C,T,G})

and a set P = {p1, ..., pt} ⊆ Σn of probes, find a minimum-length string sopt ∈ Σ∗ such that every

string of P is a subsequence of sopt . (A string pi is a subsequence of sopt if sopt can be obtained

from pi by inserting zero or more symbols from Σ.) The SCS problem has been studied for over

two decades from the point of view of computational complexity, probabilistic and worst-case

analysis, approximation algorithms and heuristics, experimental studies, etc. (see, e.g., [9], [10],

[11], [17], [23], [24], [32], [45]).

The general SCS problem is NP-hard, and cannot be approximated within a constant factor in

polynomial time unless P = NP [32]. On the other hand, a |Σ|-approximation is produced by using

the trivial periodic supersequence s = (x1x2 . . .x|Σ|)
n, where Σ = {x1,x2, . . . ,x|Σ|} Better results

are produced in practice by a simple greedy algorithm usually referred to as the “majority merge”

algorithm [23], or variations of it that add randomization, lookahead, bidirectionality, etc. (see,

e.g., [39]).

Current DNA array design methodologies bypass the deposition design step and use a prede-

fined, typically periodic deposition sequence such as ACTGACT G . . . (see, e.g., [39], [51]).

C. Design of Control and Test Structures

DNA array manufacturing defects can be classified as non-catastrophic, i.e., defects that af-

fect the reliability of hybridization results, but do not compromise chip functionality when main-

tained within reasonable limits, and catastrophic, i.e., defects that render the chip unusable. Non-

catastrophic defects are caused by systematic error sources in the VLSIPS manufacturing process,

such as unintended illumination due to diffraction, internal reflection, and scattering. Their impact

on hybridization reliability of the chip is reduced by using the Perfect Match/Mismatch strategy

[1], [42]. Under this strategy, a so called “mismatch probe” is synthesized next to each functional

probe (“perfect match probe”). The sequence of the mismatch probe is identical to that of the

perfect match probe, except for the middle nucleotide, which is replaced with its Watson-Crick

complement. To reduce the effect of non-catastrophic manufacturing defects and of non-specific

hybridization, under the standard data analysis protocol the hybridization signal is obtained by

subtracting the fluorescence intensity of the mismatch probe from that of the perfect match probe.



6 Catastrophic manufacturing defects affect a large fraction of the probes on the chip, and are typ-

ically caused by missing, out-of-order, or incomplete synthesis steps, wrong or misaligned masks,

etc. These defects can be detected using test structures similar to built-in self-test (BIST) struc-

tures in VLSI design. A common approach is to synthesize a small set of test probes (sometimes

referred to as fidelity probes [30]) on the chip and add their fluorescently labeled complements

to the genomic sample that is hybridized to the chip. Multiple copies of each fidelity probe are

deliberately manufactured at different locations on the chip using different sequences of synthesis

steps. Lack of hybridization at some of the locations where fidelity probes are synthesized can

be used not only to detect catastrophic manufacturing defects, but also to identify the erroneous

manufacturing steps. Further results on test structure design for DNA chips include those in [6],

[14], [47].

D. Physical Design

Physical design for DNA arrays is equivalent to the physical design phase in VLSI design.

It consists of two steps: probe placement, which is responsible for mapping selected probes onto

locations on the chip, and probe embedding, which embeds each probe into the deposition sequence

(i.e., determines synthesis steps for all nucleotides in the probe). The result of probe placement

and embedding is the complete description of the reticles used to manufacture the array.

Under ideal manufacturing conditions, the functionality of a DNA array is not affected by the

placement of the probes on the chip or by the probe synthesis schedules. In practice, since manu-

facturing process is prone to errors, probe locations and synthesis schedules affect to a great degree

the hybridization sensitivity and ultimately the functionality of the DNA array. There are several

types of synthesis errors that take place during array manufacturing. First, a probe may not loose

its protective group when exposed to light, or the protective group may be lost but the nucleotide

to be synthesized may not attach to the probe. Second, due to diffraction, internal reflection, and

scattering, unintended illumination may occur at sites that are geometrically close to intentionally

exposed regions. The first type of manufacturing errors can be effectively controlled by careful

choice of manufacturing process parameters, e.g., by proper control of exposure times and by in-

sertion of correction steps that irrevocably end synthesis of all probes that are unprotected at the

end of a synthesis step [1]. Errors of the second type result in synthesis of unforeseen sequences

in masked sites and can compromise interpretation of hybridization intensities. To reduce such
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Fig. 1. 3-dimensional probe placement with 4 masks and S = ACTG. Total border length is 24 (7 on the A mask, 4

on the C mask, 6 on the T mask, and 7 on the G mask).

uncertainty, one can exploit the freedom available in assigning probes to array sites during place-

ment and in choosing among multiple probe embeddings, when available. The objective of probe

placement and embedding algorithms is therefore to minimize the sum of border lengths in all

masks, which directly corresponds to the magnitude of the unintended illumination effects.2 Re-

ducing these effects improves the signal to noise ratio in image analysis after hybridization, and

thus permits smaller array sites or more probes per array [31].3

Let M1,M2, . . . ,MK denote the sequence of masks used in the synthesis of an array, and let

ei ∈ {A,C,T,G} be the nucleotide synthesized after exposing mask Mi. Every probe in the array

must be a subsequence of the nucleotide deposition sequence S = e1e2 . . .eK . In case a probe

corresponds to multiple subsequences of S, one such subsequence, or “embedding” of the probe

into S, must be chosen as the synthesis schedule for the probe. Clearly, the geometry of the masks

is uniquely determined by the placement of the probes on the array and the particular synthesis

schedule used for each probe.

Formally, the border minimization problem is equivalent to finding a three-dimensional place-

ment of the probes [34]: two dimensions represent the site array, and the third dimension represents

the nucleotide deposition sequence S (see Figure 1). Each layer in the third dimension corresponds

2Compared to VLSI physical design, where multiple design metrics (including area, wirelength, timing, power consumption,

etc.) must be optimized simultaneously, DNA array physical design is simpler in that it must optimize a single objective, namely

total border length.
3Unfortunately, the lack of publicly available information about DNA array manufacturing yield makes it impossible to assign a

concrete economic value to decreases in total border length.



