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11.1 INTRODUCTION

Numerous high-throughput genomics assays require rapid and cost-effective ampli-
fication of a large number of genomic loci. Most significantly, Single Nucleotide
Polymorphism (SNP) genotyping protocols often require the amplification of thou-
sands of SNP loci of interest [13]. Effective amplification can be achieved using the
polymerase chain reaction [17] (PCR), which cleverly exploits the DNA replication
machinery in a cyclic reaction that creates an exponential number of copies of specific
DNA fragments.

In its basic form, PCR requires a pair of short single-stranded DNA sequences
called primers for each amplification target. More precisely, the two primers must
be (perfect or near perfect) reversed Watson-Crick complements of the 3′ ends of
the forward and reverse strands of the double-stranded amplification target (see
Figure 11.1). Typically there is significant freedom in selecting the exact ends of an
amplification target, i.e., in selecting PCR primers. Consequently, primer selection
can be optimized with respect to various criteria affecting reaction efficiency, such as
primer length, melting temperature, secondary structure, etc. Since the efficiency of
PCR amplification falls off exponentially as the length of the amplification product
increases, an important practical requirement is that the distance between the binding
sites of the two primers should not exceed a certain threshold (typically around 1000
base pairs).

Multiplex PCR (MP-PCR) is a variant of PCR in which multiple DNA fragments are
amplified simultaneously. While MP-PCR is still making use of two oligonucleotide
primers to define the boundaries of each amplification fragment, a primer may now
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participate in the amplification of multiple targets. A primer set is feasible as long as
it contains a pair of primers that amplify each target. Note that MP-PCR amplification
products are available only as a mixture and may include unintended products.
Nevertheless, this is not limiting the use of MP-PCR in applications such as SNP
genotyping, since allelic discrimination methods (typically hybridization based) can
be applied directly to complex mixtures of and are not significantly affected by the
presence of a small number of undesired amplification products [13].

Much of the previous work on PCR primer selection has focused on single primer
pair optimization with respect to the above biochemical criteria. This line of work has
resulted in the release of several robust software tools for primer pair selection, the
best known of which is the Primer3 package [21]. In the context of multiplex PCR,
an important optimization objective is to minimize the total number of primers [4,
18], since reducing the number of primers reduces assay cost, increases amplification
efficiency by enabling higher effective concentration of the primers, and minimizes
primer cross-hybridization and unintended amplification. Pearson et al. [19] were
the first to consider minimizing the number of primers in their optimal primer cover
problem: given a set of n DNA sequences and an integer `, select a minimum
number of `-mers such that each sequence contains at least one selected `-mer.
Pearson et al. proved that the primer cover problem is as hard to approximate as set
cover (i.e., not approximable within a factor better than (1 − o(1))O(log n) unless
NP ⊆ TIME(nO(log log n)) [5]), and that the classical greedy set cover algorithm
achieves an approximation factor of O(log n).

The problem formulation in Pearson et al. [19] decouples the selection of forward
and reverse primers, and, in particular, cannot explicitly enforce bounds on PCR
amplification length. A similar remark applies to problem formulations in recent
works on degenerate PCR primer selection [15, 23]. Such bounds can be enforced
only by conservatively defining the allowable primer binding regions. For example,
in order to guarantee a distance of L between the binding sites of the forward and
reverse primers amplifying a SNP, one could confine the search to primers binding
within L/2 nucleotides on each side of the SNP locus. However, since this approach
reduces the number of feasible candidate primer pairs by a factor of almost 2,1 it may
lead to significant sub-optimality in the total number of primers needed to amplify
all given SNP loci.

Motivated by the requirement of unique PCR amplification in synthesis of spotted
microarrays, Fernandes and Skiena [6] introduced an elegant minimum multi-colored
subgraph formulation for the primer selection problem, in which each candidate
primer is represented as a graph node and each two primers that feasibly amplify a
desired locus define an edge “colored” by the locus number. Minimizing the number
of PCR primers reduces to finding a minimum subset of the nodes inducing edges
of all possible colors. Unfortunately, approximating the minimum multi-colored

