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Advances in SNP genotyping technologies have played a key role in the pro-

liferation of large scale genomic studies, leading to the discovery of hundreds of

genes associated with complex human diseases. Currently, such studies involve

genotyping thousands of cases and controls at up to millions of single nucleotide

polymorphism (SNP) loci, generating very large datasets that require scalable

analysis algorithms. For continued success, efficient algorithms that utilize accu-

rate statistical models and are capable of processing massive amounts of data are

needed.

This thesis presents several highly scalable algorithms which utilize Hidden

Markov Models (HMMs) of haplotype diversity for SNP genotype data analysis

problems. First, we propose novel likelihood functions utilizing these HMMs for

the problems of genotype error detection, imputation of untyped SNPs, and miss-

ing data recovery. Empirical results show significant improvement when compared

to other methods on real and simulated genotype datasets. Next, we contribute

a novel method for imputation-based local ancestry inference that effectively ex-

ploits Linkage Disequilibrium (LD) information. Experiments on simulated ad-

mixed populations show that imputation-based ancestry inference has significantly

better accuracy over the best current methods for closely related ancestral pop-

ulations. Finally, we introduce a hierarchical-factorial HMM which integrates se-

quencing data with haplotype frequency information and is utilized by efficient

decoding algorithms for genotype calling. We demonstrate that highly accurate

SNP genotypes can be inferred from very low coverage shotgun using this HMM.
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Chapter 1

Introduction

Recently, large scale Genome-Wide Association Studies (GWASs) have been made

possible by the sequencing of the human genome [13,14] and the initial mapping of

human haplotypes by the HapMap project [78]. Evidence supporting GWASs as

being a powerful approach to identifying disease-gene associations is growing. One

recent success, for example, was a joint GWAS using a large British population

set identifying 24 statistically significant independent association signals across

6 diseases [16]. The genetic markers of choice in GWASs are Single Nucleotide

Polymorphisms (SNPs), which account for most of the genomic variation in hu-

mans. A SNP is a single base pair mutation, or a variance in DNA nucleotides

between organisms of the same species, at certain locations, called markers, along

the chromosome. All possible nucleotides which exist for a large percentage of the

population for a specific marker are called alleles. Most SNPs are biallelic, i.e.,

only two nucleotide variations are known to exist at that SNP marker. According

to NCBI, the human genome consists of nearly thirteen million common SNPs,

which have been cataloged in the most recent build (130) of the dbSNP database

(http://www.ncbi.nlm.nih.gov/projects/SNP/).

In diploid organisms such as humans, cells contains two copies of each chromo-
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some, one for each parent. The combination of alleles present at SNP markers on

one parental chromosome is called a haplotype. The conflated allele information

from the two haplotypes is called a genotype sequence. However, while the geno-

type sequence identifies the two alleles at each SNP marker, it does not specify

which allele is assigned to a specific chromosome.

This thesis presents several highly scalable algorithms that utilize Hidden Markov

Models (HMMs) of haplotype diversity which capture SNP information such as

Linkage Disequilibrium (LD) observed in the population or populations under

study. The algorithms are applied to address the problems of genotype error

detection and correction, imputation-based local ancestry inference, and genotype

calling with low coverage shotgun sequencing data.

The validity of associations uncovered in GWASs critically depends on the

accuracy of genotype data. Despite recent progress in genotype calling algo-

rithms [17,18,51,57,63,83], significant error levels remain present in SNP genotype

data due to factors ranging from human error and sample quality to sequence vari-

ation and assay failure. Since even low error levels can lead to inflated false positive

rates and substantial losses in the statistical power of linkage and association stud-

ies [4, 2, 12, 28, 53, 86], detecting and correcting genotype errors remains a critical

task in genetic data analysis. Further, since causal SNPs are unlikely to be typed

directly due to the limited coverage of current genotyping platforms, imputation

of genotypes at untyped SNP loci has recently emerged as a powerful technique

for increasing the power of association studies. Chapter 2 of this thesis proposes

novel methods for genotype error detection which extends the likelihood ratio error

detection approach of [8]. While we focus on detecting errors in parents-child trio

genotype data, our proposed methods apply with minor modifications to genotype

data coming from unrelated individuals and small pedigrees other than trios. Un-

like previous approaches to genotype error detection [8], which use enumeration of
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common haplotypes within a small window around each locus, we employ a hid-

den Markov model (HMM) to represent frequencies of all possible haplotypes over

the set of typed loci. Empirical results shows significant improvement for both

error accuracy and speed when compared to other methods on real and simulated

datasets. The error detection approach can also be modified to address the prob-

lems of imputation of untyped SNP markers and missing genotype data recovery.