8to a mask that induces deposition of a particular nucleotide (A, C, G, or T ); a probe is embedded

within a “column” of this three-dimensional placement representation. Border length of a given

mask is computed as the number of conflicts, i.e., pairs of adjacent exposed and masked sites in the

mask. Given two adjacent embedded probes p and p′, the conflict distance d(p, p′) is the number

of conflicts between the corresponding columns. The total border length of a three-dimensional

placement is the sum of conflict distances between adjacent probes, and the border minimization

problem (BMP) seeks to minimize this quantity.

A special case is that of a synchronous synthesis regime, in which the nucleotide deposition

sequence S is periodic, and the kth period (ACGT ) of S is used to synthesize a single (the kth)

additional nucleotide in each probe. Since in this case the embedding of a probe is predefined,

the problem reduces to finding a two-dimensional placement of the probes. The border-length

contribution from two probes p and p′ placed next to each other (in the synchronous synthesis

regime) is simply twice the Hamming distance between them, i.e., twice the number of positions

in which they differ.

D.1 Previous Work on Border Length Minimization

The border minimization problem was first considered for uniform arrays (i.e., arrays contain-

ing all possible probes of a given length) by Feldman and Pevzner [20], who proposed an optimal

solution based on 2-dimensional Gray codes. Hannenhalli et al. [26] gave heuristics for the spe-

cial case of synchronous synthesis. Their method is to order the probes in a traveling salesman

problem (TSP) tour that heuristically minimizes the total Hamming distance between neighboring

probes. The tour is then threaded into the two-dimensional array of sites, using a technique similar

to one previously used in VLSI design [40]. For the same synchronous context, [34] suggested

an epitaxial, or “seeded crystal growth”, placement heuristic similar to heuristics explored in the

VLSI circuit placement literature by [43], [48]. Very recently, [35], [38] proposed methods with

near-linear runtime combining simple ordering-based heuristics for initial placement, such as lexi-

cographic sorting followed by threading, with heuristics for placement improvement, such optimal

reassignment of an “independent” set of probes [50] chosen from a sliding window [18], or a row-

based implementation of the epitaxial algorithm that speeds-up the computation by considering

only a limited number of candidates when filling each array site.4 Previous approaches can be

4The work of [35], [38] also extends probe placement algorithms to handle practical concerns such as pre-placed control probes,

presence of polymorphic probes, unintended illumination between non-adjacent array sites, and position-dependent border conflict
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Fig. 2. (a) Periodic deposition sequence. (b) Synchronous embedding of the probes AGTA and GT GA gives 6 border

conflicts (indicated by arrows). (c) “As soon as possible” asynchronous embedding of the probes AGTA and GTGA

gives only 2 border conflicts.

summarized as follows:

1. TSP+Threading [26]: This algorithm computes a TSP tour in the complete graph with the

probes as vertices and edge costs given by pairwise Hamming distances. The tour is then threaded

into the two-dimensional array of sites using the 1-threading method described in [26].

2. Row-Epitaxial [35], [38]: An implementation of the epitaxial algorithm in [34], where the

computation is sped up by (a) filling array sites in a predefined order (row by row), and (b) con-

sidering only a limited number of candidate probes when filling each array site. Unless otherwise

specified, the number of candidates is bounded by 20000 in our experiments.

3. Sliding-Window Matching (SWM) [35], [38]: After an initial placement is obtained by 1-

threading of the probes in lexicographic order, this algorithm iteratively improves the placement

by selecting an “independent” set of probes from a sliding window and then optimally re-placing

them using a minimum-weight perfect matching algorithm (cf. “row-ironing” [12]).

The general border minimization problem, which allows arbitrary, or asynchronous probe em-

beddings (see Figure 2(c)), was introduced by Kahng et al. [34]. They proposed a dynamic pro-

gramming algorithm that embeds a given probe optimally with respect to fixed embeddings of the

probe’s neighbors. This algorithm is used as a building block for designing several algorithms that

improve a placement by re-embedding probes, but without re-placing them. An important aspect

of probe re-embedding is the probe processing order of re-embedding, i.e, the order that specifies

when a probe gets re-embedded. Each of the following two algorithms uses the dynamic program-

ming algorithm in [34] for optimal re-embedding of a probe with respect to the embeddings of its

weights.



10neighbors. They only differ in the processing order of probe re-embedding.

1. Batched greedy [34]: This algorithm optimally re-embeds a probe that gives the largest de-

crease in conflict cost, until no further decreases are possible. To improve the runtime, the greedy

choices are made in phases, in a batched manner: in each phase the gains for all probes are com-

puted, and then a maximal set of non-adjacent probes is selected for re-embedding by traversing

the probes in non-increasing order of gain.

2. Chessboard [34]: In this method, the 2-dimensional placement grid is divided into “black” and

“white” locations as in the chessboard (or checkerboard) grid of Akers [3]. The sites within each set

represent a maximum independent set of locations. The Chessboard algorithm alternates between

optimal re-embedding of probes placed in “black” (respectively “white”) sites with respect to their

neighbors (all of which are at opposite-color locations).

III. PARTITION BASED PROBE PLACEMENT

In this section we propose a probe placement heuristic inspired from min-cut partitioning based

placement algorithms for VLSI circuits. Recursive partitioning has been the basis of numerous

successful VLSI placement algorithms [5], [12], [52] since it produces placements with accept-

able wirelength within practical runtimes. The main goal of partitioning in VLSI is to divide a

set of cells into two or four sets with minimum edge or hyperedge cut between these sets. The

min-cut goal is typically achieved through the use of the Fiduccia-Mattheyses procedure [21],

often in a multilevel framework [12]. Unfortunately, direct transfer of the recursive min-cut place-

ment paradigm from VLSI to VLSIPS is blocked by the fact that the possible interactions be-

tween probes must be modeled by a complete graph and, furthermore, the border cost between

two neighboring placed partitions can only be determined after the detailed placement step which

finalizes probe placements at the border between the two partitions. In this section we describe a

new centroid-based quadrisection method that applies the recursive partitioning paradigm to DNA

probe placement.

Assume that at a certain depth of the recursive partitioning procedure, a probe set R is to be

quadrisectioned into four partitions R1,R2,R3 and R4. We would like to iteratively assign each

probe p ∈ R to some partition Ri such that a minimum number of conflicts will result. 5 To ap-

5Observe that VLSI partitioning seeks to maximize the number of nets contained within partitions (equivalently, minimize cut

nets) as it assigns cells to partitions. In contrast, DNA partitioning seeks to minimize the expected number of conflicts within

partitions as it assigns cells to partitions, since this leads to overall conflict reduction.