1E.g., assuming that all DNA `-mers can be used as primers, out of the (L− `+1)(L− `+2)/2 pairs of
forward and reverse `-mers that can feasibly amplify a SNP locus, only (L− ` + 1)2/4 have both `-mers
within L/2 bases of this locus.
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Fig. 11.1 Strings f i and ri consist of the L − x − ` DNA bases immediately preceding
in 3′ − 5′ order the i-th amplification locus along the forward (respectively reverse) DNA
genomic sequence, where L is the given threshold on PCR amplification length, ` is the
primer length, and x is the length of an amplification locus (x = 1 for SNP genotyping). If
forward and reverse PCR primers cover f i and ri at positions t and t′ respectively, then PCR
amplification product length is equal to [2(L− x− `) + x]− [(t− 1) + (t′ − 1)]. This is
no larger than L if an only t + t′ ≥ L′ + 1, where L′ = (L− x− `)− (`− 1).

subgraph appears to be difficult – the best approximation factor derived via this
reduction is currently O(L log n), where n is the number of amplification loci and L
is the upperbound on the PCR amplification length [7].

In this chapter we make the following contributions:

• First, we introduce a new string covering formulation for the MP-PCR primer
set selection problem with amplification length constraints that translates into
integer programs that are much more compact than those resulting from the
minimum multicolored subgraph formulation of Fernandes and Skiena [6].
Our compact integer programs enable computing exact solutions for moderate
problem instances using general purpose integer programming solvers such as
CPLEX [3].

• Second, we show that a modification of the classical greedy algorithm for the
set cover problem achieves an approximation factor of 1 + ln(∆), where ∆ is
the maximum “coverage gain” of a primer. The value of ∆ is never more than
nL, and in practice it is up to orders of magnitude smaller. The approximation
factor is established using a novel framework for analyzing greedy algorithms
based on monotonic potential functions. Our potential function technique
generalizes several results for the classical set cover problem and its variants
[1, 2, 10, 16, 22], and is of interest in its own right.
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• Finally, we give the results of a comprehensive experimental study comparing
our integer programming and greedy algorithms with other heuristics pro-
posed in the literature. Experiments on both synthetic and human genome test
cases show that the new potential function greedy algorithm obtains significant
reductions in the number of primers with highly scalable running time.

The rest of the chapter is organized as follows. In next section we introduce notations
and give a formal problem definition of MP-PCR primer selection with amplification
length constraints. In Section 11.3 we introduce the string covering formulation of
the problem and give a compact integer program formulation. In Section 11.4 we
describe the greedy algorithm, give its performance analysis, and discuss practical
implementation issues. Finally, we present experimental results in Section 11.5 and
conclude in Section 11.6.

11.2 NOTATIONS AND PROBLEM FORMULATION

Let Σ = {A, C, G, T} be the four nucleotide DNA alphabet. We denote by Σ∗

the set of strings over Σ, and by |s| the length of string s ∈ Σ∗. For a string s
and an integer 1 ≤ t ≤ |s|, we denote by s[1..t] the prefix of length t of s. We
use ` to denote the required primer length, L to denote the given threshold on PCR
amplification length, and n to denote the number of amplification loci. We say that
primer p = p1p2 . . . p` hybridizes (or covers) string s = s1s2 . . . sm at position
t ≤ m − ` + 1 if stst+1 . . . st+`−1 is the reversed Watson-Crick complement of p,
i.e., if st+j is the Watson-Crick complement of p`−j for every 0 ≤ j ≤ `− 1.

For each i ∈ {1, . . . , n}, we denote by f i (respectively ri) the string preceding the
amplification locus in 3′−5′ order in the forward (respectively reverse) DNA genomic
sequence where potentially useful primer binding may occur. More precisely, if the
length of the amplification locus is denoted by x (x = 1 for SNP genotyping), then
f i and ri consist of the L−x− ` DNA bases immediately preceding in 3′− 5′ order
the i-th amplification locus along the forward (respectively reverse) DNA genomic
sequence. Note that a primer can hybridize f i (respectively ri) only at positions t
between 1 and L′, where L′ = (L− x− `)− (`− 1). Simple arithmetic shows that
two primers that hybridize to f i and ri at positions t and t′ lead to an amplification
product of length at most L if and only if t + t′ ≥ L′ + 1 (see Figure 11.1, and note
that f i and ri, and hence hybridization positions, are indexed in the respective 3′−5′

orders, i.e., they increase when moving towards the amplification locus).

