
Chapter 1

COMPUTER-AIDED OPTIMIZATION OF DNA ARRAY
DESIGN AND MANUFACTURING

Andrew B. Kahng
CSE and ECE Department, University of California at San Diego
La Jolla, CA 92093-0114, USA

abk@ucsd.edu

Ion I. Măndoiu
CSE Department, University of Connecticut
371 Fairfield Rd., Unit 2155, Storrs, CT 06269-2155, USA

ion@engr.uconn.edu

Sherief Reda
CSE Department, University of California at San Diego
La Jolla, CA 92093-0114, USA

sreda@cs.ucsd.edu

Xu Xu
CSE Department, University of California at San Diego
La Jolla, CA 92093-0114, USA

xuxu@cs.ucsd.edu

Alex Z. Zelikovsky
CS Department, Georgia State University
University Plaza, Atlanta, Georgia 30303, USA

alexz@cs.gsu.edu

2

Abstract DNA probe arrays, or DNA chips, have emerged as a core genomic technology
that enables cost-effective gene expression monitoring, mutation detection, sin-
gle nucleotide polymorphism analysis and other genomic analyses. DNA chips
are manufactured through a highly scalable process, called Very Large-Scale
Immobilized Polymer Synthesis (VLSIPS), that combines photolithographic tech-
nologies adapted from the semiconductor industry with combinatorial chemistry.
As the number and size of DNA array designs continues to grow, there is an im-
perative need for highly-scalable software tools with predictable solution quality
to assist in the design and manufacturing process. In this chapter we review re-
cent algorithmic and methodological advances forming the foundation for a new
generation of DNA array design tools. A recurring motif behind these advances
is exploiting the analogy between silicon chip design, pointing to the value of
technology transfer between the 40-year old VLSI CAD field and the newer DNA
array design field.

Keywords: DNA arrays, computer-aided design, design flow, border length minimization,
probe placement, probe embedding, algorithms

1. Introduction

DNA probe arrays – DNA arrays or DNA chips for short – have recently
emerged as one of the core genome technologies. They provide a cost-effective
method for obtaining fast and accurate results in a wide range of genomic
analyses, including gene expression monitoring, mutation detection, and sin-
gle nucleotide polymorphism analysis (see [45] for a survey). The number
of applications is growing at an exponential rate [28], [55], already covering
a diversity of fields ranging from health care to environmental sciences and
law enforcement. The reasons for this rapid acceptance of DNA arrays are
a unique combination of robust manufacturing, massive parallel measurement
capabilities, and highly accurate and reproducible results.

Today, most DNA arrays are manufactured through a highly scalable pro-
cess, referred to as Very Large-Scale Immobilized Polymer Synthesis (VLSIPS),
that combines photolithographic technologies adapted from the semiconductor
industry with combinatorial chemistry [1], [2], [25]. Similar to Very Large
Scale Integration (VLSI) circuit manufacturing, multiple copies of a DNA ar-
ray are simultaneously synthesized on a wafer, typically made out of quartz.
To initiate synthesis, linker molecules including a photo-labile protective group
are attached to the wafer, forming a regular 2-dimensional pattern of synthesis
sites. Probe synthesis then proceeds in successive steps, with one nucleotide
(A, C, T, or G) being synthesized at a selected set of sites in each step. To select
which sites will receive nucleotides, photolithographic masks are placed over
the wafer. Exposure to light de-protects linker molecules at the non-masked
sites. Once the desired sites have been activated in this way, a solution con-
taining a single type of nucleotide (which bears its own photo-labile protection

Computer-Aided Optimization of DNA Array Design and Manufacturing 3

group to prevent the probe from growing by more than one nucleotide) is flushed
over the wafer’s surface. Protected nucleotides attach to the unprotected link-
ers, initiating the probe synthesis process. In each subsequent step, a new mask
is used to enable selective de-protection and single-nucleotide synthesis. This
cycle is repeated until all probes have been fully synthesized.

As the number of DNA array designs is expected to ramp up in coming years
with the ever-growing number of applications [28], [55], there is an urgent
need for high-quality software tools to assist in the design and manufacturing
process. The biggest challenges to rapid growth of DNA array technology are
the drastic increase in design sizes with simultaneous decrease of array cell
sizes – next-generation designs are envisioned to have hundreds of millions of
cells of sub-micron size [2], [45] – and the increased complexity of the design
process, which leads to unpredictability of design quality and design turnaround
time.

In this chapter we review recent algorithmic and methodological advances
addressing these challenges and already proved to yield significant solution
quality and scalability improvements over existing methods. A recurring motif
behind these advances is exploiting the analogy between silicon chip design
and DNA chip design, pointing to the value of technology transfer between the
40-year old VLSI CAD field and the newer DNA array design field.

The organization of the chapter is as follows. In Section 2 we introduce the
main steps of the DNA array design flow. In Section 3 we formalize the syn-
chronous and asynchronous array design problems and establish lower bounds
on the achievable border length. Algorithms for the two versions of the array
design problem are presented in Sections 4 and 5, respectively. In Section 6,
we give empirical results comparing the presented algorithms and review novel
methodologies for characterizing heuristic suboptimality scaling. Finally, we
discuss enhancements of DNA array design flow in Section 7 and conclude in
Section 8.

2. DNA Array Design Steps

In this section we introduce the main steps of a typical design flow for DNA
arrays, noting the similarities to the VLSI design flow and briefly reviewing
previous work. The application of this flow to the design of a DNA chip for
studying gene expression in the Herpes B virus is described in [9]. In Section
7 we will revise this flow and show how it can be enhanced by adding flow-
awareness to each optimization step and introducing feedback loops between
steps - techniques that have proved very effective in the VLSI design context
[22], [51].

4

Probe Selection

Analogous to logic synthesis in VLSI design, the probe selection step is
responsible for implementing the desired functionality of the DNA array. Al-
though probe selection is application-dependent, several underlying selection
criteria are common to all designs, regardless of the intended application [1],
[2], [44], [8], [36], [47].

First, in order to meet array functionality, the selected probes must have low
hybridization energy for their intended targets and high hybridization energy
for all other target sequences. Hence, a standard way of selecting probes is to
select a probe of minimum hybridization energy from the set of probes which
maximizes the minimum number of mismatches with all other sequences [44].
Second, since selected probes must hybridize under similar operating condi-
tions, they must have similar melting temperatures.1 Finally, to simplify array
design, probes are often constrained to be substrings of a predetermined nu-
cleotide deposition sequence. Typically, there are multiple probe candidates
satisfying these constraints.

Deposition Sequence Design

The number of synthesis steps directly affects manufacturing time and the
number of masks in the mask set, as well as the likelihood of manufacturing
errors. Therefore, a basic optimization in DNA array design is to minimize the
number of synthesis steps. In the simplest model, this optimization has been
reformulated as the classical shortest common supersequence (SCS) problem
[42], [53]: Given a finite alphabet Σ (for DNA arrays Σ = {A,C, T,G}) and a
set P = {p1, ..., pt} ⊆ Σn of probes, find a minimum-length string sopt ∈ Σ∗

such that every string of P is a subsequence of sopt . (A string pi is a subsequence
of sopt if sopt can be obtained from pi by inserting zero or more symbols from
Σ.) The SCS problem has been studied for over two decades from the point
of view of computational complexity, probabilistic and worst-case analysis,
approximation algorithms and heuristics, experimental studies, etc. (see, e.g.,
[10], [12], [13], [20], [26], [27], [35], [48]).

The general SCS problem is NP-hard, and cannot be approximated within a
constant factor in polynomial time unless P = NP [35]. On the other hand,
a |Σ|-approximation is produced by using the trivial periodic supersequence
s = (x1x2 . . . x|Σ|)

n, where Σ = {x1, x2, . . . , x|Σ|}Better results are produced
in practice by a simple greedy algorithm usually referred to as the “majority
merge” algorithm [26], or variations of it that add randomization, lookahead,
bidirectionality, etc. (see, e.g., [42]). Some DNA array design methodologies

1At the melting temperature, two complementary strands of DNA are as likely to be bound to each other as
they are to be separated. A practical method for estimating the melting temperature is suggested in [36].

Computer-Aided Optimization of DNA Array Design and Manufacturing 5

bypass the deposition design step and use a predefined periodic deposition
sequence such as ACTGACTG . . . (see, e.g., [42], [53]).

Design of Control and Test Structures

DNA array manufacturing defects can be classified as non-catastrophic, i.e.,
defects that affect the reliability of hybridization results, but do not compromise
chip functionality when maintained within reasonable limits, and catastrophic,
i.e., defects that render the chip unusable. Non-catastrophic defects are caused
by systematic error sources in the VLSIPS manufacturing process, such as
unintended illumination due to diffraction, internal reflection, and scattering.
Their likelihood can be reduced during the physical design stage, as detailed in
next section.

Catastrophic manufacturing defects affect a large fraction of the probes on
the chip, and can be caused caused by missing, out-of-order, or incomplete syn-
thesis steps, wrong or misaligned masks, etc. These defects can be detected by
incorporating on the chip test structures similar to built-in self-test (BIST) struc-
tures in VLSI design. A common approach is to synthesize a small set of test
probes (sometimes referred to as fidelity probes [33]) on the chip and add their
fluorescently labeled complements to the genomic sample that is hybridized
to the chip. Multiple copies of each fidelity probe are deliberately manufac-
tured at different locations on the chip using different sequences of synthesis
steps. Lack of hybridization at some of the locations where fidelity probes are
synthesized can be used not only to detect catastrophic manufacturing defects,
but also to identify the erroneous manufacturing steps. Further results on test
structure design for DNA chips include those in [7], [17], [49].

Physical Design

Physical design for DNA arrays is equivalent to the physical design phase in
VLSI design. It consists of two steps: probe placement, which is responsible
for mapping selected probes onto locations on the chip, and probe embedding,
which embeds each probe into the deposition sequence (i.e., determines syn-
thesis steps for all nucleotides in the probe). The result of probe placement and
embedding is the complete description of the reticles used to manufacture the
array.