11Input: Partition (set of probes) R

Output: Probes C0,C1,C2, C3 to be used as centroids for the 4 subpartitions

Randomly select probe C0 in R

Choose C1 ∈ R maximizing d(C1,C0)

Choose C2 ∈ R maximizing d(C2,C0)+d(C2,C1)

Choose C3 ∈ R maximizing d(C3,C0)+d(C3,C1)+d(C3,C2)

Return (C0,C1,C2,C3)

Fig. 3. The SelectCentroid() procedure for selecting the centroid probes of subpartitions.

Input: Partition R and the neighboring partition Rn; rectangular region consisting of columns cle f t to cright and

rows rtop to rbottom

Output: Probes in R are placed in row-epitaxial fashion

Let Q = R∪Rn

For i = rtop to rbottom

For j = cle f t to cright

Find probe q ∈ Q such that d(q, pi−1, j)+d(q, pi, j−1) is minimum

Let pi, j = q

Q = Q\q

Fig. 4. The Reptx() procedure for placing a partition’s probe set within the rectangular array of sites corresponding

to the partition. As explained in the accompanying text, our implementation maintains the size of Q constant at

|Q|= 20000 through a borrowing heuristic.

proximately achieve this goal within practical runtimes, we propose to base the assignment on the

number of conflicts between p and some representative, or centroid, probe C i ∈ Ri. In our ap-

proach, for every partition R we select four centroids, one for each of the four new (sub-)partitions.

To achieve balanced partitions, we heuristically find four probes in R that have maximum total

distance among themselves, then use these as the centroids. This procedure, described in Figure 3,

is reminiscent of the k-center approach to clustering studied by Alpert et al. [4], and of methods

used in large-scale document classification [16].

After a given maximum partitioning depth L is reached, a final detailed placement step is needed

to place each partition’s probes within the partition’s corresponding region on the chip. For this

step, we use the row-epitaxial algorithm of [35], [38], which for completeness of exposition is

replicated in Figure 4.



12Input: Chip size N×N; set R of DNA probes

Output: Probe placement which heuristically minimizes total conflicts

Let l = 0 and let L = maximum recursion depth

Let Rl
1,1 = R

For l = 0 to L−1

For i = 1 to 2l

For j = 1 to 2l

(C0,C1,C2,C3)← SelectCentroid(Rl
i, j)

Rl+1
2i−1,2 j−1←{C0}; Rl+1

2i−1,2 j←{C1}; Rl+1
2i,2 j−1←{C2}; Rl+1

2i,2 j← {C3}

For each probe p ∈ Rl
i, j \{C0,C1,C2,C3}

Insert p into the yet-unfilled partition of Rl
i, j whose centroid has minimum distance to p

For i = 1 to 2L

For j = 1 to 2L

Reptx(RL
i, j, RL

i, j+1)

Fig. 5. Partitioning-based DNA probe placement heuristic.

The complete partitioning-based placement algorithm for DNA arrays is given in Figure 5. At

a high level, our method resembles global-detailed approaches in the VLSI CAD literature [29],

[46]. The algorithm recursively quadrisects every partition at a given level, assigning the probes so

as to minimize distance to the centroids of subpartitions.6 In the innermost of the three nested for

loops of Figure 5, we apply a multi-start heuristic, trying r different random probes as seed C0 and

using the result that minimizes total distance to the centroids. Once the maximum level L of the

recursive partitioning is attained, detailed placement is executed via the row-epitaxial algorithm.

Additional details and commentary are as follows.

• Within the innermost of the three nested for loops, our implementation actually performs, and

benefits from, a dynamic update of the partition centroid whenever a probe is added into a given

partition. Intuitively, this can lead to “elongated” rather than spheric clusters, but can also correct

for unfortunate choices of the initial four centroids.7

• The straightforward implementation of Reptx()-based detailed placement within a given partition

6The variables i and j index the row and column of a given partition within the current level’s array of partitions.
7Details of the dynamic centroid update, reflecting an efficient implementation, are as follows. The “pseudo-nucleotide” at each

position t (e.g., t = 1, . . . ,25 for probes of length 25) of the centroid Ci can be represented as Ci[t] =
S

s

Ns,t
Ni
· s, where Ni is the current

number of probes in the partition Ri and Ns,t is the number of probes in the partition having the nucleotide s ∈ {A,T,C,G} in t-th

position. The Hamming distance between a probe p and Ci is d(p,Ci) = 1
Ni

∑
t

∑
s6=p[t]

Ns,t .



13will treat the last locations within a region “unfairly”, e.g., only one candidate probe will remain

available for placing in a region’s last location. To ensure that a uniform number of canidate

probes for every position, our implementation permits “borrowing” probes from the next region in

the Reptx() procedure. For every position of a region other than the last, we select the best probe

from among at most m probes, where m is a pre-determined constant, in the current region and the

next. (Except as noted, we set m to 20000 for all of our experiments.) Our Reptx() implementation

is also “border-aware”, that is, it takes into account Hamming distances to the placed probes in

adjacent regions.

A. Empirical Evaluation of Partitioning-Based Probe Placement

In this section we compare our partitioning-based probe placement heuristic with the TSP 1-

threading heuristic of [26] (TSP+1Thr), the Row-Epitaxial and sliding-window matching (SWM)

heuristics of [35], and a simulated annealing algorithm (SA).8 We used an upper bound of 20000 on

the number of candidate probes in Row-Epitaxial, and 6×6 windows with overlap 3 for SWM. The

SA algorithm starts by sorting the probes and threading them onto the chip. It then slides a square

window over the chip in the same way as the SWM algorithm. For every window position, SA

picks 2 random probes in the window and swaps them with probability 1 if the swap improves total

border cost. If the swap increases border cost by δ, the swap is performed only with probability

e−δ/T , where T is the current temperature. After experimenting with various SA parameters, we

chose to run SA with 6× 6 windows with overlap of 3, with 63 iterations performed for every

window position.

Table I gives the results produced by the TSP+1Thr, Row-Epitaxial, SWM, and SA heuristics

on random instances with chip sizes between 100 and 500 and probe length equal to 25. Among

the four heuristics, Row-Epitaxial is the algorithm with highest solution quality (i.e., lowest border

cost), while SWM is the fastest, offering competitive solution quality with much less runtime. SA

takes the largest amount of time, and also gives the worse solution quality. Although it may be

possible to improve SA convergence speed by extensive fine-tuning of its various parameters, we

expect that SA results will always remain dominated by those of the other heuristics. Additional

8All experiments reported in this paper were performed on test cases obtained by generating each probe candidate uniformly at

random. The probe length was set to 25, which is the typical value for commercial arrays [1]. Unless otherwise noted, we used the

canonical periodic deposition sequence, (ACTG)25. All reported runtimes are for a 2.4 GHz Intel Xeon server with 2GB of RAM

running under Linux.