Primers p and p′ (not necessarily distinct) are said to feasibly amplify SNP locus i if
there exist integers t, t′ ∈ {1, . . . , L− ` + 1} such that the following conditions are
simultaneously satisfied:

1. p hybridizes at position t of f i,

2. p′ hybridizes at position t′ of ri, and

3. t + t′ ≥ L′ + 1.
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A set of primers P is said to be an L-restricted primer cover for n SNPs defining
sequences (f i, ri), if, for every i = 1, . . . , n, there exist primers p, p′ ∈ P feasibly
amplifying SNP locus i. The minimum primer set selection problem with amplifi-
cation length constraints (MPSS-L) is defined as follows: Given primer length `,
amplification length upperbound L, and n pairs of sequences (f i, ri), i = 1, . . . , n,
find a minimum size L-restricted primer cover consisting of primers of length `.

11.3 INTEGER PROGRAM FORMULATIONS FOR MPSS-L

Fernandes and Skiena [6] proposed an elegant minimum multicolored subgraph for-
mulation for primer set selection. In this formulation, each candidate primer is viewed
as a graph node, and each two primers that feasibly amplify a desired locus define
an edge “colored” by the locus number. The objective is to find a minimum number
of nodes inducing edges of all possible colors. The minimum multicolored subgraph
formulation can be cast as an integer linear program by introducing a 0/1 variable xp

for every candidate primer p, and a 0/1 variable yp,p′ for every two (not necessarily
distinct) primers p and p′ feasibly amplifying at least one of the SNP loci, as follows
[7]:

minimize
∑

p∈P

xp (11.1)

subject to
∑

yp,p′ ≥ 1, i = 1, . . . , n (11.2)
∑

p′

yp,p′ ≤ xp, p ∈ P (11.3)

xp, yp,p′ ∈ {0, 1} (11.4)

where P is the set of O(nL) candidate primers. The sum in (11.2) is over all pairs
(p, p′) feasibly amplifying SNP locus i; this set of constraints ensures that each SNP
locus is feasibly amplified by two of the selected primers. Constraints (11.3) ensure
that only selected primers can be used to amplify SNP loci.

Unfortunately, the integer program (11.1)-(11.4) cannot be used to solve practical
MPSS-L problem instances due to its large size. In particular, the number of variables
yp,p′ can be as large as Θ(nL2), which reaches into the millions for typical values of
L.

Below we give a much more compact integer program formulation based on a novel
string covering formulation of MPSS-L. The key idea is to view MPSS-L as a
generalization of the partial set cover problem [22], in which the objective is to cover
a certain fraction of the total number of elements of a ground set using the minimum
number of given subsets. In the case of MPSS-L the elements to be covered are the
non-empty prefixes in {f i[1..j], ri[1..j] | 1 ≤ i ≤ n, 1 ≤ j ≤ L′}, where, as in
Section 11.2, L′ = (L− x− `)− (`− 1). Each primer p covers the set of prefixes
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f i[1..j] and ri[1..j] for which p hybridizes to f i, respectively ri, at a position t ≥ j.
The objective is to choose the minimum number of primers that cover at least L′ + 1
of the 2L′ elements of each set {f i[1..j], ri[1..j] | 1 ≤ j ≤ L′} for i ∈ {1, . . . , n}.
To formulate this as an integer program, we again introduce a 0/1 variable xp for
every candidate primer p, which is set to 1 if and only if primer p is selected. We
also introduce 0/1 variables z(f i, j) (respectively z(ri, j)) for every i = 1, . . . , n,
1 ≤ j ≤ L′; such a variable is set to 1 if and only if the prefix f i[1..j] (respectively
ri[1..j]) is covered by at least one of the selected primers. Using these variables,
MPSS-L can be formulated as follows:

minimize
∑

p∈P

xp (11.5)

subject to
L′

∑

j=1

z(f i, j) +

L′

∑

j=1

z(ri, j) ≥ L′ + 1 i = 1, . . . , n (11.6)

z(f i, j) ≤
∑

p hybridizes

to f i at t ≥ j

xp, i = 1, . . . , n, 1 ≤ j ≤ L′(11.7)

z(ri, j) ≤
∑

p hybridizes

to ri at t ≥ j

xp, i = 1, . . . , n, 1 ≤ j ≤ L′ (11.8)

xp, z(f i, j), z(ri, j) ∈ {0, 1} (11.9)