Under ideal manufacturing conditions, the functionality of a DNA array
should not be affected by the placement of the probes on the chip or by the
probe synthesis schedule. In practice, the manufacturing process is prone to
synthesis errors that are highly sensitive to the actual probe placement and
synthesis schedule. There are several types of synthesis errors that take place
during array manufacturing. First, a probe may not loose its protective group
when exposed to light, or the protective group may be lost but the nucleotide

6

to be synthesized may not attach to the probe. Second, due to diffraction,
internal reflection, and scattering, unintended illumination may occur at sites
that are geometrically close to intentionally exposed regions. The first type of
manufacturing errors can be effectively controlled by carefully choosing man-
ufacturing process parameters, e.g., by properly controlling exposure times and
by inserting correction steps that irrevocably end synthesis of all probes that
are unprotected at the end of a synthesis step [1]. Errors of the second type
result in synthesis of unforeseen sequences in masked sites and can compro-
mise interpretation of hybridization intensities. To reduce such uncertainty,
one can exploit the freedom available in assigning probes to array sites during
placement and in choosing among multiple probe embeddings, when available.
The objective of probe placement and embedding algorithms is therefore to
minimize the sum of border lengths in all masks, which directly corresponds to
the magnitude of the unintended illumination effects. Reducing these effects
improves the signal to noise ratio in image analysis after hybridization, and thus
permits smaller array sites or more probes per array [34].2

Let S = e1e2 . . . eK denote the nucleotide deposition sequence, i.e., ei ∈
{A,C, T,G}denotes the nucleotide synthesized in the ith synthesis step. Clearly,
every probe in the array must be a subsequence of S. When a probe corresponds
to multiple subsequences of S, one such subsequence (embedding of the probe
into S) must be chosen as the schedule for synthesizing the probe. Clearly, the
geometry of the masks is uniquely determined by the placement of the probes
on the array and the synthesis schedule used for each probe.

More formally, the border minimization problem is equivalent to finding a
three-dimensional placement of the probes [37, 41]: two dimensions represent
the site array, and the third dimension represents the nucleotide deposition
sequence S (see Figure 1.1). Each layer in the third dimension corresponds to
a mask that induces deposition of a particular nucleotide (A, C , G, or T); while
columns correspond to embedded probes. The border length of a given mask
is computed as the number of conflicts, i.e., pairs of adjacent transparent and
masked sites in the mask. Given two adjacent embedded probes p and p′, the
conflict distance d(p, p′) is the number of conflicts between the corresponding
columns. The total border length of a three-dimensional placement is the sum
of conflict distances between adjacent probes, and the border minimization
problem (BMP) seeks to minimize this quantity.

We distinguish two types of DNA array synthesis. In synchronous synthe-
sis, the ith period (ACGT) of the periodic nucleotide deposition sequence S
synthesizes a single nucleotide (the ith) in each probe. This corresponds to a
unique (and trivially computed) embedding of each probe p in the sequence S;

2Unfortunately, the lack of publicly available information about DNA array manufacturing yield makes it
impossible to assign a concrete economic value to decreases in total border length.

Computer-Aided Optimization of DNA Array Design and Manufacturing 7

CT

AC

AC

ACT AT

AT

(a)

CT

C

T C

T

A

N
uc

le
ot

id
e

de
po

si
ti

on
 s

eq
ue

nc
e

S
=

A
C

T

M1

M2

M3

CC

C

A

TT

T

T

T

C

C

C

A

A

T

A

A

(b)

Figure 1.1. (a) Two-dimensional probe placement. (b) Three masks corresponding to nucleotide
deposition sequence S = (ACT). Masked sites are shaded, and borders between transparent
and masked sites are thickened.

N
uc

le
ot

id
e

de
po

si
tio

n
se

qu
en

ce
 S

A

C

G

T

A

C

G

T

T

G

C

A

...

C

T

G

G

T

C

T

G

C

(a) (b) (c) (d)

Figure 1.2. (a) Periodic nucleotide deposition sequence S. (b) Synchronous embedding of
probe CTG into S; the shaded sites denote the masked sites in the corresponding masks. (c-d)
Two different asynchronous embeddings of the same probe.

see Figure 1.2(a-b). On the other hand, asynchronous array synthesis permits
arbitrary embeddings, as shown in Figure 1.2(c-d).

The border minimization problem was first considered for uniform arrays
(i.e., arrays containing all possible probes of a given length) by Feldman and
Pevzner [23], who proposed an optimal solution based on 2-dimensional Gray
codes. Hannenhalli et al. [29] gave heuristics for the special case of syn-
chronous synthesis. In this case the border-length contribution from two probes

8

p and p′ placed next to each other (in the synchronous synthesis regime) is twice
the Hamming distance between them, i.e., twice the number positions in which
they differ. Hence, BMP reduces to finding a two-dimensional placement of the
probes that minimizes the sum of Hamming distances between adjacent probes.
The method of [29] is to order the probes in a traveling salesman problem (TSP)
tour that heuristically minimizes the total Hamming distance between neigh-
boring probes. The tour is then threaded into the two-dimensional array of
sites, using a technique similar to one previously used in VLSI design [43]. For
the same synchronous context, improved probe placement algorithms were pro-
posed in [37, 38, 40, 41]. These algorithms, drawing on techniques borrowed
from the VLSI circuit placement literature, such as epitaxial growth, recursive
partitioning, or window-based local re-optimization, are discussed in detail in
Section 4.

The general border minimization problem, which allows asynchronous probe
embeddings, was introduced by Kahng et al. [37], who proposed a dynamic pro-
gramming algorithm that embeds a given probe optimally with respect to fixed
embeddings of the probe’s neighbors, and used it to decrease border length by
iteratively re-embedding array probes after placing them using a synchronous
placement algorithm. Asynchronous probe placement and embedding algo-
rithms in [37] and subsequent improvements in [38, 41] are discussed in Section
4.

3. Array Design Problem Formulations and Lower Bounds

Following [37, 41], in this section we give graph-theoretical formulations
and theoretical lower bounds for the synchronous and asynchronous variants of
BMP.

Let G1(V1, E1, w1) and G2(V2, E2, w2) be two edge-weighted graphs with
weight functions w1 and w2. (In the following, any edge not explicitly defined
is assumed to be present in the graph with weight zero.) A bijective function
φ : V2 → V1 is called a placement of G2 on G1. The cost of the placement is
defined as

cost(φ) =
∑

x,y∈V2

w2(x, y)w1(φ(x), φ(y)).

The optimal placement problem is to find a minimum cost placement of G2 on
G1.

The border minimization problem for synchronous array design can be cast
as an optimal placement problem. In this case we let G2 be a two-dimensional
grid graph corresponding to the arrangement of sites in the DNA array, i.e.,
V (G2) has N × N vertices corresponding to array sites, and E(G2) has edge
weights of 1 for every vertex pair corresponding to adjacent sites, and edge
weights of 0 otherwise. Also, let H be the Hamming graph defined by the

Computer-Aided Optimization of DNA Array Design and Manufacturing 9

set of probes, i.e., the complete graph with probes as vertices and each edge
weight equal to twice the Hamming distance between corresponding probes.
The border minimization problem for synchronous array design can then be
formulated as follows:

Synchronous Array Design Problem (SADP). Find a minimum-cost place-
ment of the Hamming graph H on the two-dimensional grid graph G2.

For asynchronous array design, formalizing BMP is more involved. Concep-
tually, asynchronous design consists of two steps: (i) embedding each probe p
into the nucleotide deposition sequence S, and (ii) placing the embedded probes
into the N ×N array of sites. Let H ′ be the complete graph with vertices corre-
sponding to the embedded probes and with edge weights equal to the Hamming
distance between them.3 The border minimization problem for asynchronous
array design can then be formulated as follows:

Asynchronous Array Design Problem (AADP). Find embeddings into the
nucleotide deposition sequence S for all given probes and a placement of the
corresponding graph H ′ on the two-dimensional grid graph G2 such that the
cost of the placement is minimized.

Let L be the directed graph over the set of probes obtained by including arcs
from each probe to the 4 closest probes with respect to Hamming distance, and
then deleting the heaviest 4N arcs. Since the total weight of L cannot exceed
the conflict cost of any valid placement of H on the grid graph G2, it follows
that:

Theorem 1.1 [37, 41] The total arc weight of L is a lower bound on the cost
of the optimum SADP solution.

In order to obtain non-trivial lower-bounds on the cost of the optimum AADP
solution, it is necessary to establish a lower-bound on the conflict distance be-
tween two probes independent of their embedding into S. We get such a lower-
bound by observing that the number of nucleotides (mask steps) common to two
embedded probes cannot exceed the length of the longest common subsequence
(LCS) of the two probes. Define the LCS distance between probes p and p′ by
lcsd(p, p′) = k−|LCS(p, p′)|, where k = |p| = |p′|, and let L′ be the directed
graph over the set of probes obtained by including arcs from each probe to the
4 closest probes with respect to LCS distance, and then deleting the heaviest
4N arcs. Similar to Theorem 1.1, it follows that:

3Recall that embedded probes are viewed as sequences of length K = |S| over the alphabet {A, C,G, T, b}
such that the jth letter is either b or sj . Thus, conflicts between two adjacent embedded probes occur only
on positions where a nucleotide in one probe corresponds to a blank in the other.

10

CT TG

GAAC

M1

M2

M3

(b)

T

C

G

A

A

AC

TG

GA

(a)

CT

1111

1

1

1

1

(c)

N
uc

le
ot

id
e

de
po

si
ti

on
 s

eq
ue

nc
e

S
=

A
C

T
G

A A

G

T

C

A

T

G

C

M5

M4

L’ =

G2 =

Figure 1.3. (a) Lower-bound digraph L′ for the probes AC, GA, CT , and TG. The arc weight
of L′ is 8. (b) Optimum two-dimensional placement of the probes. (c) Optimum embedding
of the probes into the nucleotide deposition supersequence S = ACTGA. The optimum
embedding has 10 conflicts, exceeding the lower bound by 2.

Theorem 1.2 [37, 41] The total arc weight of L′ is a lower bound on the
cost of the optimum AADP solution.