14insight into the relative quality of various heuristics can be gained by considering the border cost

normalized by the number of pairs of adjacent array sites, i.e., the average number of conflicts

per pair of adjacent sites. Interestingly, for all algorithms except SA this number decreases with

increasing chip size. This can be attributed to the greater freedom of choice available when placing

a higher number of probes, which all algorithms except SA seem able to exploit.

Tables II and II give results obtained by our new recursive partitioning method (RPART) with

recursion depth L = 2 and number of restarts r varying between 1 and 1000. The results in Tables II

show that increasing the number of restarts gives a small improvement in border cost at the expense

of increased runtime. Table III presents results obtained by RPART when run with r = 10 for

recursion depth L varying between 1 and 3. Comparing to the results produced by Row-Epitaxial,

the best heuristic from Table I, we find that recursive partitioning based placement achieves on the

average similar or better results with improved runtime.

We next discuss in more detail the runtime of RPART, which is somehow unusual for a recur-

sive partitioning algorithm in that it may get smaller with an increase in recursion depth. Let the

number of probes in a chip be n. The two main contributors to RPART runtime are the recursive

partioning phase, whereby the probes are divided into smaller and smaller partition regions, and the

detailed placement step which is achieved by running Row-Epitaxial within each partition region

(with borrowing from next region when needed). Since executing the procedure SelectCentroid()

and distributing all the probes in a partition region to its four sub-regions takes time proportional

to the number of probes in a region, the total runtime for each recursion depth is O(n), and the

overall runtime for the recursive partitioning phase is O(Ln). Clearly, this component of the run-

time increases linearly with the recursion depth. On the other hand, in our implementation of

RPART, the Row-Epitaxial algorithm used in detailed placement considers at most min{m,2n/4L}

candidate probes for placement at any given position (m = 20000 is a pre-determined upper-bound

which we impose based on the empirical results in [35], and 2n/4L is a bound that follows from

the fact that we never consider candidates from more than two consecutive lowest-level parti-

tion regions). Thus, the total time needed by the detailed placement step is O(nmin{m,2n/4L}),

which will decrease with increasing L once L exceeds log4(2n/m). This explains why the overall

RPART runtime in Table III decreases with increasing L, and also explains why solution quality

may slightly degrade with increasing L due to the reduced number of probe candidates considered

by Row-Epitaxial for each chip location.
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Chip Lower Bound TSP+1Thr Row-Epitaxial SWM SA

Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 410019 20.7 554849 28.0 35.3 113 502314 25.4 22.5 108 605497 30.6 47.7 2 583926 29.8 42.4% 20769

200 1512014 19.0 2140903 26.9 41.6 1901 1913796 24.0 26.6 1151 2360540 29.7 56.1 8 2418372 30.4 59.9% 55658

300 3233861 18.0 4667882 26.0 44.3 12028 4184018 24.0 29.4 3671 5192839 28.9 60.6 19 5502544 30.7 70.2% 103668

500 8459958 17.0 12702474 25.5 50.1 109648 11182346 22.4 32.2 10630 13748334 27.6 62.5 50 15427304 30.9 82.5% 212390

TABLE I

TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE SYNCHRONOUS PLACEMENT

LOWER-BOUND IN [34],AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE TSP

HEURISTIC OF [26] (TSP+1THR), THE ROW-EPITAXIAL (ROW-EPITAXIAL) AND SLIDING-WINDOW MATCHING

(SWM) HEURISTICS OF [35], AND THE SIMULATED ANNEALING ALGORITHM (SA).

Chip RPART r = 1 L = 2 RPART r = 10 L = 2 RPART r = 100 L = 2 RPART r = 1000 L = 2

Size Cost Norm. CPU Cost Norm. CPU Cost Norm. CPU Cost Norm. CPU

100 492054 24.9 22 491840 24.8 24 491496 24.8 47 490809 24.8 238

200 1865972 23.4 276 1865337 23.4 283 1864982 23.4 394 1864017 23.4 1064

300 4075214 22.7 1501 4074962 22.7 1527 4073135 22.7 1769 4071344 22.7 4231

500 11063382 22.2 9531 11052738 22.1 9678 11042812 22.1 13158 11039731 22.1 17014

TABLE II

TOTAL/NORMALIZED BORDER COST AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE

RECURSIVE PARTITIONING ALGORITHM WITH RECURSION DEPTH L = 2 AND NUMBER OF RESTARTS r VARYING

FROM 1 TO 1000.

Chip Lower Bound RPART r = 10 L = 1 RPART r = 10 L = 2 RPART r = 10 L = 3

Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 410019 20.7 475990 24.0 16.1 69 491840 24.8 20.0 24 504579 25.5 23.1 10

200 1512014 19.0 1813105 22.8 19.9 992 1865337 23.4 23.4 283 1922951 24.2 27.2 81

300 3233861 18.0 4135728 23.8 27.9 3529 4074962 22.7 26.0 1527 4175146 24.0 29.1 240

500 8459958 17.0 11283631 22.6 33.4 10591 11052738 22.1 30.6 9678 11134960 22.3 31.6 3321

TABLE III

TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE SYNCHRONOUS PLACEMENT

LOWER-BOUND IN [34], AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE RECURSIVE

PARTITIONING ALGORITHM WITH RECURSION DEPTH VARYING BETWEEN 1 AND 3.
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Chip Lower Bound Batched Greedy Chessboard Sequential

Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 364953 18.4 458746 23.2 25.7 40 439768 22.2 20.5 54 437536 22.1 19.9 64

200 1425784 17.9 1800765 22.6 26.3 154 1723773 21.7 20.9 221 1715275 21.5 20.3 266

300 3130158 17.4 3965910 22.1 26.7 357 3803142 21.2 21.5 522 3773730 21.0 20.6 577

500 8590793 17.2 10918898 21.9 27.1 943 10429223 20.9 21.4 1423 10382620 20.8 20.9 1535

TABLE IV

TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS POST-PLACEMENT

LOWER-BOUND IN [34], AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE BATCHED

GREEDY, CHESSBOARD, AND SEQUENTIAL IN-PLACE RE-EMBEDDING ALGORITHMS.