Integer program (11.5)-(11.9)has O(nL) variables and O(nL) constraints. However,
its solution via general purpose solvers such as CPLEX still requires prohibitively
long runtime, mostly due to the fact that each constraint has O(L) variables, and
therefore the underlying integer program matrix is relatively dense. An equivalent
formulation leading to a much sparser matrix, and, in practice, to greatly reduced
runtime, is obtained as follows. Let p(f i, j) (respectively p(ri, j)) be the unique
primer hybridizing at position j of f i (respectively ri). Constraints (11.7) ensure
that z(f i, j) is set to 1 only when at least one of the primers hybridizing to f i at a
position t ≥ j is selected. This happens if either p(f i, j) or a primer hybridizing to
f i at a position t > j is selected, and in the latter case z(f i, j + 1) will be set to 1 as
well. Thus, constraints (11.7) can be replaced by

z(f i, L′) ≤ xp(f i,L′), i = 1, . . . , n (11.10)

z(f i, j) ≤ xp(f i,j) + z(f i, j + 1), i = 1, . . . , n, 1 ≤ j < L′ (11.11)

and (11.8) can be similarly replaced by the nL′ constraints obtained from (11.10)
and (11.11) after substituting ri for f i.
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1. P ← ∅

2. While Φ(P ) < n(L′ + 1) do

(a) Find a primer p 6∈ P maximizing δ(p, P ) := Φ(P ∪ {p})− Φ(P )

(b) P ← P ∪ {p}

3. Return P

Fig. 11.2 The generic greedy algorithm.

11.4 A GREEDY ALGORITHM

In this section we describe an efficient greedy algorithm for MPSS-L and then estab-
lish its approximation guarantee. The algorithm, which can be seen as a generalization
of the greedy algorithm for the set cover problem, critically exploits the string cov-
ering formulation introduced in Section 11.3 . To enable future application of our
techniques to other covering problems, we describe the algorithm and its analysis
using an axiomatic framework based on monotonic potential functions.

For a set of primers P , let Φi(P ) denote the minimum between L′+1 and the number
of prefixes of {f i[1..j], ri[1..j] | 1 ≤ j ≤ L′} covered by at least one primer in P .
Also, let Φ(P ) =

∑n
i=1 Φi(P ). The following properties of the integer valued set

function Φ are immediate:

(A1) Φ(∅) = 0.

(A2) There exists a constant Φmax such that Φ(P ) = Φmax if and only if P
is a feasible solution (Φmax = n(L′ + 1) for MPSS-L).

(A3) Φ is a non-decreasing set function, i.e., Φ(P ) ≥ Φ(P ′) whenever
P ⊇ P ′, and, furthermore, for every P such that Φ(P ) < n(L′ + 1), there
exists p 6∈ P such that Φ(P ∪ {p}) > Φ(P ).

Properties (A1)–(A3) suggest using Φ(·) as a measure of progress towards feasibility,
and employing the generic greedy algorithm in Figure 11.2 to solve MPSS-L. The
greedy algorithm starts with an empty set of primers and then iteratively adds the
primer that gives the largest increase in Φ, until reaching feasibility. By (A1)-(A3)
this algorithm will end in a finite number of steps and will return a feasible MPSS-L
solution.

Let us denote by ∆(p, P ) the increase in Φ (also referred to as the “gain”) obtained
by adding primer p to set P , i.e., ∆(p, P ) = Φ(P ∪ {p}) − Φ(P ). By (A3), it
follows that the gain function ∆ is non-negative. It is easy to verify that ∆ is also
monotonically non-increasing in the second argument, i.e.,

(A4) ∆(p, P ) ≥ ∆(p, P ′) for every p and P ⊆ P ′.
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Fig. 11.3 A graphical illustration of the cost lower-bound used in the proof of Theorem 11.1
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i ≥ δj
i > 0 (a), and for δj−1

i > δj
i = 0 (b). In each case, cj

i is equal to the area

shaded under the curve min{1, 1/x}. Since ∆j
0 ≥ δj−1

i , the shaded area is larger than the

area of a rectangle with width δj−1
i − δj

i and height 1/∆j
0.

Theorem 11.1. For every set function Φ satisfying (A1)-(A4), the greedy algorithm
in Figure 11.2 returns a feasible solution of size at most 1 + ln ∆ times larger than
the optimum, where ∆ = maxp,P ∆(p, P ).