The weight of L′ may be smaller than the optimum cost, since the embeddings
needed to achieve LCS distance between pairs of adjacent probes may not be
compatible with each other. Figure 1.3 gives one such example consisting of
four dinucleotide probes, AC , GA, CT , and TG, which must be placed on a
2 × 2 grid. In this case, the lower bound on the number of conflicts is 8 while
the optimum number of conflicts is 10.

4. Scalable Algorithms for SADP

In this section, we review recent highly-scalable heuristics for synchronous
probe placement. We first describe the epitaxial growth algorithm in [37] and
its highly scalable row-epitaxial version in [41]. Finally, we describe the slid-
ing window matching heuristic for synchronous placement improvement [38]
(based on optimally re-placing an independent set of probes via a reduction to
minimum cost assignment), and the partition based synchronous probe place-
ment in [40]. A recurring motif behind these algorithms is the technology
transfer between the 40-year VLSI design literature and the newer field of
DNA chip design.

Computer-Aided Optimization of DNA Array Design and Manufacturing 11

Input: Set P of N2 probes, scaling coefficients ki, i = 1, . . . , 3
Output: Assignment of the probes to the sites of an N ×N grid

1. Mark all grid sites as empty
2. Assign a randomly chosen probe to the center site and mark this site as full
3. While there are empty sites, do

If there exists an empty site c with all 4 neighbors full, then

Find probe p(c) ∈ P with minimum sum of Hamming distances to the
neighboring probes

Assign probe p(c) to site c and mark c as full

Else

For each empty site c with i > 0 adjacent full sites, find probe p(c) ∈ P with
minimum sum S of Hamming distances to the probes in full neighbors, and
let norm cost(c) = kiS/i.

Let c∗ be the site with minimum norm cost

Assign probe p(c∗) to site c∗ and mark c∗ as full

Figure 1.4. The Epitaxial Algorithm

Epitaxial Growth SADP Algorithms

In this section, we describe the so-called epitaxial growth approach to SADP
and discuss some efficient implementation details [37, 41]. Epitaxial, or seeded
crystal growth, placement is a technique that has been well-explored in the VLSI
circuit placement literature [46, 50]. The technique essentially grows a two-
dimensional placement around a single starting seed.

The algorithm in [29] , which finds a TSP tour and then threads it into
the array, optimizes directly only half of the pairs of adjacent probes in the
array (those corresponding to tour edges). Intuitively, the epitaxial algorithm
(see Figure 1.4) attempts to make full use of the available information during
placement. The algorithm places a random probe at the center of the array,
and then iteratively places probes in sites adjacent to already-placed probes so
as to greedily minimize the average number of conflicts induced between all
newly created pairs of neighbors. Sites with more filled neighbors have higher
priority to be filled; in particular, sites with 4 known neighbors have the highest
priority. To avoid repeated distance computations, the algorithm maintains for
each border site a list of probes sorted by normalized cost. For each array site,
this list is computed at most four (and on the average two) times, i.e., when one
of the neighboring sites is being filled while the site is still empty.

While the epitaxial algorithm achieves good results, it runtime becomes
impractical for DNA chips with dimensions of 300 × 300 or more. Any syn-
chronous placement method can be trivially scaled by partitioning the set of
probes and the probe array into K subsets (“chunks”), then solving K inde-

12

pendent placement problems. While this ensures linear scaling of runtime,
two types of losses are incurred: (i) from lack of freedom of a probe to move
anywhere other than its subset’s assigned chunk of array sites, and (ii) lack of
optimization on borders between chunks. In [41] it is noted that better solu-
tion quality is achieved for a different scalable variant of the epitaxial algorithm
called the row-epitaxial algorithm. There are three main distinguishing features
of the row-epitaxial variant:

(1) It re-shuffles an existing pre-optimized placement rather than starting
with an empty placement;

(2) The sites are filled with crystallized probes in a predefined order, namely,
row by row and within a row from left to right;

(3) The probe filling each site is chosen as the best candidate not among
all remaining ones, but among a bounded number of them (the not yet
“crystallized” probes within the next k0 rows, where k0 is a parameter of
the algorithm).

Feature (1) is critical for compensating the loss in solution quality due to the
reduced search space imposed by (2) and (3). Since the initial placement must
be very fast to compute, one cannot afford using any two-dimensional placement
based on computing all pairwise distances between probes (such as TSP-based
placement in [29]). Possible initial placement algorithms can be based on space-
filling curve (e.g., Gray code) ordering [11]; indeed such orderings have had
success in the VLSI context [5]. As noted in [41], an excellent initial placements
is obtained by simply ordering the probes lexicographically (this can be done
in linear time by radix sort) and then threading them as in [29]. Features (2)
and (3) speed-up the algorithm significantly, with the number k0 of look-ahead
rows allowing a fine tradeoff between solution quality and runtime.

Highly Scalable Algorithms for Synchronous Placement
Improvement

In the early VLSI placement literature, iterative placement improvement
methods relied on weak neighborhood operators such as pair-swap, leveraged
by meta-heuristics such as simulated annealing. More recently, strong neigh-
borhood operators have been proposed which improve larger portions of the
placement. For example, the DOMINO approach [21] iteratively determines
an optimal reassignment of all objects within a given window of the placement.
The end-case placer of [14] uses branch and bound to optimally reorder small
sub-rows of a row-based placement. Extending such improvement operators
to full-chip scale, such that placeable objects can eventually migrate to good
locations within practical runtimes, is typically achieved by shifting a fixed-size

Computer-Aided Optimization of DNA Array Design and Manufacturing 13

sliding window [21] around the placement; cf. cycling and overlapping [32],
row-ironing [14], etc.

For DNA arrays, an initial placement (and embedding) of probes in array
sites may be improved by changing the placement and/or the embedding of
individual probes. However, randomly chosen pairs of probes are extremely
unlikely to be swappable with reduction in border cost. On the other hand,
optimal probe re-placement of an entire window of probes is not practical even
for very small window sizes. However, as noted in [38], optimal probe re-
placement of large sets of independent (i.e., non-adjacent) probes reduces to
computing a minimum cost assignment, where the cost of assigning a probe p
to a cell c is given by the sum of Hamming distances between p and the probes
placed in the four cells adjacent to c. For a set of t independent cells, computing
the minimum cost assignment requires O(t3) time. Full-chip application with
practical runtime is achieved by iteratively choosing the independent set from a
sliding window that is moved around the array; this approach is a reminiscence
of early work on electronic circuit placement by [3, 52].

Following extensive algorithm engineering, the following implementation
of the sliding window method was found to work best [38]. (1) First, radix-sort
all probes lexicographically and then perform 1-threading as in [29]. (2) For
each sliding W0×W0 window, choose one random maximal independent set of
sites and determine the cost of (asynchronous) reassignment of each associated
probe to each site, then reassign probes according to the minimum weight
perfect matching in the resulting weighted bipartite graph. (3) The window
slides in rows, beginning in the top-left corner of the array; at each step, it
slides horizontally to the right as far as possible while maintaining a prescribed
amount of window overlap. After the right side of the array is reached, the
window returns to the left end of the next row while maintaining the prescribed
overlap with the preceding row. When the bottom side of the array is reached,
the window returns to the top-left corner. The experiments in [38] have shown
that an overlap equal to half the window size gives best results. (4) The window-
sliding continues until an entire pass through the array results in less than 0.1%
reduction of border cost. Figure 1.5 illustrates the heuristic tuning with respect
to varying window sizes.

Partition Based Probe Placement

Recursive partitioning has been the basis of numerous successful VLSI place-
ment algorithms [6], [15], [54] since it produces placements with acceptable
wirelength within practical runtimes. The main goal of partitioning in VLSI is
to divide a set of cells into two or four sets with minimum edge or hyper-edge
cut between these sets. The min-cut goal is typically achieved through the use of
the Fiduccia-Mattheyses procedure [24], often in a multilevel framework [15].

14

420000

430000

440000

450000

460000

470000

480000

490000

500000

510000

520000

530000

0 5000 10000 15000 20000 25000

To
ta

l b
or

de
r c

on
flic

ts

CPU seconds

6x6
12x12
18x18

Figure 1.5. Solution quality vs. runtime for Synchronous Sliding-Window Matching with
varying window size; array size = 100 × 100.

Unfortunately, direct transfer of the recursive min-cut placement paradigm from
VLSI to VLSIPS is blocked by the fact that the possible interactions between
probes must be modeled by a complete graph and, furthermore, the border cost
between two neighboring placed partitions can only be determined after the de-
tailed placement step which finalizes probe placements at the border between
the two partitions. In this section we describe the centroid-based quadrisection
method proposed in [40], which applies the recursive partitioning paradigm to
DNA probe placement.

Assume that at a certain depth of the recursive partitioning procedure, a probe
set R is to be quadrisectioned into four equally sized subsets R1, R2, R3 and
R4. The probes in R are partitioned among Ri’s by picking a representative, or
centroid, probe Ci for each Ri, and then iteratively assigning remaining probes
to the subset Ri whose representative is closest in Hamming distance. The
procedure for selecting the four centroids, reminiscent of the k-center approach
to clustering studied by Alpert et al. [4] and of methods used in large-scale
document classification [19], is described in Figure 1.6.

The complete partitioning-based placement algorithm for DNA arrays is
given in Figure 1.7. The algorithm recursively quadrisects every partition at a
given level, assigning the probes so as to minimize distance to the centroids of

Computer-Aided Optimization of DNA Array Design and Manufacturing 15

Input: Partition (set of probes) R
Output: Probes C0, C1, C2, C3 to be used as centroids for the 4 sub-partitions

Randomly select probe C0 in R

Choose C1 ∈ R maximizing d(C1, C0)

Choose C2 ∈ R maximizing d(C2, C0) + d(C2, C1)

Choose C3 ∈ R maximizing d(C3, C0) + d(C3, C1) + d(C3, C2)

Return (C0, C1, C2, C3)

Figure 1.6. The SelectCentroid() procedure for selecting the centroid probes of sub-partitions.