B. Comparison of Complete Probe Placement and Embedding Flows

In addition to the partitioning-based placement algorithm, we propose a new algorithm that

performs optimal re-embedding of probes in a sequential row-by-row fashion. We believe that a

main shortcoming of Batched Greedy and Chessboard (described in Section II-D.1) is that these

methods always re-embed an independent set of sites on the DNA chip. Dropping this requirement

permits faster propagation of the effects of any re-embedding decision.

Table IV compares the new probe embedding algorithm with Batched Greedy and Chessboard

on random instances with chip sizes between 100 and 500 and probe length 25 for which the two-

dimensional placements were obtained using TSP+1-threading. All algorithms are stopped when

the improvement cost achieved in one iteration over the whole chip drops below 0.1% of the total

cost. The results show that re-embedding of the probes in a sequential row-by-row order leads to

reduced border cost with similar runtime compared to previous methods.

In another series of experiments, we ran complete placement and embedding flows obtained by

combining each of the five two-dimensional placement algorithms evaluated in Section III-A with

the sequential in-place re-embedding algorithm. Results are given in Tables V-VI. Again, SA

and TSP+1Thr are dominated by both REPTX and SWM in both conflict cost and running time.

REPTX produces less conflicts than SWM but SWM is considerably faster. Recursive partitioning

consistently outperforms the best previous flow (row-epitaxial + sequential re-embedding) – by an

average of 4.0% – with similar or lower runtime.
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Chip Lower Bound TSP+1Thr Row-Epitaxial SWM SA

Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 220497 11.1 439829 22.2 99.5 113 415227 21.0 88.3 161 440648 22.3 99.8 93 457752 23.1 107.6 11713

200 798708 10.0 1723352 21.7 115.8 1901 1608382 20.2 101.4 1368 1721633 21.6 115.6 380 1844344 23.2 130.9 42679

300 — — 3801765 21.2 — 12028 3529745 20.3 — 3861 3801479 21.2 — 861 4155240 23.2 — 101253

500 — — 10426237 20.9 — 109648 9463941 19.0 — 12044 10161979 20.4 — 2239 11574482 23.2 — 222376

TABLE V

TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS PRE-PLACEMENT

LOWER-BOUND IN [34], AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE TSP

HEURISTIC OF [26] (TSP+1THR), THE ROW-EPITAXIAL (ROW-EPITAXIAL) AND SLIDING-WINDOW MATCHING

(SWM) HEURISTICS OF [35], AND THE SIMULATED ANNEALING ALGORITHM (SA).

Chip Lower Bound RPART r = 10 L = 1 RPART r = 10 L = 2 RPART r = 10 L = 3

Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 220497 11.1 393218 19.9 78.3 123 399312 20.2 81.1 44 410608 20.7 86.2 10

200 798708 10.0 1524803 19.2 90.9 1204 1545825 19.4 93.5 365 1573096 19.8 97.0 101

300 — — 3493552 20.1 — 3742 3413316 19.6 — 1951 3434964 19.7 — 527

500 — — 9546351 19.1 — 11236 9355231 18.8 — 10417 9307510 18.7 — 3689

TABLE VI

TOTAL BORDER COST, NORMALIZED BORDER COST, GAP FROM THE ASYNCHRONOUS PRE-PLACEMENT

LOWER-BOUND IN [34], AND CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE RECURSIVE

PARTITIONING ALGORITHM FOLLOWED BY SEQUENTIAL IN-PLACE RE-EMBEDDING.

IV. FLOW ENHANCEMENTS

The current DNA-array design flow can be significantly improved by introducing flow-aware

problem formulations, adding feedback loops between optimization steps, and/or integrating mul-

tiple optimizations. These enhancements, which are represented schematically in Figure 6 by the

dashed arcs, are similar to flow enhancements that have proved very effective in the VLSI design

context [19], [49].

In this paper we concentrate on two such enhancements, both aiming at further reductions in

total border length. The first enhancement is a tighter integration between probe placement and

embedding; this enhancement is discussed in Section IV-B. The second enhancement is the inte-
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Fig. 6. A typical DNA array design flow with solid arcs and proposed enhancements represented by dashed arcs.

gration between physical design and probe selection, which is achieved by passing the entire pools

of candidates available for each probe to the physical design step. As shown in Section IV-C,

this enhancement enables significant improvements (up to 15%) in border length compared to best

previous flows [35], [38].

Other feedback loops and integrated optimizations are possible but are not explored in this paper.

Faster and more targeted probe selection may be achievable by adding a feedback loop to provide

updated selection rules and parameters to the probe selection step. Integrating deposition sequence

design with probe selection may lead to further reductions in the number of masks by exploiting

the freedom available in choosing the candidates for each probe.

A. Problem Formulation for Integrated Probe Selection and Physical Design

To integrate probe selection and physical design, we pass the entire pools of candidates for each

probe to the physical design step (Figure 6). As discussed in Section II-A, all probe candidates

are selected so that they have similar hybridization properties (e.g., melting temperatures), and

can thus be used interchangeably. The availability of multiple probe candidates gives additional

freedom during placement and embedding, and may potentially reduce final border cost. DNA

array physical design with probe pools is captured by the following problem formulation:9

Integrated DNA Array Design Problem

Given:

• Pools of candidates Pi = {pi j | j = 1, . . . , li} for each probe i = 1, . . . ,N2, where N×N is the size

of array

• The number of masks K

Find:

1. Probes pi j ∈ Pi for every i = 1, . . . ,N2,

9This formulation also integrates deposition sequence design. For simplicity, we leave out design of control and test sequences.



192. A deposition sequence S = s1, . . . ,sK which is a supersequence of all selected probes pi j,

3. A placement of the selected probes pi j into an N×N array,

4. An embedding of the selected probes pi j into the deposition sequence S

Such that:

• The total number of conflicts between adjacent embedded probes is minimized

Although the flow in Figure 6 suggests a particular order for making the choices 1-4, the inte-

grated formulation above allows interleaving these decisions. The following two algorithms cap-

ture key optimizations in the integrated formulations, and are used as core building blocks in the

solution methods evaluated in Sections IV-B–IV-C. They are “probe pool” versions of the Row-

epitaxial and re-embedding algorithms proposed in [35], [38], and degenerate to the latter ones in

the case when each probe pool contains a single candidate.