We conclude the chapter by introducing GEDI, a software package that imple-

ments efficient algorithms for performing several common tasks in the analysis of

population genotype data, including error detection and correction, imputation of

both randomly missing and untyped genotypes, and genotype phasing.

One type of powerful tool used in disease-gene association studies that has

emerged is admixture mapping. Admixture mapping relies on genotyping hun-

dreds of thousands of single nucleotide polymorphisms (SNPs) across the genome

in a population of recently admixed individuals and is based on the assumption

that near a disease-associated locus there will be an enhanced ancestry content

from the population with higher disease prevalence. Therefore, a critical step in

admixture mapping is to obtain accurate estimates of local ancestry around each

genomic locus. Chapter 3 contributes a novel method for imputation-based local

ancestry inference that effectively exploits LD information using HMMs of haplo-

type diversity. While there are several methods that use a detailed HMM of LD

(e.g. SABER [75], SWITCH [66],HAPAA [74]), surprisingly, existing methods that

do not exploit LD outperform those that do. This second class of methods (e.g.

LAMP [67] and WINPOP [60]) employs a window-based framework to achieve

increased accuracy, however these methods differ from each other in the type of

information ultimately used to make local ancestry inferences. Our novel method

for imputation-based local ancestry inference more effectively exploits LD infor-

mation by combining these two classes of methods. Our method employs multiple
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HMMs trained on a set of ancestral haplotypes for each population in the admix-

ture study to impute genotypes at all typed SNP loci (temporarily marking each

SNP genotype as missing) under each possible local ancestry. We then assign to

each locus the local ancestry that yields the highest imputation accuracy, as as-

sessed using a weighted-voting scheme based on multiple SNP windows centered on

the locus of interest. Preliminary experiments on simulated admixed populations

show that imputation-based ancestry inference has accuracy competitive with best

existing methods in the case of distant ancestral populations, and is significantly

more accurate for closely related ancestral populations.

Recent massively parallel sequencing technologies deliver orders of magnitude

higher throughput compared to classic Sanger sequencing. Sequencers like Roche/454

FLX Titanium, Illumina Genome Analizer II, ABI SOLiD 3 and Helicos HeliScope

are able to provide millions of short reads in a single run which lasts just a few

days in some cases and even less than one day in other cases. These advances

promise to enable cost-effective shotgun sequencing of individual genomes. After

recent publication of five complete individual genomes [9,22,52,62,80,23], ongoing

efforts focus on increasing the quality and coverage of short reads and on im-

proving algorithms for mapping, genotyping and variations discovery to sequence

over a thousand more individual genomes [1]. While shotgun sequencing can dis-

cover new SNPs and other forms of sequence variation, its sensitivity of detecting

heterozygous SNPs is limited by coverage depth. Chapter 4 demonstrates that

highly accurate SNP genotypes can be inferred from very low coverage shotgun

sequencing data by using a multilocus inference model that also exploits linkage

disequilibrium (LD) information from HMMs of haplotype diversity. While shot-

gun sequencing can discover new SNPs and other forms of sequence variation, its

sensitivity of detecting heterozygous SNPs is limited by coverage depth. It was

estimated that a coverage depth of over 21× is required to achieve 99% sensitiv-
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ity at detecting heterozygous SNPs based on the rule that each allele must be

covered by two or more reads [23]. A coverage depth similar to that in [22, 23]

(7.5×) detects only 75% of the heterozygous SNPs, and sensitivity drops rapidly

at even lower coverage depths. The hierarchical-factorial HMM (HF-HMM) in-

troduced in this chapter enables the integration of shotgun sequencing data with

haplotype frequency information extracted from a reference panel. Efficient de-

coding algorithms for genotype calling that utilize this HF-HMM are introduced.