Proof. We begin with some additional notations. Let P ∗ = {p∗1, p∗2, . . . , p∗k} be
an optimum solution, i.e., a feasible set of primers of minimum size. Let also
P = {p1, p2, . . . , pg} denote the solution returned by the greedy algorithm, with
primers indexed in the order in which they are selected by the algorithm. Let
Φj

i = Φ({p∗1, . . . , p∗i } ∪ {p1, . . . , pj}), ∆j
i = Φj

i − Φj−1
i , and δj

i = Φj
i − Φj

i−1.

Note that, by (A4) and (A2), ∆j
0 ≥ ∆j

1 ≥ . . . ≥ ∆j
k = 0 for every 0 ≤ j ≤ g, and

δ0
i ≥ δ1

i ≥ . . . ≥ δg
i = 0 for every 0 ≤ i ≤ k. Furthermore, note that ∆j

0 ≥ δj−1
i

for every 1 ≤ i ≤ k and 1 ≤ j ≤ g. Indeed, ∆j
0 is the gain achieved by the greedy

algorithm when selecting primer pj . This gain must be at least ∆(p∗i , {p1, ..., pj−1})
since the greedy algorithm selects the primer with maximum gain in each iteration.
Finally, by (A4), ∆(p∗i , {p1, ..., pj−1}) ≥ ∆(p∗i , {p1, ..., pj−1}∪ {p∗1, . . . , p∗i−1}) =

Φj−1
i − Φj−1

i−1 = δj−1
i .

To analyze the size of the solution produced by the greedy algorithm, we use a
charging scheme in which a certain cost is assigned to each primer in the optimal
solution for every greedy primer. More precisely, the cost charged to p∗

i by the greedy
primer pj is

cj
i =







ln(δj−1
i )− ln(δj

i ), if δj−1
i ≥ δj

i > 0

ln(δj−1
i ) + 1, if δj−1

i > δj
i = 0

0, if δj−1
i = δj

i = 0

Notice that the total cost charged to primer p∗
i ,
∑g

j=1 cj
i , is a telescopic sum equal

to 1 + ln(δ0
i ) ≤ 1 + ln ∆. Hence, the overall cost is at most k(1 + ln ∆). To prove

the approximation factor of 1 + ln ∆ it suffices to prove that we charge at least one
unit of cost for each greedy primer. Indeed, consider a fixed j ∈ {1, . . . , g}. Since
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∆j
0 ≥ δj−1

i , it follows that

cj
i ≥

δj−1
i − δj

i

∆j
0

for every 1 ≤ i ≤ k (see Figure 11.3). Using that δj−1
i − δj

i = ∆i−1
j − ∆i

j and
∆k

j = 0 gives
k∑

i=1

cj
i ≥

k∑

i=1

∆i−1
j −∆i

j

∆j
0

= 1

which completes the proof.

Note that the maximum gain ∆ is at most nL, and therefore Theorem 11.1 implies a
worst case approximation factor of 1 + ln(nL) for MPSS-L. For practical MPSS-L
instances, ∆ is much smaller than nL, implying a significantly better approximation
factor on these instances.

11.4.1 Implementation details

In this section we discuss the details of an efficient implementation of the generic
greedy algorithm in Figure 11.2. First, we note that although there are 4` DNA
sequences of length `, no more than 2nL of these sequences (substrings of length `
of the input genomic sequences S = {f i, ri | 1 ≤ i ≤ n}) can be used as primers.
Our implementation starts by creating a list with all feasible primers by removing
substrings that do not meet user-specified constraints on GC content and melting
temperature Tm (computed as in the Primer3 package [21]). Masking of repetitive
elements and more stringent candidate filtering based, e.g., on sophisticated statistical
scoring models [24] can also be easily incorporated in this pre-processing step. For
each surviving candidate primer we precompute all hybridization positions within
the strings of S, which allows computing the coverage gain of a primer candidate p in
time O(np), where np is the number of hybridization positions for p. The primer with
maximum gain is then found in step 2(a) of the algorithm by sequentially computing
the gain of each remaining primer.

In order to speed up the implementation, we use two further optimizations. A feasible
primer is called unique if it hybridizes only one of the sequences in S. The first
optimization is to retain only the unique feasible primer closest to the amplification
locus for each f i and ri. The exact number of eliminated unique candidate primers
depends on primer length ` and number of amplification loci, but is often a significant
fraction of the number of feasible candidate primers. Clearly, removing these primers
does not worsen the quality of the returned solution.