• The Pool Row-Epitaxial algorithm (Pool-REPTX) is the extension to probe pools of the REPTX

probe placement algorithm in [35], [38]. Pool-REPTX performs choices 1 and 3 for given choices

2 and 4, i.e., it simultaneously chooses already embedded candidates from the respective pools

and places them in the N×N array. The input of Pool-REPTX consists of probe candidates pi j

embedded in the deposition sequence S. Each such embedding is written as a sequence of length

K = |S| over the alphabet {A,C,T,G,Blank}, where A,C,T,G denote embedded nucleotides and

Blank’s denote positions of S left unused by the embedded candidate probe. Pool-REPTX consists

of the following steps: (1) Lexicographic sorting of the pools (based on the first candidate, when

more than one candidate is available in the pool); (2) Threading the sorted pools in row-by-row

order into the N×N array; (3) Finding, in row-by-row order, the best probe candidate – i.e., the

candidate having the minimum number of conflicts with already placed neighbors – among the not

yet placed pools within a prescribed lookahead region.

• The sequential in-place pool re-embedding algorithm is the extension to probe pools of the se-

quential probe re-embedding algorithm given in Section III-B. It complements Pool-REPTX by

iteratively modifying candidate selections within each pool and their embedding (choices 2 and 4)

as follows. In row-by-row order, for each position in the N×N array, and for each candidate pi j

from the pool of the respective probe, an embedding having minimum number of conflicts with the

existing embeddings of the neighbors is computed, and then the best embedded candidate replaces

the current one.



20B. Improved Integration of Probe Placement and Embedding

As noted in [34], allowing arbitrary, or asynchronous, embeddings leads to further reductions

in border length compared to synchronous embedding (e.g., contrast (b) and (c) in Figure 2). An

interesting question is finding the best order in which the placement and embedding degrees of

freedom should be exploited. Previous methods [34], [35], [38] can be divided into two classes:

(1) methods that perform placement and embedding decisions simultaneously, and (2) methods

that exploit the two degrees of freedom one at a time. Currently, best methods in the second class

(e.g., synchronous row-epitaxial followed by chessboard/sequential in-place probe re-embedding

[35], [38]) outperform the methods in the first class (e.g., the asynchronous epitaxial algorithm in

[34]) in terms of both runtime and solution quality.

All known methods in the second class perform synchronous probe placement followed by iter-

ated in-place re-embedding of the probes (with locked probe locations). More specifically, these

methods perform the following 3 steps:

• Synchronous embedding of the probes.

• Probe placement with costs given by the Hamming distance between the synchronous probe

embeddings.

• Iterated sequential probe re-embedding.

We note that significant reductions in border cost are possible by performing the placement based

on asynchronous, rather than synchronous, embeddings of the probes, and therefore modify the

above scheme as follows:

• Asynchronous embedding of the probes.

• Placement with costs given by the Hamming distance between the fixed asynchronous probe

embeddings.

• Iterated sequential probe re-embedding.

Since solution spaces for placement and embedding are still searched independently of one an-

other, and the computation of an initial asynchronous embedding does not add significant overhead,

the proposed change is unlikely to adversely affect the runtime. However, because placement opti-

mization is now applied to embeddings more similar to those sought in the final optimization stage,

there is significant potential for improvement.

In the current embodiment of the modified scheme, we implement the first step by using for each

probe the “as soon as possible,” or ASAP, embedding (see Figure 2(c)). Under ASAP embedding
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Chip Synchronous Initial Embedding ASAP Initial Embedding Percent

Sync Embed REPTX Re-Embed ASAP Embed REPTX Re-Embed Improv.

100 619153 502314 415227 514053 393765 389637 5.2

200 2382044 1918785 1603745 1980913 1496937 1484252 6.7

300 5822857 4193439 3514087 4357395 3273357 3245906 6.9

500 18786229 11203933 9417723 11724292 8760836 8687596 7.0

TABLE VII

TOTAL BORDER COST (AVERAGES OVER 10 RANDOM INSTANCES) FOR SYNCHRONOUS AND ASAP INITIAL

PROBE EMBEDDING FOLLOWED BY ROW-EPITAXIAL AND ITERATED SEQUENTIAL IN-PLACE PROBE

RE-EMBEDDING.

the nucleotides in a probe are embedded sequentially by always using the earliest available synthe-

sis step. The intuition behind using ASAP embeddings is that, since ASAP embeddings are more

densely packed, the likelihood that two neighboring probes will both use a synthesis step increases

compared to synchronous embeddings. This translates directly into reductions in the number of

border conflicts.

Indeed, consider two random probes p, p′ picked from the uniform distribution. When we

perform synchronous embedding, the length of the deposition sequence is 4× 25 = 100. The

probability that any one of the 100 synthesis step is used by one of the random probes and not the

other is 2× (1/4)× (3/4), and therefore the expected number of conflicts is 100× 2× (1/4)×

(3/4) = 37.5. Assume now that the two probes are embedded using the ASAP algorithm. Notice

that for every 0≤ i≤ 3 the ASAP algorithm will leave a gap of length i with probability 1/4 between

any two consecutive letters of a random probe. This results in an average gap length of 1.5, and an

expected number of synthesis steps of 25 + 24*1.5 = 61. Assuming that p and p′ are both embedded

within 61 steps, the number of conflicts between their ASAP embeddings is then approximately

61× 2× (25/61)× ((61− 25)/61) ≈ 29.5. Although in practice many probes require more than

61 synthesis steps when embedded using the ASAP algorithm, they still require much less than

100 steps and result in significantly fewer conflicts compared to synchronous embedding.

To empirically evaluate the advantages of ASAP embedding we compared on test cases ranging

in size from 100× 100 to 500× 500 the “champion” method in [34], [35], [38], which uses syn-

chronous initial embeddings for the probes, with the corresponding method based on ASAP initial



22
Chip Synchronous Initial Embedding ASAP Initial Embedding

Sync+REPTX Re-Embed Total ASAP+REPTX Re-Embed Total

100 166 81 247 188 29 217

200 1227 340 1567 1302 114 1416

300 3187 748 3935 2736 235 2971

500 8495 2034 10529 6391 451 6842

TABLE VIII

CPU SECONDS (AVERAGES OVER 10 RANDOM INSTANCES) FOR SYNCHRONOUS AND ASAP INITIAL PROBE

EMBEDDING FOLLOWED BY ROW-EPITAXIAL AND ITERATED SEQUENTIAL IN-PLACE PROBE RE-EMBEDDING.

probe embeddings. For both methods, the second and third steps are implemented using REPTX

and sequential in-place probe re-embedding algorithms in [35], [38] (see also Section IV-A).