Experimental results show that our algorithms achieve significant improvements in

accuracy compared to previous methods. Based on publicly available reads from

three different sequencing technologies, we show that we can achieve more than

95% accuracy on heterozygous SNP calls and more than 99% accuracy on homozy-

gous SNP calls with just 5x coverage depth. Moreover, our proposed algorithms

have a linear run time on the number of SNP loci and individuals to be analyzed.

Finally, a current status of this research, as well as a list of several improvements

which build upon this research, is provided and will be explored as outlined in the

concluding chapter.
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Chapter 2

Genotype Error Detection Using

Hidden Markov Models of

Haplotype Diversity1

The sequencing of the human genome coupled with the initial mapping of human

haplotypes by the HapMap project and rapid advances in SNP genotyping tech-

nologies have recently opened up the era of genome-wide association studies, which

promise to uncover the genetic basis of common complex diseases such as diabetes

and cancer by analyzing the patterns of genetic variation within healthy and dis-

eased individuals. However, the validity of associations uncovered in these studies

critically depends on the accuracy of genotype data. Despite recent progress in

genotype calling algorithms [17, 18, 51, 57, 63, 83], significant error levels remain

present in SNP genotype data due to factors ranging from human error and sam-

ple quality to sequence variation and assay failure, see [61] for a recent survey. A

recent study of dbSNP genotype data [84] found that as much as 1.1% of about 20

million SNP genotypes typed multiple times have inconsistent calls, and are thus

1The results presented in this chapter are based on joint work with I. Mandoiu and B. Pasaniuc
[38,36,37]
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incorrect in at least one dataset.

Recommended quality control procedures such as the use of external control

samples from HapMap and duplication of internal samples [55] provide an estimate

of error rates, but do not eliminate them. Although systematic errors such as assay

failure can be detected by departure from Hardy-Weinberg equilibrium proportions

[32, 44], and, when genotype data is available for related individuals, some errors

become detectable as Mendelian Inconsistencies (MIs), a large fraction of errors

remains undetected by these analyses, e.g., as much as 70% of errors in mother-

father-child trio genotype data are undetected by Mendelian consistency analysis

[20, 29]. Since even low error levels can lead to inflated false positive rates and

substantial losses in the statistical power of linkage and association studies [4,

2, 12, 28, 53, 86], detecting Mendelian consistent errors remains a critical task in

genetic data analysis. This task becomes particularly important in the context of

association studies based on haplotypes instead of single locus markers, where error

rates as low as 0.1% may invalidate some statistical tests for disease association [42].

A powerful approach of dealing with genotyping errors is to explicitly model

them in downstream statistical analyses, see, e.g., [11, 31, 49]. While powerful,

this approach often leads to complex statistical models and impractical runtime

for large datasets such as those generated by genome-wide association studies. A

more practical approach is to perform genotype error detection as a separate anal-

ysis step following genotype calling. SNP genotypes flagged as putative errors can

be either excluded from downstream analyses or retyped when high quality geno-

type data is required. Indeed, such a separate error detection step is currently

implemented in all widely-used software packages for pedigree genotype data anal-

ysis including Mendel [72], Merlin [3], Sibmed [19], and SimWalk2 [71, 72], all of

which detect Mendelian consistent errors by independently analyzing each pedigree

and identifying loci of excessive recombination. Unfortunately, these methods have
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very limited power to detect errors in genotype data from small pedigrees such as

mother-father-child trios, and do not apply at all to genotype data from unrelated

individuals. [8] have recently introduced the use of population level haplotype fre-

quency information for genotype error detection in trio data via a simple likelihood

ratio test. However, detection accuracy of their method is severely limited by the

reliance on explicit enumeration of most frequent haplotypes within short blocks

of consecutive SNP loci.

2.1 Preliminaries

In this chapter we propose novel methods for genotype error detection extending

the likelihood ratio error detection approach of [8]. While we focus on detecting

errors in trio genotype data, our proposed methods apply with minor modifications

to genotype data coming from unrelated individuals and small pedigrees other

than trios. Unlike [8], we employ a hidden Markov model (HMM) to represent

frequencies of all possible haplotypes over the set of typed loci. Similar HMMs

have been successfully used in recent works [41,64,68,69] for genotype phasing and

disease association. Two limitations of previous uses of HMMs in this context have

been the relatively slow training based on genotype data and the inability to exploit

available pedigree information. We overcome these limitations by training our

HMM using haplotypes inferred by the pedigree-aware phasing algorithm of [30],

based on entropy minimization.