Input: Chip size N ×N ; set R of DNA probes
Output: Probe placement which heuristically minimizes total conflicts

Let l = 0 and let L = maximum recursion depth

Let Rl
1,1 = R

For l = 0 to L− 1

For i = 1 to 2l

For j = 1 to 2l

(C0, C1, C2, C3)← SelectCentroid(Rl
i,j)

Rl+1
2i−1,2j−1 ← {C0}; Rl+1

2i−1,2j ← {C1}; Rl+1
2i,2j−1 ← {C2};

Rl+1
2i,2j ← {C3}

For each probe p ∈ Rl
i,j \ {C0, C1, C2, C3}

Insert p into the yet-unfilled partition of Rl
i,j whose centroid has

minimum distance to p

For i = 1 to 2L

For j = 1 to 2L

Reptx(RL
i,j , RL

i,j+1)

Figure 1.7. Partitioning-based DNA probe placement heuristic.

16

sub-partitions.4 A multi-start heuristic in the innermost of the three nested for
loops of Figure 1.7, whereby r different random probes are tried as seed C0, and
the result that minimizes the total distance to the centroids is selected. Within the
innermost of the three nested for loops, our implementation actually performs,
and benefits from, a dynamic update of the partition centroid whenever a probe
is added into a given partition.5

Once the maximum level L of the recursive partitioning is attained, detailed
placement is executed via a modified version of the row-epitaxial algorithm.
Since the basic implementation of the row-epitaxial algorithm treats the last
locations within a region “unfairly” (e.g., only one candidate probe will remain
available for placing in a region’s last location), the modified algorithm permits
“borrowing” probes from the next region. The modified row-epitaxial algorithm
is also “border-aware”, that is, it takes into account Hamming distances to the
already placed probes in adjacent regions.

5. In-Place Optimization of Probe Embeddings

Experiments in [37, 38] indicate that separate optimization of probe place-
ment and embedding yields better results for AADP than simultaneous opti-
mization of the two degrees of freedom. For example, the asynchronous version
of the epitaxial algorithm [37] and the asynchronous version of sliding-window
matching [38] are both dominated by algorithms implementing the following
two-step flow:

Step (i). Find a two-dimensional placement based on synchronous embedding
for the probes (using, e.g., the row-epitaxial and sliding-window match-
ing algorithms discussed in the previous section, or the TSP+1-Threading
of [29]).

Step (ii). Iteratively optimize probe embeddings, without changing their lo-
cation on the array.

In this section we consider the second step of the above flow. We first
present a dynamic programming algorithm for optimally embedding a single
probe with respect to its neighbors, as well as a lower-bound on the optimum
border cost for in-place probe embedding [37]. We then present three methods

4The variables i and j index the row and column of a given partition within the current level’s array of
partitions.
5Details of the dynamic centroid update, reflecting an efficient implementation, are as follows. The “pseudo-
nucleotide” at each position t (e.g., t = 1, . . . , 25 for probes of length 25) of the centroid C i can be

represented as Ci[t] =
⋃
s

Ns,t

Ni
· s, where Ni is the current number of probes in the partition Ri and Ns,t

is the number of probes in the partition having the nucleotide s ∈ {A,T, C,G} in t-th position. The
Hamming distance between a probe p and Ci is d(p, Ci) = 1

Ni

∑
t

∑
s6=p[t]

Ns,t.

Computer-Aided Optimization of DNA Array Design and Manufacturing 17

Input: Nucleotide deposition sequence S = s1s2 . . . sK , si ∈ {A, C, G, T}; set X of
probes already embedded into S; and unembedded probe p = p1p2 . . . pk,
pi ∈ {A, C, G, T}
Output: The minimum number of conflicts between an embedding of p and probes in X ,
along with a minimum-conflict embedding

1. For each j = 1, . . . , K, let xj be the number of probes in X which have a non-blank
letter in jth position.

2. cost(0, 0) = 0; For i = 1, . . . , k, cost(i, 0) =∞
3. For j = 1, . . . , K do

cost(0, j) = cost(0, j − 1) + xj

For i = 1, . . . , k do

If pi = sj then
cost(i, j) = min{cost(i, j − 1) + xj , cost(i− 1, j − 1) + |X| − xj}

Else cost(i, j) = cost(i, j − 1) + xj

4. Return cost(k, K) and the corresponding embedding of s

Figure 1.8. The Single Probe Alignment Algorithm

for iterative in-place probe embedding optimization [37, 41], and conclude with
a useful theoretical bound on the amount of improvement available during this
optimization step.

Optimum Embedding of a Single Probe

The basic operation used by in-place embedding optimization algorithms
is to find the optimum embedding of a probe when the adjacent sites contain
already embedded probes. In other words, the goal is to simultaneously align
the given probe s to its embedded neighboring probes, while making sure this
alignment gives a feasible embedding of s in the nucleotide deposition sequence
S. In this section we present an efficient dynamic programming algorithm given
in [37] for computing this optimum alignment.

The Single Probe Alignment algorithm (see Figure 1.8) essentially computes
a shortest path in a specific directed acyclic graph G = (V,E). Let p be the
probe to be aligned, and let X be the set of already embedded probes adjacent
to p. Each embedded probe q ∈ X is a sequence of length K = |S| over the
alphabet {A,C,G, T, b}, with the j th letter of q being either a blank or sj , the
jth letter of the nucleotide deposition sequence S. The graph G (see Figure
1.9) has vertex set V = {0, . . . , k} × {0, . . . ,K} (where k is the length of
the probe p and K is the length of the deposition sequence S), and edge set
E = Ehoriz ∪ Ediag where

Ehoriz = {(i, j − 1) → (i, j) | 0 ≤ i ≤ k, 0 < j ≤ K}

18

and

Ediag = {(i − 1, j − 1) → (i, j) | 0 < i ≤ k, 0 < j ≤ K, pi = sj}.

The cost of a horizontal edge (i, j − 1) → (i, j) is defined as the number of
embedded probes in X which have a non-blank letter on j th position, while
the cost of a diagonal edge (i − 1, j − 1) → (i, j) is equal to the number of
embedded probes of X with a blank on the j th position. The Single Probe
Alignment algorithm computes the shortest path from the source node (0, 0) to
the sink node (k,K) using a topological traversal of G, which corresponds to
the optimum embedding of s:

Theorem 1.3 The algorithm in Figure 1.8 returns, in O(kK) time, the mini-
mum number of conflicts between an embedding of s and the adjacent embedded
probes X (along with a minimum-conflict embedding of s).

Proof : Each directed path from (0, 0) to (k,K) in G consists of K edges, k
of which must be diagonal. Each such path P corresponds to an embedding of p
into S as follows. If the jth arc of P is horizontal, the embedding has a blank in
jth position. Otherwise, the jth arc must be of the form (i− 1, j − 1) → (i, j)
for some 1 ≤ i ≤ k, and the embedding of p corresponding to P has pi = sj

in the jth position. It is easy to verify that the edge costs defined above ensure
that the total cost of P gives the number of conflicts between the embedding of
p corresponding to P and the set X of embedded neighbors.
Remarks. The above dynamic programming algorithm can be easily ex-
tended to find the optimal simultaneous embedding of n > 1 probes. The
corresponding directed acyclic graph G consist of knK nodes (i1, . . . , in, j),
where 0 ≤ il ≤ k, 1 ≤ j ≤ K . All arcs into (i1, . . . , in, j) come from nodes
(i′1, . . . , i

′
n, j − 1), where i′l ∈ {il, il − 1}. Therefore the in-degree of each

node is at most 2n. The weight of each edge is defined as above such that each
finite weight path defines embeddings for all probes and the weight equals the
number of conflicts. Finally, computing the shortest path between (0, . . . , 0)
and (k, . . . , k,K) can be done in O(2nknK) time. The probe alignment al-
gorithm can also be extended to handle practical concerns such as pre-placed
control probes, presence of polymorphic probes, unintended illumination be-
tween non-adjacent array sites, and position-dependent border conflict weights,
we refer the reader to [38, 41] for details.

Algorithms for Iterative In-Place Embedding Optimization

Batched Greedy [37]. A natural greedy algorithm is to find a probe that
offers largest cost gain from optimum re-embedding with respect to the (fixed)
embeddings of its neighbors, perform this re-embedding, and repeat these steps
until no further improvement is possible. The batched version of the greedy

Computer-Aided Optimization of DNA Array Design and Manufacturing 19

algorithm (see Figure 1.10) trades some gain in re-embedding steps for faster
runtime. During each batched phase the algorithm attempts to re-embed all
probes in the order given by cost gains at the beginning of the phase. The
algorithm gains in efficiency by avoiding to update probe gains after each probe
re-embedding.
Chessboard Optimization [37]. The main idea behind our so-called “Chess-
board” algorithm is to maximize the number of independent re-embeddings,
where two probes are independent if changing the embedding of one does not
affect the optimum embedding of the other. It is easy to see that if we bicolor
our grid as we would a chessboard, then all white (resp. black) sites will be
independent and can therefore be simultaneously, and optimally, re-embedded.
The Chessboard Algorithm (see Figure 1.11) alternates re-embeddings of black
and white sites until no improvement is obtained.

A 2 × 1 version of the Chessboard algorithm partitions the array into iso-
oriented 2 × 1 tiles and bicolors them. Then using the multi-probe alignment
algorithm (see the remark in Section 5.0) with n = 2 it alternatively optimizes
the black and white 2 × 1 tiles.
Sequential Probe Re-Embedding [41]. In this method, probes are sequentially
re-embedded optimally with respect to their neighbors in a row-by-row order.
A shortcoming of the Batched Greedy and Chessboard algorithms is that, by
always re-embedding independent sets of probes, it takes longer to propagate
the effects of a new embedding. Performing the re-embedding sequentially
permits faster propagation and convergence to a better local optimum.

A Lower Bound for In-Place Probe Re-Embedding

Let LG be a grid graph with weights on edges equal to the LCS distance
between endpoint probes. The following theorem gives a lower bound that is
very useful in assesing the quality of in-place probe re-embedding algorithms:

Theorem 1.4 [37] The total edge weight of the graph LG is a lower bound
on the optimum AADP solution cost with a given placement.