Tables VII and VIII give the border-length and CPU time (in seconds) for the two methods. Each

number in these tables represents the average over 10 test cases of the given size. Surprisingly, the

simple switch from synchronous to ASAP initial embedding results in 5-7% reduction in total

border-length. Furthermore, the runtimes for the two methods are comparable. In fact, sequential

re-embedding becomes faster in the ASAP-based method compared to the synchronous-based one

since fewer iterations are needed to converge to a locally optimal solution (the number of iterations

drops from 9 to 3 on the average).

C. Integrated Probe Selection and Physical Design

We explored two methods for exploiting the availability of multiple probe candidates during

placement and embedding. The first method uses the row-epitaxial and sequential in-place probe

re-embedding algorithms described in Section IV-A. This method is an instance of integration

between multiple flow steps, since probe selection decisions are made during probe placement and

can be further changed during probe re-embedding. The detailed steps are as follows:

• Perform ASAP embedding of all probe candidates.

• Run the Pool-REPTX or a pool version of the recursive-partitioning placement algorithm in

Section III using border costs given by the Hamming distance between the ASAP embeddings.

• Run the sequential in-place pool re-embedding algorithm.

The second method preserves the separation between candidate selection and place-

ment+embedding. However, we modify probe selection to make it flow-aware, i.e., to make its



23results more suitable for the subsequent placement and embedding optimizations. Building on

the observation that shorter probe embeddings lead to improved border length, we choose from

the available candidates the one that embeds in the least number of steps of the standard periodic

deposition sequence using ASAP:

• Perform ASAP embedding of all probe candidates.

• Select from each pool of candidates the one that embeds in the least number of steps using ASAP.

• Run the REPTX or recursive-partitioning placement algorithm using only the selected candidates

and border costs given by the Hamming distance between the ASAP embeddings.

• Run the iterated sequential in-place probe re-embedding algorithm, again using only selected

candidates.

Table IX gives the border-length and the runtime (in CPU seconds) for the two methods of com-

bining probe placement and embedding with probe selection (each number represents the average

over 10 test cases of the given size). We report results for both Pool-REPTX placement algorithm

and the pool version of the recursive-partitioning using L = 3. We varied the number of candidates

available for each probe between 1 and 16; probe candidates were generated uniformly at random.

As expected, for each method and chip size, the improvement in solution quality grows mono-

tonically with the number of available candidates. The improvement is significant (up to 15%

when running the first method on a 100×100 chip with 16 candidates per probe), but varies non-

uniformly with the method and chip size. For small chips the first method gives better solution

quality than the second. For chips of size 200×200 the two methods give comparable solution

quality, while for chips with size 300×300 or larger the second method is better (by over 5% for

500×500 chips with 8 probe candidates). The second method is faster than first for all chip sizes.

The speedup factor varies between 5× and 40× when the number of candidates varies between

2 and 16. Interestingly, the runtime of the second method is slightly improving with the number

of candidates, the reason being that the number of iterations of sequential re-embedding decreases

when the length of the ASAP embedding of the selected candidates decreases.

V. QUANTIFIED SUB-OPTIMALITY OF PLACEMENT AND EMBEDDING ALGORITHMS

As noted in the introduction, next-generation of DNA probe arrays will contain up to one hun-

dred million probes, and therefore present instance complexities for placement that will far outstrip

those of VLSI designs. Thus, it is of interest to study not only runtime scaling, but also scaling



24of suboptimality, for available heuristics. To this end, we apply the experimental framework for

quantifying suboptimality of placement heuristics that was originated by Boese and by Hagen et

al. [27], and recently extended by Chang et al. [13] and Cong et al. [15]. In this framework, there

are two basic types of instance scaling that we can apply.

• Instances with known optimum solution. For hypergraph placement, instances with known

minimum-wirelength solutions may be constructed by “overlaying” signal nets within an already

placed cell layout, such that each signal net has provably minimum length. This technique, pro-

posed by Boese and further explored by Chang et al. [13], induces a netlist topology with pre-

scribed degree sequence over the (placed) cells; this corresponds to a “placement example with

known optimal wirelength” (PEKO). In our DNA probe placement context, there is no need to

generate a netlist hypergraph. Rather, we realize the concept of minimum (border) cost edges (ad-

jacencies) by constructing a set of probes, and their placement, using 2-dimensional Gray codes

[20]. Our construction generates 4k probes which are placeable such that every probe has border

cost of 2 to each of its neighboring probes. This construction is illustrated in Figure 7.

• Instances with known suboptimal solutions. Because constructed instances with known op-

timum solutions may not be representative of “real” instances, we also apply a technique [27] that

allows real instances to be scaled, such that they offer insights into scaling of heuristic suboptimal-

ity. The technique is applied as follows. Beginning with a problem instance I, we construct three

isomorphic versions of I by three distinct mappings of the nucleotide set {A,C,G,T} onto itself.

Each mapping yields a new probe set that can be placed with optimum border cost exactly equal to

the optimum border cost of I. Our scaled instance I ′ consists of the union of the original probe set

and its three isomorphic copies. Observe that one placement solution for I ′ is to optimally place

I and its isomorphic copies as individual chips, and then to adjoin these placements as the four

quadrants of a larger chip. Thus, an upper bound on the optimum border cost for I ′ is 4 times the

optimum border cost for I, plus the border cost between the copies of I; see Figure 8. If a heuristic

H places I ′ with cost cH(I′) ≥ 4 · cH(I), then we may infer that the heuristic’s suboptimality is

growing by at least a factor cH(I′)
4·cH(I) . On the other hand, if cH(I′) < 4 · cH(I), then the heuristic’s

solution quality would be said to scale well on this class of instances.

Table X shows results from executing the various placement heuristics on PEKO-style test cases,

with instance sizes ranging from 16 x 16 through 512 x 512 (recall that our Gray code construction

yields instances with 4k probes). We see from these results that sliding-window matching is closest
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to the optimum, with a suboptimality gap of 4-30%. Overall, DNA array placement algorithms

appear to be performing better than their VLSI counterparts [13] when it comes to results on

special-case instances with known optimal cost. Of course, results from placement algorithms

(whether for VLSI or DNA chips) on special benchmark instances should not be generalized to

arbitrary benchmarks. In particular, our results show that algorithms that perform best for arbitrary

benchmarks are not necessarily the best performers for specially constructed benchmarks.