The authors of [8] use maximum phasing probability of a trio genotype as

the likelihood function whose sensitivity to single SNP genotype deletions signals

potential errors. The former is heuristically approximated by a computationally

expensive search over quadruples of frequent haplotypes inferred for each window.

We show that, when haplotype frequencies are implicitly represented using an

8



HMM, computing the maximum trio phasing probability is, unfortunately, hard

to approximate in polynomial time. Despite this hardness result, we are able

to significantly improve both detection accuracy and speed compared to [8] by

using alternate likelihood functions such as Viterbi probability and the total trio

genotype probability, both of which can be computed for commonly used unrelated

and trio genotype data within a worst-case runtime that increases linearly in the

number of SNP loci and that of genotyped individuals. Further improvements

in detection accuracy for genotype trio data are obtained by combining likelihood

ratios computed for different subsets of trio members. Empirical experiments show

that this technique is very effective in reducing false positives within correctly typed

SNP genotypes for which the same locus is mistyped in related individuals.

The rest of the chapter is organized as follows. We introduce basic notations

in Section 2.1 describe the structure of the HMM used to represent haplotype

frequencies in Section 2.2.1, and present the likelihood ratio approach of [8] in

Section 2.2.2. In Section 2.2.3, we show that while the likelihood function in [8]

cannot be approximated efficiently when an HMM is used to represent haplotype

frequencies, we give three alternative likelihood functions that can be computed

efficiently based on an HMM. Finally, we give experimental results assessing the

error detection accuracy of our methods on both simulated and real datasets in

Section 2.4.1, and conclude with ongoing research directions in Section 2.5.

We start by introducing basic terminology and notations used throughout the

chapter. We denote the major and minor alleles at a SNP locus by 0 and 1. A

SNP genotype represents the pair of alleles present in an individual at a SNP locus.

Possible SNP genotype values are 0/1/2/?, where 0 and 1 denote homozygous

genotypes for the major and minor alleles, 2 denotes the heterozygous genotype,

and ? denotes missing data. SNP genotype g is said to be explained by an ordered

pair of alleles (σ, σ′) ∈ {0, 1}2 if g =?, or g ∈ {0, 1} and σ = σ′ = g, or g = 2 and
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Figure 2.1: The structure of the Hidden Markov Model for n=5 SNP loci and K=4
founders.

σ 6= σ′.

We denote by n the number of SNP loci typed in the population under study.

A multi-locus genotype (or simply genotype) is a 0/1/2/? vector G of length n,

while a haplotype is a 0/1 vector H of length n. An ordered pair (H,H ′) of

haplotypes explains multi-locus genotype G iff, for every i = 1, . . . , n, the pair

(H(i), H ′(i)) explains G(i). A trio genotype is a triple T = (Gm, Gf , Gc) consisting

of mother, father, and child multi-locus genotypes. Assuming that no recombi-

nation takes place within the set of SNP loci of interest, we say that an ordered

4-tuple (H1, H2, H3, H4) of haplotypes explains trio genotype T = (Gm, Gf , Gc) iff

(H1, H2) explains Gm, (H3, H4) explains Gf , and (H1, H3) explains Gc. A geno-

type duo consisting of mother-child or father-child genotypes is defined similarly.

An ordered 3-tuples of haplotypes (H1, H2, H3) is said to explain such a duo iff

(H1, H2) explains the parent genotype and (H1, H3) explains the child genotype.