6. Empirical Results

In this section we give experimental results comparing algorithms intro-
duced in previous sections. Unless otherwise specified, experiments reported
in this chapter were performed on test cases obtained by generating each probe
candidate uniformly at random and reported numbers are averages over 10 ran-
dom instances. The probe length was set to 25, which is the typical value for
commercial arrays [1]. We used the canonical periodic deposition sequence,
(ACTG)25. All reported runtimes are for a 2.4 GHz Intel Xeon server with
2GB of RAM running under Linux.

20

Chip LB TSP+1Thr Row-Epitaxial SWM SA
Size Cost Cost Gap CPU Cost Gap CPU Cost Gap CPU Cost Gap CPU

100 0.41M 0.55M 35.3 113 0.50M 22.5 108 0.60M 47.7 2 0.58M 42.4 20769
200 1.51M 2.14M 41.6 1901 1.91M 26.6 1151 2.36M 56.1 8 2.42M 59.9 55658
300 3.23M 4.67M 44.3 12028 4.18M 29.4 3671 5.19M 60.6 19 5.50M 70.2 103668
500 8.46M 12.70M 50.1 109648 11.18M 32.2 10630 13.75M 62.5 50 15.43M 82.5 212390

Table 1.1. Total border cost, gap from the synchronous placement lower-bound (in percents),
and CPU time (in seconds) for the TSP threading (TSP+1Thr), the row-epitaxial (Row-Epitaxial),
and sliding-window matching (SWM) heuristics, and the simulated annealing algorithm (SA).

In a first set of experiments we compare synchronous probe placement heuris-
tics: the TSP 1-threading heuristic of [29] (TSP+1Thr), the Row-Epitaxial and
sliding-window matching (SWM) heuristics of [38], a simulated annealing al-
gorithm (SA), and the partitioning based algorithm. These experiments use an
upper bound of 20,000 on the number of candidate probes in Row-Epitaxial,
and 6×6 windows with overlap 3 for SWM. The SA algorithm starts by sorting
the probes and threading them onto the chip. It then slides a 6×6 window over
the chip in the same way as the SWM algorithm (with overlap 3). For every
window position, SA picks 2 random probes in the window and swaps them
with probability 1 if the swap improves total border cost. If the swap increases
border cost by δ, the swap is performed only with probability e−δ/T , where T
is the current temperature. A number of 63 SA iterations was performed for
every window position.

Table 1.1 shows that among TSP+1Thr, Row-Epitaxial, SWM, and SA
heuristics, Row-Epitaxial is the algorithm with highest solution quality (i.e.,
lowest border cost), while SWM is the fastest, offering competitive solution
quality with much less runtime. SA takes the largest amount of time, and also
gives the worse solution quality.

Table 1.2 gives results for the recursive partitioning algorithm (RPART) with
recursion depth L varying between 1 and 3. Compared to Row-Epitaxial, re-
cursive partitioning based placement achieves improved runtime and similar or
better solution quality.

In a second set of experiments we compared the three probe embedding al-
gorithms in Section 5 on random instances with chip sizes between 100 and 500
and an initial two-dimensional placement obtained using TSP+1-threading. All
algorithms were stopped when the improvement cost achieved in one iteration
over the whole chip drops below 0.1% of the total cost. The results in Table 1.3
show that sequential re-embedding of the probes in a row-by-row order yields
the smallest border cost with a runtime similar to that of the other methods.

In another series of experiments, we ran complete placement and embedding
flows obtained by combining each of the five two-dimensional placement algo-

Computer-Aided Optimization of DNA Array Design and Manufacturing 21

T

C

A

(0,0) (0,8)

C T A T A C TA

(1,0)

(2,0)

(3,0)

(1,8)

(2,8)

(3,8)

Figure 1.9. Directed acyclic graph G1 representing possible embeddings of probe p = ACT
into the nucleotide deposition sequence S = ACTATACT .

Chip LB RPART L = 1 RPART L = 2 RPART L = 3
Size Cost Cost Gap CPU Cost Gap CPU Cost Gap CPU

100 0.41M 0.48M 16.1 69 0.49M 20.0 24 0.50M 23.1 10
200 1.51M 1.81M 19.9 992 1.87M 23.4 283 1.92M 27.2 81
300 3.23M 4.14M 27.9 3529 4.07M 26.0 1527 4.18M 29.1 240
500 8.46M 11.28M 33.4 10591 11.05M 30.6 9678 11.13M 31.6 3321

Table 1.2. Total border cost, gap from the synchronous placement lower-bound (in percents),
and CPU time (in seconds) for the recursive partitioning algorithm with r = 10 and recursion
depth L varying between 1 and 3.

Chip LB Batched Greedy Chessboard Sequential
Size Cost Cost Gap CPU Cost Gap CPU Cost Gap CPU

100 0.36M 0.45M 25.7 40 0.44M 20.5 54 0.44M 19.9 64
200 1.43M 1.80M 26.3 154 1.72M 20.9 221 1.72M 20.3 266
300 3.13M 3.97M 26.7 357 3.80M 21.5 522 3.77M 20.6 577
500 8.59M 10.92M 27.1 943 10.43M 21.4 1423 10.38M 20.9 1535

Table 1.3. Total border cost, gap from the synchronous placement lower-bound (in percents), and
CPU time (in seconds) for the batched greedy, chessboard, and sequential in-place re-embedding
algorithms.

22

Input: Feasible AADP solution, i.e., placement in G2 of probes embedded in S
Output: A heuristic low-cost feasible AADP solution

While there exist probes which can be re-embedded with gain in cost do

Compute gain of the optimum re-embedding of each probe.

Unmark all probes

For each unmarked probe p, in descending order of gain, do

Re-embed p optimally with respect to its four neighbors

Mark p and all probes in adjacent sites

Figure 1.10. The Batched Greedy Algorithm

Input: Feasible AADP solution, i.e., placement in G2 of probes embedded in S
Output: A heuristic low-cost feasible AADP solution

Repeat until there is no gain in cost

For each site (i, j), 1 ≤ i, j ≤ N with i + j even, re-embed probe optimally with
respect to its four neighbors

For each site (i, j), 1 ≤ i, j ≤ N with i + j odd, re-embed probe optimally with
respect to its four neighbors

Figure 1.11. The Chessboard Algorithm

Chip LB TSP+1Thr Row-Epitaxial SWM SA
Size Cost Cost Gap CPU Cost Gap CPU Cost Gap CPU Cost Gap CPU

100 0.22M 0.44M 99.5 113 0.42M 88.3 161 0.44M 99.8 93 0.46M 107.6 11713
200 0.80M 1.72M 115.8 1901 1.61M 101.4 1368 1.72M 115.6 380 1.84M 130.9 42679
300 — 3.80M — 12028 3.53M — 3861 3.80M — 861 4.16M — 101253
500 — 10.43M — 109648 9.46M — 12044 10.16M — 2239 11.57M — 222376

Table 1.4. Total border cost, gap from the synchronous placement lower-bound (in percents),
and CPU time (in seconds) for the TSP threading (TSP+1Thr), the row-epitaxial (Row-Epitaxial),
and sliding-window matching (SWM) heuristics, and the simulated annealing algorithm (SA)
followed by sequential in-place probe re-embedding.

rithms compared above with the sequential in-place re-embedding algorithm.
Results are given in Tables 1.4-1.5. Again, SA and TSP+1Thr are dominated
by both REPTX and SWM in both conflict cost and running time. REPTX
produces less conflicts than SWM but SWM is considerably faster. Recur-
sive partitioning consistently outperforms the other flows with similar or lower
runtime.

Computer-Aided Optimization of DNA Array Design and Manufacturing 23

Chip LB RPART L = 1 RPART L = 2 RPART L = 3
Size Cost Cost Gap CPU Cost Gap CPU Cost Gap CPU

100 0.22M 0.39M 78.3 123 0.40M 81.1 44 0.41M 86.2 10
200 0.80M 1.52M 90.9 1204 1.55M 93.5 365 1.57M 97.0 101
300 — 3.49M — 3742 3.41M — 1951 3.43M — 527
500 — 9.55M — 11236 9.36M — 10417 9.30M — 3689

Table 1.5. Total border cost, gap from the synchronous placement lower-bound (in percents),
and CPU time (in seconds) for the recursive partitioning algorithm with r = 10 and recursion
depth L varying between 1 and 3, followed by sequential in-place probe re-embedding.

Quantified Suboptimality of Placement Algorithms

As noted in the introduction, next-generation of DNA probe arrays will con-
tain up to one hundred million probes, orders of magnitude more than current
designs. Thus, it is of interest to study not only runtime scaling for avail-
able heuristics, but also the scaling of their suboptimality. Following [40], we
present next an experimental framework for quantifying suboptimality of probe
placement heuristics This framework, inspired by similar studies in the area of
VLSI placement [30],[16],[18], comprises two basic types of instance scaling.

Instances with known optimum solution. These instances consist of
all 4k probes of length k padded with the same prefix up to the prescribed
probe length. These instances are are placeable such that every probe has
border cost of 2 to each of its neighboring probes using 2-dimensional
Gray codes [23] (see Figure 1.12).

Instances with known suboptimal solutions. Because constructed in-
stances with known optimum solutions are not representative of “real”
instances, we also apply a technique of [30] that allows real instances to
be scaled, such that they offer insights into scaling of heuristic subopti-
mality. The technique is applied as follows. Beginning with a problem
instance I , we construct three isomorphic versions of I by three distinct
mappings of the nucleotide set {A,C,G, T} onto itself. Each mapping
yields a new probe set that can be placed with optimum border cost ex-
actly equal to the optimum border cost of I . Our scaled instance I ′

consists of the union of the original probe set and its three isomorphic
copies. Observe that one placement solution for I ′ is to optimally place
I and its isomorphic copies as individual chips, and then to adjoin these
placements as the four quadrants of a larger chip. Thus, an upper bound
on the optimum border cost for I ′ is 4 times the optimum border cost
for I , plus the border cost between the copies of I; see Figure 1.13. If a
heuristic H places I ′ with cost cH(I ′) ≥ 4 · cH(I), then we may infer

24

M11 M

M Mnn

1n

n1

tn=2

AM
11

AM
1n 1n

TM 11

AMn1 AMnn TMnn

GMnn
CMnn

CMn1
CM

11 GMn1
GM11

n1CM GMn1

TMn1

TM

Figure 1.12. 2-dimensional Gray code placement.