Table XI shows results from executing the various placement heuristics on scaled versions of

random DNA probe sets, with the original instances ranging in size from 100 x 100 to 500 x 500,

and the scaled instances thus ranging in size from 200 x 200 to 1000 x 1000. This table shows

that in general, placement algorithms for DNA arrays offer excellent scaling suboptimality. We

believe that this is primarily due to the already noted fact that algorithm quality (as reflected by

normalized border costs) improves with instance size. The larger number of probes in the scaled

instances gives more freedom to the placement algorithms, leading to heuristic placements that

have scaling suboptimality factor well below 1.
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In this work, we have studied several problems arising in the design of DNA chips, focusing

on minimizing the total border length between adjacent sites during probe placement and embed-

ding. We have shown that significant reductions in border length can be obtained by drawing on

algorithmic techniques developed in the field of VLSI design automation.

We conclude with some remarks on the similarities and differences between VLSI physical de-

sign and physical design for DNA arrays. First, while VLSI placement performance in general

degrades as the problem size increases, it appears that this is not the case for DNA array place-

ment. Current algorithms are able to find DNA array placements with smaller normalized border

cost when the number of probes in the design grows. Second, the lower bounds for DNA probe

placement and embedding appear to be tighter than those available in the VLSI placement litera-

ture. Developing even tighter lower bounds is, of course, an important open problem.

Other direction of future research is to find formulations and methods for integrated optimization

of test structure design and physical design. Since test structures are typically pre-placed at sites

uniformly distributed across the array, integrated optimization can have a significant impact on the

total border length.
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Chip Pool Multi-Candidate ASAP-Based Selection

Row-Epitaxial Partitioning Row-Epitaxial Partitioning

Size Size Border CPU % Border CPU % Border CPU % Border CPU %

100 1 389637 217 – 376348 115 – 389637 217 – 376348 115 –

2 372951 1040 4.3 372957 676 0.9 377026 212 3.2 362882 114 3.6

4 357562 1796 8.2 357553 1274 5.0 363944 193 6.6 350079 127 7.0

8 343604 3645 11.8 343590 2605 8.7 351540 191 9.8 341020 109 9.4

16 330600 7315 15.2 330551 5003 12.2 339636 185 12.8 332634 121 11.6

200 1 1484252 1416 – 1446489 1012 – 1484252 1416 – 1446498 1012

2 1438182 6278 3.1 1438345 7281 0.6 1435712 1176 3.3 1410533 946 2.5

4 1386527 12750 6.6 1386424 13231 4.1 1385556 1189 6.6 1361653 932 5.9

8 1334273 27382 10.1 1334519 26413 7.7 1336851 1121 9.9 1313294 957 9.2

16 1284550 44460 13.5 1284462 52400 11.2 1289566 1117 13.1 1276855 971 11.7

300 1 3245906 2971 – 3220850 2975 – 3245906 2971 – 3220850 2975 –

2 3185015 14956 1.9 3184426 13161 1.1 3141088 2724 3.2 3046086 2134 5.4

4 3093633 26514 4.7 3093944 24671 3.9 3018490 2771 7.0 2936733 2118 8.8

8 2985393 51226 8.0 2986286 45607 7.3 2921195 2603 10.0 2832535 2079 12.0

16 2878886 98189 11.3 2878244 85311 10.6 2835695 2760 12.6 2706537 2247 15.9

500 1 8687596 6842 – 8645162 5608 – 8687596 6842 – 8645162 5608 –

2 8611468 51847 0.9 8611142 41409 0.4 8407839 6090 3.2 8273184 5468 4.3

4 8477014 86395 2.4 8479150 94566 1.9 8105358 6709 6.7 7955391 5591 8.0

8 8248838 161651 5.1 8249176 213264 4.6 7807763 6085 10.1 7637927 5782 11.7

16 – – – – – – 7518331 5986 13.5 7445283 5601 13.9

TABLE IX

TOTAL BORDER COST AND RUNTIME (AVERAGES OVER 10 RANDOM INSTANCES) FOR THE TWO METHODS OF

COMBINING PROBE PLACEMENT AND EMBEDDING WITH PROBE SELECTION. THE IMPROVEMENT (IN

PERCENTS) IS RELATIVE TO THE SINGLE-CANDIDATE VERSION OF THE SAME CODE. WE REPORT RESULTS FOR

BOTH THE REPTX ALGORITHM AND THE RECURSIVE-PARTITIONING ALGORITHM WITH L = 3.
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Chip Optimal TSP+Threading Row-Epitaxial SWM Recursive Partitioning

Size Cost Cost Gap(%) Cost Gap(%) Cost Gap(%) Cost Gap(%)

16 960 1380 44 960 0 992 4 1190 24

32 3968 6524 65 5142 30 4970 25 5210 31

64 16128 27072 68 16128 0 19694 22 21072 31

128 65024 111420 71 92224 42 86692 33 88746 36

256 261120 457100 75 378612 45 325566 25 359060 37

512 1046528 1844244 76 1573946 50 1414154 35 1476070 41

TABLE X

COMPARING THE PLACEMENT ALGORITHMS PERFORMANCE FOR CASES WITH KNOWN OPTIMAL CONFLICTS.

SW MATCHING IS USING A WINDOW SIZE OF 20 X 20 AND A STEP OF 10. ROW-EPITAXIAL USES 10000/chipsize

LOOKAHEAD ROWS.

Instance Row Epitaxial SW-Matching Recursive Partitioning

Size U-Bound Actual Ratio U-Bound Actual Ratio U-Bound Actual Ratio

100 2024464 1479460 0.73 2203132 1999788 0.91 1919328 1425806 0.73

200 7701848 6379752 0.83 8478520 6878096 0.81 7497520 6107394 0.82

300 16817110 12790186 0.76 18645122 13957686 0.75 16699806 12567786 0.75

400 29239934 24621324 0.84 32547390 26838164 0.82 30450780 24240850 0.80

500 44888710 38140882 0.85 49804320 41847206 0.84 47332142 37811712 0.80

TABLE XI

COMPARING THE SUBOPTIMALITY OF THE PLACEMENT ALGORITHMS’ PERFORMANCE FOR VARIOUS

BENCHMARKS. EACH ENTRY REPRESENTS BOTH THE UPPER BOUND AND THE ACTUAL PLACEMENT RESULT

AFTER SCALING. SW MATCHING IS USING A WINDOW SIZE OF 20 X 20 AND A STEP OF 10. ROW EPITAXIAL

USES 10000/chipsize LOOKAHEAD ROWS.