2.2 Methods

2.2.1 Hidden Markov Model

The HMM used to represent haplotype frequencies has a similar structure to HMMs

recently used in [41,51,64,68,69]. This structure (see Figure 2.1) is fully determined

by the number of SNP loci n and a user-specified number of founders K (typically a
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small constant, we used K = 7 in our experiments). Formally, the HMM is specified

by a triple M = (Q, γ, ǫ), where Q is the set of states, γ is the transition probability

function, and ǫ is the emission probability function. The set of states Q consists

of disjoint sets Q0 = {q0}, Q1, Q2, . . . , Qn, with |Q1| = |Q2| = · · · = |Qn| = K,

where q0 denotes the start state and Qj, 1 ≤ j ≤ n, denotes the set of states

corresponding to SNP locus j. The transition probability between two states a

and b, γ(a, b), is non-zero only when a and b are in consecutive sets Qi. The initial

state q0 is silent, while every other state q emits allele σ ∈ {0, 1} with probability

ǫ(q, σ). The probability with which M emits a haplotype H along a path π starting

from q0 and ending at a state in Qn is given by:

P (H, π|M) = γ(q0, π(1))ǫ(π(1), H(1))
∏n

i=2
γ(π(i − 1), π(i))ǫ(π(i), H(i)) (2.1)

Intuitively, M represents founder haplotypes along high-probability paths of states,

with recombination between pairs of founder haplotypes being captured via remain-

ing transition probabilities.

As noted above, the structure of our HMM is similar to that of other models

proposed in the literature. However, there are also important differences. The

model underlying the IMPUTE algorithm described in [51] defines HMM states at

each SNP locus directly from reference haplotypes (thus, for N reference haplotypes

there are N HMM states at each locus). Under the IMPUTE model the probability

of switching from one reference haplotype to another is derived from the genetic

distance between loci and the effective size for the population under study, and

does not depend on the states (haplotypes) between which the transition occurs.

Similar to our use of founder haplotypes, the model underlying the fastPHASE

algorithm [68] reduces the number of HMM states by using at each SNP locus

a state for each one of K clusters of reference haplotypes, where K is a user-
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specified parameter. For each SNP locus, the fastPHASE model estimates K

different different transition probabilities, with all transitions into a cluster being

given an equal probability. As detailed above, our HMM model allows transition

probabilities to depend on both the start and the end states (founder haplotypes),

potentially providing more expressive power compared to the models in [68] and

[51].

In HMMs nearly identical to our own [41,64], training was accomplished using

genotype data via variants of the EM algorithm. Since EM-based training is gen-

erally slow and cannot be easily modified to take advantage of phase information

that can be inferred from available family relationships, we adopted the following

two-step approach for training our HMM. First, we use the highly scalable ENT

algorithm of [30] to infer haplotypes for all individuals in the sample based on

entropy minimization. ENT can handle genotypes related by arbitrary pedigrees,

and has been shown to yield high phasing accuracy as measured by the so called

switching error, which implies that inferred haplotypes are locally correct with very

high probability. In the second step we use the classical Baum-Welch algorithm [6]

to train the HMM based on the haplotypes inferred by ENT.

2.2.2 Likelihood Ratio Approach to Genotype Error De-

tection

Our detection methods are based on the likelihood ratio approach of [8]. We call

likelihood function any function L assigning non-negative real-values to trio geno-

types, with the further constraint that L is non-decreasing under data deletion.

Let T = (Gm, Gf , Gc) denote a trio genotype, x ∈ {m, f, c} denote one of the indi-

viduals in the trio (mother, father, or child), and i denote one of the n SNP loci.

The trio genotype T(x,i) is obtained from T by marking SNP genotype Gx(i) as
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missing. The likelihood ratio of SNP genotype Gx(i) is defined as
L(T(x,i))

L(T )
. Notice

that, by L’s monotony under data deletion, the likelihood ratio is always greater

or equal to 1. A SNP genotype Gx(i) is flagged as a potential error whenever the

corresponding likelihood ratio exceeds a user specified detection threshold t. A vari-

ant of this basic approach relies on simultaneously testing the mother/father/child

SNP genotypes at a locus. In this variant, SNP locus i is flagged as a potential

error whenever L(Ti)
L(T )

≥ t, where Ti is the trio genotype obtained from T by deleting

all three SNP genotypes Gm(i), Gf (i), and Gc(i).