����������
���������� ����������

����������

����������
����������

GC

A T

A
(A, T, C, G) −−> (A, T, C, G)

(A, T, C, G) −−> (C, G, A, T)

G

G C

T

TC A

T

G

A

AGC

C

T(A, T, C, G) −−> (T, C, G, A)

(A, T, C, G) −−> (G, A, T, C)

Figure 1.13. Scaling construction used in the suboptimality experiment.

that the heuristic’s suboptimality is growing by at least a factor cH(I′)
4·cH(I) .

On the other hand, if cH(I ′) < 4 · cH(I), then the heuristic’s solution
quality would be said to scale well on this class of instances.

Table 1.6 shows results from executing the various placement heuristics on
instances with known optimum solution. We see from these results that sliding-
window matching is closest to the optimum, with a suboptimality gap of 4-
30%. Overall, DNA array placement algorithms appear to be performing better
than their VLSI counterparts [16] when it comes to results on special-case in-
stances with known optimal cost. Of course, results from placement algorithms
(whether for VLSI or DNA chips) on special benchmark instances should not
be generalized to arbitrary benchmarks. In particular, our results show that
algorithms that perform best for arbitrary benchmarks are not necessarily the
best performers for specially constructed benchmarks.

Table 1.7 shows the results obtained by running the synchronous placement
heuristics on scaled versions of random DNA probe sets, with original instances

Computer-Aided Optimization of DNA Array Design and Manufacturing 25

Chip Optimal TSP+1Thr Row-Epitaxial SWM RPART
Size Cost Cost Gap Cost Gap Cost Gap Cost Gap

16 960 1380 44 960 0 992 4 1190 24
32 3968 6524 65 5142 30 4970 25 5210 31
64 16128 27072 68 16128 0 19694 22 21072 31

128 65024 111420 71 92224 42 86692 33 88746 36
256 261120 457100 75 378612 45 325566 25 359060 37
512 1046528 1844244 76 1573946 50 1414154 35 1476070 41

Table 1.6. Comparison of placement algorithms performance on instances with known optimal
solution. SW matching is using a window size of 20 x 20 and an overlap of 10. Row-epitaxial
uses 10, 000/chipsize lookahead rows.

Original Row Epitaxial SWM RPART
Size U-Bound Actual Ratio U-Bound Actual Ratio U-Bound Actual Ratio

100 2024464 1479460 0.73 2203132 1999788 0.91 1919328 1425806 0.73
200 7701848 6379752 0.83 8478520 6878096 0.81 7497520 6107394 0.82
300 16817110 12790186 0.76 18645122 13957686 0.75 16699806 12567786 0.75
400 29239934 24621324 0.84 32547390 26838164 0.82 30450780 24240850 0.80
500 44888710 38140882 0.85 49804320 41847206 0.84 47332142 37811712 0.80

Table 1.7. Suboptimality of placement algorithm performance on scaled benchmarks. SW
matching is using a window size of 20 x 20 and a step of 10. Row epitaxial uses 10, 000/chipsize
lookahead rows.

ranging in size from 100 x 100 to 500 x 500. The results show that in general,
placement algorithms for DNA arrays offer excellent scaling suboptimality.
We believe that this is primarily due to the already noted fact that algorithm
quality (as reflected by normalized border costs) improves with instance size.
The larger number of probes in the scaled instances gives more freedom to
the placement algorithms, leading to heuristic placements that have scaling
suboptimality factor well below 1.

7. Flow Enhancements

As noted in [39], the basic DNA array design flow described in Section 2
can be significantly improved by introducing flow-aware problem formulations,
adding feedback loops between optimization steps, and/or integrating multiple
optimizations. These enhancements, which are represented schematically in
Figure 1.14 by the dashed arcs, are similar to flow enhancements that have
proved very effective in the VLSI design context [22], [51]. In this section
we describe two such enhancements, both aiming at further reductions in total
border length. The first enhancement is a tighter integration between probe

26

placement and embedding. The second enhancement is the integration between
physical design and probe selection, which is achieved by passing the entire
pools of candidates available for each probe to the physical design step. These
enhancements yield significant improvements (up to 15%) in border length
compared to best flows in [38, 41].

Problem Formulation for Integrated Probe Selection and
Physical Design

To integrate probe selection and physical design, one can pass the entire
pools of candidates for each probe to the physical design step (Figure 1.14). As
discussed in Section 2, candidate probes are selected so that they have similar
hybridization properties (e.g., melting temperatures), and can thus be used in-
terchangeably. The availability of multiple probe candidates gives additional
freedom during placement and embedding, and may potentially reduce final
border cost. DNA array physical design with probe pools is captured by the
following problem formulation [39]:6

Integrated DNA Array Design Problem

Given:

Pools of candidates Pi = {pij | j = 1, . . . , li} for each probe i =
1, . . . , N 2, where N × N is the size of array

The number of masks K

Find:

1 Probes pij ∈ Pi for every i = 1, . . . , N 2,

2 A deposition sequence S = s1, . . . , sK which is a supersequence of all
selected probes pij ,

6This formulation also integrates deposition sequence design. For simplicity, we leave out design of control
and test sequences.

Probe

Selection

Deposition

Sequence

Design

Test

Structure

Design

Probe

placement

Probe

Embedding

Physical Design
Probe pools

Figure 1.14. A typical DNA array design flow with solid arcs and proposed enhancements
represented by dashed arcs.

Computer-Aided Optimization of DNA Array Design and Manufacturing 27

3 A placement of the selected probes pij into an N × N array,

4 An embedding of the selected probes pij into the deposition sequence S

Such that:

The total number of conflicts between adjacent embedded probes is min-
imized

Although the flow in Figure 1.14 suggests a particular order for making the
choices 1-4, the integrated formulation above allows interleaving these deci-
sions. The following two algorithms capture key optimizations and will be
used as building blocks for constructing integrated optimization flows. They
are “probe pool” versions of the Row-epitaxial and re-embedding algorithms
described in previous sections, and degenerate to the latter ones in the case
when each probe pool contains a single candidate.

The Pool Row-Epitaxial algorithm (Pool-REPTX) is the extension to
probe pools of the REPTX probe placement algorithm. Pool-REPTX
performs choices 1 and 3 for given choices 2 and 4, i.e., it simultane-
ously chooses already embedded candidates from the respective pools
and places them on the array. The input of Pool-REPTX consists of
probe candidates pij embedded in the deposition sequence S. Each such
embedding is written as a sequence of length K = |S| over the alphabet
{A,C, T,G,Blank}, where A,C, T,G denote embedded nucleotides
and Blank’s denote positions of S left unused by the embedded can-
didate probe. Pool-REPTX consists of the following steps: (1) Lexico-
graphic sorting of the pools (based on the first candidate, when more than
one candidate is available in the pool); (2) Threading the sorted pools in
row-by-row order; (3) Traversing array cells, again in row-by-row order,
and placing at each location the best probe candidate – i.e., the candidate
having the minimum number of conflicts with already placed neighbors
– within a prescribed lookahead region.

The sequential in-place pool re-embedding algorithm is the extension
to probe pools of the sequential probe re-embedding algorithm given in
Section 5. It complements Pool-REPTX by iteratively modifying candi-
date selections within each pool and their embedding (choices 2 and 4) as
follows. In row-by-row order, for each array cell and for each candidate
pij from the associated pool of probe candidates, an embedding having
minimum number of conflicts with the existing embeddings of the neigh-
bors is computed, and then the best embedded candidate probe is used to
replace the current one.

28

GC TA GC TA GC TA GC TA

A

G

G T A

T G A

(a)

(b)

(c) A

G T

G T A

AG

Nucleotide deposition sequence S

Figure 1.15. (a) Periodic deposition sequence. (b) Synchronous embedding of the probes
AGTA and GTGA gives 6 border conflicts (indicated by arrows). (c) “As soon as possible”
asynchronous embedding of the probes AGTA and GTGA gives only 2 border conflicts.

Improved Integration of Probe Placement and Embedding

As noted in [37], allowing asynchronous embeddings leads to further reduc-
tions in border length compared to synchronous embedding (e.g., contrast (b)
and (c) in Figure 1.15). An interesting question is finding the best order in
which the placement and embedding degrees of freedom should be exploited.
Existing methods [37, 38, 41] can be divided into two main classes: (1) meth-
ods that perform placement and embedding decisions simultaneously, and (2)
methods that exploit the two degrees of freedom one at a time. Currently,
best methods in the second class (e.g., synchronous row-epitaxial followed by
chessboard/sequential in-place probe re-embedding [38, 41]) outperform the
methods in the first class (e.g., the asynchronous epitaxial algorithm in [37]) in
terms of both runtime and solution quality.

Methods in the second class perform synchronous probe placement followed
by iterated in-place re-embedding of the probes (with locked probe locations).
More specifically, these methods perform the following 3 steps:

Synchronous embedding of the probes.

Probe placement with costs given by the Hamming distance between the
synchronous probe embeddings.

Iterated sequential probe re-embedding.

In [39] we noted that significant reductions in border cost are possible by per-
forming the placement based on asynchronous, rather than synchronous, em-
beddings of the probes, and therefore proposed a modified scheme as follows:

Asynchronous embedding of the probes.

Computer-Aided Optimization of DNA Array Design and Manufacturing 29

Placement with costs given by the Hamming distance between the fixed
asynchronous probe embeddings.

Iterated sequential probe re-embedding.

Since solution spaces for placement and embedding are still searched in-
dependently of one another, and the computation of an initial asynchronous
embedding does not add significant overhead, the proposed change is unlikely
to adversely affect the runtime. However, because placement optimization is
now applied to embeddings more similar to those sought in the final optimiza-
tion stage, there is significant potential for improvement.

In the implementation proposed in [39] the first step consists of embedding
each probe using an “as soon as possible,” or ASAP, synthesis schedule (see
Figure 1.15(c)). Under ASAP embedding the nucleotides in a probe are em-
bedded sequentially by always using the earliest available synthesis step. The
intuition behind using ASAP embeddings is that, since ASAP embeddings are
more densely packed, the likelihood that two neighboring probes will both use a
synthesis step increases compared to synchronous embeddings. This translates
directly into reductions in the number of border conflicts.