The second optimization is to adopt a lazy strategy for recomputing primer gains
in step 2(a). In first execution of step 2(a) we compute and store the gain for all
feasible primers. In subsequent iterations, the gain of a primer is only recomputed if
the saved gain is higher than the best gain seen in current iteration. Since gains are
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monotonically non-increasing, this optimization is not affecting the set of primers
returned by the algorithm.

11.5 EXPERIMENTAL RESULTS

We performed experiments on test cases extracted from the human genome databases
as well as simulated test cases. The human genome test cases are regions surround-
ing known SNPs collected from National Center for Biotechnology Information’s
genomic databases. Random test cases were generated from the uniform distribution
induced by assigning equal probabilities to each nucleotide. All experiments were
run on a PowerEdge 2600 Linux server with 4 Gb of RAM and dual 2.8 GHz Intel
Xeon CPUs – only one of which is used by our sequential implementations – using
the same compiler optimization options. Integer programs were solved using the
CPLEX solver version 9.1 with default parameters.

For all experiments we used a bound L = 1000 on the PCR amplification length,
and a bound ` between 8 and 12 on primer length. Although it has been suggested
that such short primers may not be specific enough [9], we note that hybridization
outside the target region will not result in significant amplification unless two primers
hybridize sufficiently closely to each other, a much less likely event [6]. Indeed, the
feasibility of using primers with only 8-12 target specific nucleotides for simultaneous
amplification of thousands of loci has been experimentally validated by Jordan et
al. [11].2 The potential function greedy algorithm in Figure 11.2, referred to as
G-POT, was implemented as described in Section 11.4.1, except that, in order to
facilitate comparison with other algorithms we did not use any constraints on the GC
content or melting temperature of candidate probes.

We ran experiments modeling two different scenarios. In the first scenario the
amplification target is a set of SNP loci where no two loci are within a distance of
L of each other; under this scenario, the number of primers can only be reduced by
primer reuse between different amplification reactions. In the second scenario the
amplification target is the set of all confirmed SNP loci within a gene, which results
in much closer SNP loci. In this case primer minimization is achieved by both primer
reuse and inclusion of multiple SNP loci in a single amplification product.

11.5.1 Amplification of Sparse Sets of SNP Loci

In the first set of experiments we compared G-POT with the following algorithms:

• The iterative beam-search heuristic of Souvenir et al. [23]. We used the primer-
threshold version of this heuristic, MIPS-PT, with degeneracy bound set to 1

2In addition to 8-12 specific nucleotides at the 3′ end, primers used in Jordan et al. contain a5′ end sequence
(CTCGAGNNNNNN) consisting of a fixed G/C rich 5′ anchor and 6 fully degenerate nucleotides.
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and the default values for the remaining parameters (in particular, beam size
was set to 100).

• The greedy primer cover algorithm of Pearson et al. [19] (G-FIX). In this
algorithm the candidate primers are collected from the reverse and forward
sequences within a distance of L/2 around the SNP. This ensures that the
resulting set of primers meets the product length constraints. The algorithm
repeatedly selects the candidate primer that covers the maximum number of
not yet covered forward and reverse sequences.

• The optimum primer cover of the reverse and forward sequences within L/2
bases of each SNP (OPT-FIX), computed by running CPLEX on a natural
integer program formulation of the problem.

• A naı̈ve modification of G-FIX, referred to as G-VAR, in which the candidate
primers are initially collected from the reverse and forward sequences within
a distance of L around the SNP. The algorithm proceeds by greedily selecting
primers like G-FIX, except that when a primer p covers for the first time one
of the forward or reverse sequences corresponding to a SNP, say at position t,
we appropriately truncate the opposite sequence to a length of L− t to ensure
that the final primer cover is L-restricted.

• The optimum MPSS-L solution (OPT) computed by running CPLEX on the
compact integer linear program formulation described in Section 11.3.

Table 11.1 gives the number of primers selected and the running time (in CPU
seconds) for the compared methods on on instances consisting of up to 100 SNP loci
extracted from the NCBI repository. The optimum primer cover of the reverse and
forward sequences within L/2 bases of each SNP can be found by CPLEX for all
instances, often in time comparable to that required by G-FIX. In contrast, the integer
linear program in Section 11.3 can be solved to optimality only for small instance
sizes. For instances with 100 SNPs, even finding good feasible solutions to this ILP
seems difficult for general purpose solvers like CPLEX. Among greedy algorithms,
G-POT has the best performance on all test cases, reducing the number of primers by
up to 24% compared to G-FIX and up to 30% compared to G-VAR. In most cases, G-
POT gives fewer primers than OPT-FIX, and always comes very close to the optimum
MPSS-L solutions computed using CPLEX whenever the latter are available. The
MIPS-PT heuristic has the poorest performance in both runtime and solution quality,
possibly because it is fine-tuned to perform well with high degeneracy primers.