Indeed, consider two random probes p, p′ picked from the uniform distribu-
tion. When performing synchronous embedding, the length of the deposition
sequence is 4×25 = 100. The probability that any one of the 100 synthesis step
is used by one of the random probes and not the other is 2× (1/4)× (3/4), and
therefore the expected number of conflicts is 100× 2× (1/4) × (3/4) = 37.5.
Assume now that the two probes are embedded using the ASAP algorithm.
Notice that for every 0 ≤ i ≤ 3 the ASAP algorithm will leave a gap of length
i with probability 1/4 between any two consecutive letters of a random probe.
This results in an average gap length of 1.5, and an expected number of syn-
thesis steps of 25 + 24*1.5 = 61. Assuming that p and p′ are both embedded
within 61 steps, the number of conflicts between their ASAP embeddings is
then approximately 61 × 2 × (25/61) × ((61 − 25)/61) ≈ 29.5. Although
in practice many probes require more than 61 synthesis steps when embedded
using the ASAP algorithm, they still require much less than 100 steps and result
in significantly fewer conflicts compared to synchronous embedding.

We compared ASAP and synchronous initial embeddings on test cases rang-
ing in size from 100 × 100 to 500 × 500. For both embedding strategies, the
second and third steps are implemented using REPTX and sequential in-place
probe re-embedding, respectively. Tables 1.8 and 1.9 give the border-length
and CPU time (in seconds) after each flow step. Remarkably, the simple switch
from synchronous to ASAP initial embedding results in 5-7% reduction in total
border-length. Furthermore, the runtimes for the two methods are comparable.
In fact, sequential re-embedding becomes faster in the ASAP-based method
compared to the synchronous-based one since fewer iterations are needed to

30

Chip Synchronous Initial Embedding ASAP Initial Embedding %
Size Sync. REPTX Sequential ASAP REPTX Sequential Impr.
100 619153 502314 415227 514053 393765 389637 5.2
200 2382044 1918785 1603745 1980913 1496937 1484252 6.7
300 5822857 4193439 3514087 4357395 3273357 3245906 6.9
500 18786229 11203933 9417723 11724292 8760836 8687596 7.0

Table 1.8. Total border cost (averages over 10 random instances) for synchronous and ASAP
initial probe embedding followed by row-epitaxial and sequential in-place probe re-embedding.

Chip Synchronous Initial Embedding ASAP Initial Embedding
Size Sync+REPTX Sequential Total ASAP+REPTX Sequential Total
100 166 81 247 188 29 217
200 1227 340 1567 1302 114 1416
300 3187 748 3935 2736 235 2971
500 8495 2034 10529 6391 451 6842

Table 1.9. CPU seconds (averages over 10 random instances) for synchronous and ASAP initial
probe embedding followed by row-epitaxial and sequential in-place probe re-embedding.

converge to a locally optimal solution (the number of iterations drops from 9 to
3 on the average).

Integrated Probe Selection and Physical Design

Two different methods for exploiting the availability of multiple probe candi-
dates during placement and embedding were proposed in [39]. A first method
uses the pool versions of the row-epitaxial and sequential in-place probe re-
embedding algorithms described above. This method is an instance of inte-
gration between multiple flow steps, since probe selection decisions are made
during probe placement and can be further changed during probe re-embedding.
The detailed steps are as follows:

Perform ASAP embedding of all probe candidates.

Run the Pool-REPTX (or a pool version of the recursive-partitioning
placement algorithm) using border costs given by the Hamming distance
between the ASAP embeddings.

Run the pool version of the sequential in-place re-embedding algorithm.

The second method preserves the separation between candidate selection and
placement+embedding. However, probe selection is modified to make its re-
sults more suitable for the subsequent placement and embedding optimizations.
Building on the observation that shorter probe embeddings lead to improved

Computer-Aided Optimization of DNA Array Design and Manufacturing 31

border length, the modified probe selection algorithm picks from the available
candidates the one that embeds in the least number of steps of the standard
periodic deposition sequence using ASAP:

Perform ASAP embedding of all probe candidates.

Select from each pool of candidates the one that embeds in the least
number of steps using ASAP.

Run the REPTX or recursive-partitioning placement algorithm using only
the selected candidates and border costs given by the Hamming distance
between the ASAP embeddings.

Run the iterated sequential in-place probe re-embedding algorithm, again
using only selected candidates.

Table 1.10 gives the border-length and the runtime (in CPU seconds) for
the two methods (each number represents the average over 10 test cases of the
given size). The pool version of the recursive-partitioning uses L = 3. In
these experiments, the number of candidates available for each probe is varied
between 1 and 16; probe candidates were generated uniformly at random.

As expected, for each method and chip size, the improvement in solution
quality grows monotonically with the number of available candidates. The
improvement is significant (up to 15% when running the first method on a
100×100 chip with 16 candidates per probe), but varies non-uniformly with
the method and chip size. For small chips the first method gives better solution
quality than the second. For chips of size 200×200 the two methods give com-
parable solution quality, while for chips with size 300×300 or larger the second
method is better (by over 5% for 500×500 chips with 8 probe candidates). The
second method is faster than first for all chip sizes. The speedup factor varies
between 5× and 40× when the number of candidates varies between 2 and 16.
Interestingly, the runtime of the second method is slightly improving with the
number of candidates, the reason being that the number of iterations of sequen-
tial re-embedding decreases when the length of the ASAP embedding of the
selected candidates decreases.

8. Conclusions

In this chapter we have reviewed several recent algorithmic and methodolog-
ical advance in DNA array design, focusing on minimizing the total mask border
length during probe placement and embedding. Unlike VLSI placement, where
placer suboptimality generally increases with instance size, empirical experi-
mental results suggest that the opposite trend holds for DNA array placement:
current algorithms are able to find DNA array placements with smaller normal-
ized border cost when the number of probes in the design grows. Second, the

32

Chip Pool Multi-Candidate ASAP-Based Selection
Row-Epitaxial Partitioning Row-Epitaxial Partitioning

Size Size Border CPU % Border CPU % Border CPU % Border CPU %
100 1 0.39M 217 – 0.38M 115 – 0.39M 217 – 0.38M 115 –

2 0.37M 1040 4.3 0.37M 676 0.9 0.38M 212 3.2 0.36M 114 3.6
4 0.36M 1796 8.2 0.36M 1274 5.0 0.36M 193 6.6 0.35M 127 7.0
8 0.34M 3645 11.8 0.34M 2605 8.7 0.35M 191 9.8 0.34M 109 9.4

16 0.33M 7315 15.2 0.33M 5003 12.2 0.34M 185 12.8 0.33M 121 11.6
200 1 1.48M 1416 – 1.45M 1012 – 1.48M 1416 – 1.45M 1012

2 1.44M 6278 3.1 1.44M 7281 0.6 1.44M 1176 3.3 1.41M 946 2.5
4 1.39M 12750 6.6 1.39M 13231 4.1 1.39M 1189 6.6 1.36M 932 5.9
8 1.33M 27382 10.1 1.33M 26413 7.7 1.34M 1121 9.9 1.31M 957 9.2

16 1.28M 44460 13.5 1.28M 52400 11.2 1.29M 1117 13.1 1.28M 971 11.7
300 1 3.25M 2971 – 3.22M 2975 – 3.25M 2971 – 3.22M 2975 –

2 3.19M 14956 1.9 3.18M 13161 1.1 3.14M 2724 3.2 3.05M 2134 5.4
4 3.09M 26514 4.7 3.09M 24671 3.9 3.02M 2771 7.0 2.94M 2118 8.8
8 2.99M 51226 8.0 2.99M 45607 7.3 2.92M 2603 10.0 2.83M 2079 12.0

16 2.88M 98189 11.3 2.88M 85311 10.6 2.84M 2760 12.6 2.71M 2247 15.9
500 1 8.69M 6842 – 8.65M 5608 – 8.69M 6842 – 8.65M 5608 –

2 8.61M 51847 0.9 8.61M 41409 0.4 8.41M 6090 3.2 8.27M 5468 4.3
4 8.48M 86395 2.4 8.48M 94566 1.9 8.11M 6709 6.7 7.96M 5591 8.0
8 8.25M 161651 5.1 8.25M 213264 4.6 7.81M 6085 10.1 7.64M 5782 11.7

16 – – – – – – 7.52M 5986 13.5 7.45M 5601 13.9

Table 1.10. Total border cost and runtime (averages over 10 random instances) for the two
methods of combining probe placement and embedding with probe selection. The improvement
(in percents) is relative to the single-candidate version of the respective method.

lower bounds for DNA probe placement and embedding appear to be tighter
than those available in the VLSI placement literature. Developing even tighter
lower bounds is, of course, an important open problem. Other direction of future
research is to find formulations and algorithms for integrated optimization of
test structure design and physical design. Since test structures are typically pre-
placed at sites uniformly distributed across the array, integrated optimization
can have a significant impact on the total border length.

References

[1] http://www.affymetrix.com

[2] http://www.perlegen.com

[3] S. Akers, “On the Use of the Linear Assignment Algorithm in Module Place-
ment,” Proc. 1981 ACM/IEEE Design Automation Conference (DAC’81),
pp. 137–144.

[4] C. J. Alpert and A. B. Kahng, “Geometric Embeddings for Faster (and Bet-
ter) Multi-Way Netlist Partitioning” Proc. ACM/IEEE Design Automation

Computer-Aided Optimization of DNA Array Design and Manufacturing 33

Conf., 1993, pp. 743-748.

[5] C. J. Alpert and A. B. Kahng, “Multi-Way Partitioning Via Spacefilling
Curves and Dynamic Programming,” Proc. 1994 ACM/IEEE Design Au-
tomation Conference (DAC’94), pp. 652-657.

[6] C.J. Alpert and A.B. Kahng, “Recent directions in netlist partitioning: A
survey”, Integration: The VLSI Jour. 19 (1995), pp. 1-81.

[7] N. Alon, C. J. Colbourn, A. C. H. Lingi and M. Tompa, “Equireplicate Bal-
anced Binary Codes for Oligo Arrays”, SIAM Journal on Discrete Mathe-
matics 14(4) (2001), pp. 481-497.

[8] A.A. Antipova, P. Tamayo and T.R. Golub, “ A strategy for oligonucleotide
microarray probe reduction”, Genome Biology 2002 3(12):research0073.1-
0073.4

[9] M. Atlas, N. Hundewale, L. Perelygina and A. Zelikovsky, “Consolidating
Software Tools for DNA Microarray Design and Manufacturing", Proc.
International Conf. of the IEEE Engineering in Medicine and Biology
(EMBC’04), 2004, pp. 172-175.

[10] K. Nandan Babu and S. Saxena, “Parallel algorithms for the longest com-
mon subsequence problem”, Proc. 4th Intl. Conf. on High-Performance
Computing, Dec. 1997, pp. 120-125.

[11] J. J. Bartholdi and L. K. Platzman, “An O(N log N) Planar Travelling
Salesman Heuristic Based On Spacefilling Curves,” Operations Research
Letters 1 (1982), pp. 121-125.

[12] J. Branke and M. Middendorf, “Searching for shortest common superse-
quences”, Proc. Second Nordic Workshop on Genetic Algorithms and Their
Applications, 1996, pp. 105-113.

[13] J. Branke, M. Middendorf and F. Schneider, “Improved heuristics and a
genetic algorithm for finding short supersequences”, OR Spektrum 20(1)
(1998), pp. 39-46.

[14] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal Partitioners and
End-Case Placers for Standard-Cell Layout,” Proc. ACM 1999 Interna-
tional Symposium on Physical Design (ISPD’99), pp. 90-96.

[15] A. Caldwell and A. Kahng and I. Markov, “Can Recursive bisection Pro-
duce Routable Designs?”, DAC, 2000, pp.477-482.

[16] C. C. Chang, J. Cong and M. Xie, “Optimality and Scalability Study of Ex-
isting Placement Algorithms", Proc. Asia South-Pacific Design Automation
Conference, Jan. 2003.

[17] C.J. Colbourn, A.C.H. Lingi and M. Tompa, “Construction of optimal
quality control for oligo arrays”, Bioinformatics 18(4) (2002), pp. 529–
535.

34

[18] J. Cong, M. Romesis and M. Xie, “Optimality, Scalability and Stability
Study of Partitioning and Placement Algorithms”, Proc. ISPD, 2003, pp.
88-94.

[19] D. R. Cutting, D. R. Karger, J. O. Pederson and J. W. Tukey, “Scat-
ter/Gather: A Cluster-Based Approach to Browsing Large Document Col-
lections”, (15th Intl. ACM/SIGIR Conference on Research and Develop-
ment in Information Retrieval) SIGIR Forum (1992), pp. 318–329.

[20] V. Dancik, “Common subsequences and supersequences and their ex-
pected length”, Combinatorics, Probability and Computing 7(4) (1998),
pp. 365-373.

[21] K. Doll, F. M. Johannes, K. J. Antreich, “Iterative Placement Improve-
ment by Network Flow Methods”, IEEE Transactions on Computer-Aided
Design 13(10) (1994), pp. 1189-1200.

[22] J. J. Engel et al. ”Design methodology for IBM ASIC products”, IBM
Journal for Research and Development 40(4) (1996), pp. 387.

[23] W. Feldman and P.A. Pevzner, “Gray code masks for sequencing by hy-
bridization”, Genomics, 23 (1994), pp. 233–235.

[24] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Im-
proving Network Partitions”, Proc. Design Automation Conference (DAC
1982), pp. 175–181.

[25] S. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, L. A. Tsai and D. So-
las, “Light-Directed, Spatially Addressable Parallel Chemical Synthesis”,
Science 251 (1991), pp. 767–773.

[26] D. E. Foulser, M. Li and Q. Yang, “Theory and algorithms for plan merg-
ing”, Artificial Intelligence 57(2-3) (1992), pp. 143-181.

[27] C. B. Fraser and R. W. Irving, “Approximation algorithms for the shortest
common supersequence”, Nordic J. Computing 2 (1995), pp. 303-325.

[28] D.H. Geschwind and J.P. Gregg (Eds.), Microarrays for the neurosciences:
an essential guide, MIT Press, Cambridge, MA, 2002.

[29] S. Hannenhalli, E. Hubbell, R. Lipshutz and P. A. Pevzner, “Combina-
torial Algorithms for Design of DNA Arrays,” in Chip Technology (ed. J.
Hoheisel), Springer-Verlag, 2002.

[30] L. W. Hagen, D. J. Huang and A. B. Kahng, “Quantified Suboptimality
of VLSI Layout Heuristics”, Proc. ACM/IEEE Design Automation Conf.,
1995, pp. 216–221.

[31] S. A. Heath and F. P. Preparata, “Enhanced Sequence Reconstruction With
DNA Microarray Application”, Proc. 2001 Annual International Conf. on
Computing and Combinatorics (COCOON’01), pp. 64-74.

Computer-Aided Optimization of DNA Array Design and Manufacturing 35

[32] D. J. Huang and A. B. Kahng, “Partitioning-Based Standard-Cell Global
Placement with an Exact Objective”, in Proc. ACM/IEEE Intl. Symp. on
Physical Design, Napa, April 1997, pp. 18-25.

[33] E. Hubbell and P.A. Pevzner, “Fidelity Probes for DNA Arrays”, Proc.
Seventh International Conference on Intelligent Systems for Molecular Bi-
ology, 1999, pp. 113-117.

[34] E. Hubbell and M. Mittman , personal communication (Affymetrix, Santa
Clara, CA), July 2002.

[35] T. Jiang and M. Li, “On the approximation of shortest common superse-
quences and longest common subsequences”, SIAM J. on Discrete Mathe-
matics 24(5) (1995), pp. 1122-1139.

[36] L. Kaderali and A. Schliep, “Selecting signature oligonucleotides to iden-
tify organisms using DNA arrays”, Bioiformatics 18:1340-1349, 2002.

[37] A.B. Kahng, I.I. Măndoiu, P.A. Pevzner, S. Reda, and A. Zelikovsky, “Bor-
der Length Minimization in DNA Array Design”, Proc. 2nd International
Workshop on Algorithms in Bioinformatics (WABI 2002), R. Guigó and D.
Gusfield (Eds.), Springer-Verlag Lecture Notes in Computer Science Series
2452, pp. 435-448.

[38] A.B. Kahng, I.I. Măndoiu, P.A. Pevzner, S. Reda, and A. Zelikovsky, “En-
gineering a Scalable Placement Heuristic for DNA Probe Arrays”, Proc. 7th
Annual International Conference on Research in Computational Molecular
Biology (RECOMB 2003), W. miller, M. Vingron, S. Istrail, P. Pevzner and
M. Waterman (Eds.), 2003, pp. 148–156.

[39] A.B. Kahng, I.I. Măndoiu, S. Reda, X. Xu, and A. Zelikovsky. Design flow
enhancements for DNA arrays. In Proc. IEEE International Conference on
Computer Design (ICCD), pages 116–123, 2003.

[40] A.B. Kahng, I.I. Măndoiu, S. Reda, X. Xu, and A. Zelikovsky. Evaluation
of placement techniques for DNA probe array layout. In Proc. IEEE-ACM
International Conference on Computer-Aided Design (ICCAD), pages 262–
269, 2003.

[41] A.B. Kahng, I.I. Măndoiu, P. Pevzner, S. Reda, and A. Zelikovsky. Scal-
able heuristics for design of DNA probe arrays. Journal of Computational
Biology, 11(2–3):429–447, 2004.

[42] S. Kasif, Z. Weng, A. Derti, R. Beigel, and C. DeLisi, “A computational
framework for optimal masking in the synthesis of oligonucleotide microar-
rays”, Nucleic Acids Research vol. 30 (2002), e106.

[43] T. Kozawa et al., “Automatic Placement Algorithms for High Packging
Density VLSI”, Proc. 20th Design Automation Conference (DAC 1983),
pp. 175–181.

36

[44] F. Li and G.D. Stormo, “Selection of optimal DNA oligos for gene ex-
pression arrays,” Bioinformatics 17(11):1067-1076, 2001.

[45] R.J. Lipshutz, S.P. Fodor, T.R. Gingeras, D.J. Lockhart, “High density
synthetic oligonucleotide arrays,” Nature Genetics 21 (1999), pp. 20–24.

[46] B. T. Preas and M. J. Lorenzetti (Eds.), Physical Design Automation of
VLSI Systems, Benjamin-Cummings, 1988.

[47] S. Rahmann. “Rapid large-scale oligonucleotide selection for microar-
rays”, Proc. IEEE Computer Society Bioinformatics Conference (CSB),
2002.

[48] S. Rahmann, “The Shortest Common Supersequence Problem in a Mi-
croarray Production Setting,” Bioinformatics 19 Suppl. 2 (2003), pp. 156-
161.

[49] R. Sengupta and M. Tompa, “Quality Control in Manufacturing Oligo
Arrays: a Combinatorial Design Approach”, Journal of Computational Bi-
ology 9 (2002), pp. 1–22.

[50] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques”,
Computing Surveys 23(2) (1991), pp. 143-220.

[51] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer
Academic Publishers, Norwell, MA, 199

[52] L. Steinberg, “The backboard wiring problem: a placement algorithm”,
SIAM Review 3 (1961), pp. 37–50.

[53] A.C. Tolonen, D.F. Albeanu, J.F. Corbett, H. Handley, C. Henson, and P.
Malik, “Optimized in situ construction of oligomers on an array surface”,
Nucleic Acids Research 30 (2002), e107.

[54] M. Wang, X. Yang and M. Sarrafzadeh, “DRAGON2000: Standard-cell
Placement Tool For Large Industry Circuits”, Proc. International Confer-
ence on Computer-Aided Design (ICCAD 2001), pp. 260–263.

[55] J.A. Warrington, R. Todd, and D. Wong (Eds.). Microarrays and cancer
research BioTechniques Press/Eaton Pub., Westboro, MA, 2002.