To further characterize the performance of the three greedy algorithms, in Figure
11.4 we plot their average solution quality versus the number of target SNPs (on a
logarithmic scale) for randomly generated test cases. MIPS and the integer program-
ming methods are not included in this comparison due to their non-scalable running
time. In order to facilitate comparisons across instance sizes, the size of the primer
cover is normalized by the double of the number of SNPs, which is the size of the
trivial cover obtained by using two distinct primers to amplify each SNP. Although
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Table 11.1 Number of primers (#P) and runtime in seconds (CPU) on NCBI test cases
for primer length ` = 8, 10, 12 and amplification length constraint L = 1000. Entries
marked with a dagger represent the best feasible solutions found by CPLEX in 24 hours.

# ` MIPS-PT G-FIX OPT-FIX G-VAR G-POT OPT
SNPs #P CPU #P CPU #P CPU #P CPU #P CPU #P CPU

8 5 3 4 0.01 4 0.01 4 0.02 4 0.02 3 372
10 10 6 4 5 0.00 5 0.01 7 0.03 6 0.03 5 979

12 10 6 8 0.00 8 0.01 9 0.03 7 0.03 6 518
8 8 10 7 0.04 6 0.04 7 0.08 6 0.10 5 112,407

20 10 13 15 9 0.03 8 0.01 10 0.08 9 0.08 7 13,494
12 18 26 14 0.04 14 0.01 13 0.08 13 0.11 11† 24h
8 12 24 9 0.11 8 0.07 9 0.18 7 0.12 8† 24h

30 10 18 37 14 0.07 12 0.03 13 0.14 12 0.17 11† 24h
12 26 84 20 0.12 19 0.03 19 0.19 21 0.15 15† 24h
8 17 35 10 0.09 9 0.84 15 0.27 10 0.25 10† 24h

40 10 24 49 19 0.16 15 0.05 21 0.22 14 0.20 15† 24h
12 32 183 24 0.10 24 0.03 25 0.23 22 0.28 21† 24h
8 21 48 13 0.13 11 5.87 15 0.30 10 0.32 12† 24h

50 10 30 150 23 0.22 19 0.06 24 0.36 18 0.33 19† 24h
12 41 246 31 0.14 29 0.03 32 0.30 29 0.28 25† 24h
8 32 226 17 0.49 16 180.42 20 0.89 14 0.58 121† 24h

100 10 50 844 37 0.37 30 0.23 37 0.72 31 0.75 35† 24h
12 75 2601 53 0.59 45 0.09 48 0.84 42 0.61 46† 24h

the improvement is highly dependent on primer length and number of SNPs, G-POT
is still consistently outperforming the G-FIX algorithm and, with few exceptions, its
G-VAR modification.

Figure 11.5 gives a log-log plot of the average CPU running time (in seconds) versus
the number of pairs of sequences for primers of size 10 and randomly generated pairs
of sequences. The runtime of all three greedy algorithms grows linearly with the
number of SNPs, with G-VAR and G-POT incurring only a small factor penalty in
runtime compared to G-FIX. This suggests that a robust practical meta-heuristic is to
run all three algorithms and return the best of the three solutions found.

11.5.2 Amplification of Dense Sets of SNP Loci

In a second set of experiments we used as amplification targets the SNP loci iden-
tified and verified within 14 genes at the Program for Genomic Applications of the
University of Washington [20]. For each gene, we consider SNP loci within all exons
and introns, within the first 2,000 bp upstream of first exon, and within the first 1,500
bp downstream of the poly-A signal.

In addition to G-FIX, G-VAR, and G-POT, on these testcases we also ran a natural
greedy primer selection algorithm, referred to as greedy intervals (G-INT), which
works as follows. First, G-INT selects a forward primer immediately upstream of
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Fig. 11.4 Performance of the compared algorithms, measured as relative improvement over
the trivial solution of using two primers per SNP, for ` = 8, 10, 12, L = 1000, and up to
5000 SNPs. Each number represents the average over 10 test cases of the respective size.
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Fig. 11.5 Average runtime of the compared algorithms for ` = 10, L = 1000, and up to
5000 SNPs.

the leftmost SNP locus, and pairs it up with a reverse primer placed as far as possible
downstream subject to the product length constraint. All SNP loci covered by the
selected pair of primers are removed, and the above step is repeated until all loci are
covered. It is easy to see that this algorithm minimizes the number of amplification
products required to cover the given SNP loci. As shown in Table 11.2, G-POT
continues to consistently outperform the other algorithms, with G-INT and G-VAR
producing fewer primers for a few testcases.

11.6 CONCLUSIONS

In this chapter we have proposed exact algorithms based on integer programming
and a more scalable potential function greedy approximation algorithm for MP-
PCR primer set selection with amplification length constraints, and have presented
experimental results showing that our methods lead to significant reductions in the
number of primers compared to previous algorithms. Open source C implementations
of both algorithms are available at http://dna.engr.uconn.edu/˜software/G-POT/.

A promising approach to further increasing MP-PCR efficiency is the use of de-
generate PCR primers [14, 15, 23], see also Section 5.3.3. A degenerate primer is
essentially a mixture consisting of multiple non-degenerate primers sharing a com-
mon pattern. Remarkably, degenerate primer cost is nearly identical to that of a
non-degenerate primer, since the synthesis requires the same number of steps (the
only difference is that one must add multiple nucleotides in some of the synthesis
steps). Since degenerate primers may lead to excessive unintended amplification,
a bound on the degeneracy of a primer (i.e., the number of distinct non-degenerate
primers in the mixture) is typically imposed [15, 23].



Our greedy algorithm extends directly to the problem of selecting, for a given set
of genomic loci, a minimum size L-restricted primer cover consisting of degen-
erate primers with bounded degeneracy. However, even for moderate degeneracy
constraints, it becomes impractical to explicitly evaluate the gain function for all
candidate primers. Indeed, as remarked by Linhart and Shamir [15], the number of
candidate degenerate primers may be as large as 2nL

(
k
δ

)
15δ, where n is the num-

ber of loci, L is the PCR amplification length upperbound, and δ is the number of
“degenerate nucleotides” allowed in a primer. To maintain a practical runtime, one
may sacrifice optimality of the greedy choice in step 2(a) of the greedy algorithm,
using instead approximation algorithms similar to those of Linhart and Shamir [15]
for finding degenerate primers guaranteed to have near optimal gain. The analysis in
Section 11.4 extends to this modification of the greedy algorithm as follows:

Theorem 11.2. Assume that the greedy algorithm in Figure 11.2 is modified to select
in step 2(a) a primer whose gain is within a factor of α of the maximum possible
gain, for some fixed 0 < α ≤ 1. Then, the modified algorithm returns an L-restricted
primer cover of size at most (1 + ln ∆)α times larger than the optimum, where
∆ = maxp,P ∆(p, P ).

Another interesting direction for future research is extending primer selection algo-
rithms to ensure that there is no cross-hybridization between selected primers, which
is one of the main causes of amplification failure in MP-PCR [8]. Cross-hybridization
constraints can be directly enforced in the integer program in Section 11.3 by the
addition of inequalities of the form xp + xp′ ≤ 1 for every two primers p and p′

predicted to cross-hybridize. The potential function greedy algorithm can also ensure
lack of primer cross-hybridization via a simple modification: after selecting a primer
p, discard all candidates predicted to cross-hybridize with p. Although this modi-
fication does no longer guarantee that the resulting set of primers is near-minimal,
preliminary experiments show that in practice it leads to only minor increases in the
number of primers.
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2. V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of
Operations Research, 4:233–235, 1979.

3. ILOG Corp. Cplex optimization suite, http://www.ilog.com/products/cplex.

4. K. Doi and H. Imai. A greedy algorithm for minimizing the number of primers
in multiple PCR experiments. Genome Informatics, 10:73–82, 1999.

5. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45:634–652, 1998.

6. R.J. Fernandes and S.S. Skiena. Microarray synthesis through multiple-use PCR
primer design. Bioinformatics, 18:S128–S135, 2002.

7. M.T. Hajiaghayi, K. Jain, L.C. Lau, I.I. Măndoiu, A.C. Russell, and V.V. Vazirani.
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