The likelihood function used by Becker et al. [8] is the maximum trio phasing

probability,

L(T ) = max
(H1,H2,H3,H4)

P (H1)P (H2)P (H3)P (H4) (2.2)

where the above maximum is computed over all 4-tuples (H1, H2, H3, H4) of hap-

lotypes that explain T . Clearly, the maximum phasing probability is monotonic

under data deletion, since deleting SNP genotypes increases the number of compat-

ible 4-tuples. The use of maximum trio phasing probability as likelihood function is

intuitively appealing, since one does not expect a large increase in this probability

when a single SNP genotype is deleted.

The computational complexity of computing the maximum trio phasing prob-

ability L(T ) depends on the encoding used to represent haplotype frequencies.

When the N = 2n haplotype frequencies are given explicitly, computing L(T ) can

be trivially done in O(N4) time. Unfortunately, such an explicit representation

can only be used for a small number n of SNP loci. To maintain practical run-

ning time, [8] adopted a heuristic that starts by creating a short list of haplotypes

with frequency exceeding a certain threshold, followed by a pruned search over

4-tuples of haplotypes from this list. Due to the high computation cost of the

search algorithm, the list of haplotypes must be kept very short – between 50 and
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100 for the experiments reported in [8] – which makes the approach applicable

only for windows of few consecutive SNP loci. This limits the amount of linkage

information used in error detection, explaining at least in part the high number of

false positives observed in [8] within correctly typed SNP genotypes located in the

neighborhood of SNP genotypes that are mistyped in the same individual.

The HMM described in previous section provides a much more compact repre-

sentation of haplotype frequencies, that can be used for large numbers of SNP loci.

Although the probability of any given 4-tuple of haplotypes explaining a genotype

trio can be computed efficiently based on this representation, approximating the

maximum trio phasing probability is shown in next section to be computationally

hard. To overcome this difficulty, in Section 2.2.3 we propose alternative likeli-

hood functions that are efficiently computable based on an HMM representation

of haplotype frequencies.

2.2.3 Efficiently Computable Likelihood Functions

As noted in [36], Maximum genotype phasing probability cannot be approximated

within a factor of O(n
1
2
−ε). Also, for trios, maximum trio phasing probability

cannot be approximated within a factor of O(n
1
4
−ε) for any ε > 0, unless ZPP=NP.

In this section we consider three alternatives to the likelihood function used in [8],

and describe efficient algorithms for computing them given an HMM model of

haplotype diversity. for any ε > 0, unless ZPP=NP. As shown in Section 2.4.1, all

three alternatives yield similar error detection accuracy, significantly higher than

that obtained in [8].

Viterbi Probability

The probability with which the HMM M emits four haplotypes (H1, H2, H3, H4)

along a set of 4 paths (π1, π2, π3, π4) is obtained by a straightforward extension of
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(2.1). The first proposed likelihood function is the Viterbi probability, defined, for

a given trio genotype T , as the maximum probability of emitting haplotypes that

explain T along four HMM paths. Viterbi probability can be computed using a

“4-path” extension of the classical Viterbi algorithm [79] as follows.

For every 4-tuple q = (q1, q2, q3, q4) ∈ Q4
j , let Vf (j; q) denote the maximum

probability of emitting alleles that explain the first j SNP genotypes of trio T

along a set of 4 paths ending at states (q1, q2, q3, q4) (we will refer to these values

as the forward Viterbi values). Also, let Γ(q′, q) = γ(q′1, q1)γ(q′2, q2)γ(q′3, q3)γ(q′4, q4)

be the probability of transition in M from the 4-tuple q′ ∈ Q4
j−1 to the 4-tuple

q ∈ Q4
j . Then, Vf (0; (q0, q0, q0, q0)) = 1 and

Vf (j; q) = E(j; q) max
q′∈Q4

j−1

{Vf (j − 1; q′)Γ(q′, q)} (2.3)

Here, E(j; q) = max(σ1,σ2,σ3,σ4)

∏4
i=1 ǫ(qi, σi), where the maximum is computed over

all 4-tuples (σ1, σ2, σ3, σ4) that explain T ’s SNP genotypes at locus j. For a given

trio genotype T , the Viterbi probability of T is given by V (T ) = maxq∈Q4
n
{Vf (n; q)}.

The time needed to compute forward Viterbi values with the above recurrences

is O(nK8), where n denotes the number of SNP loci and K denotes the number

of founders. Indeed, for each one of the O(K4) 4-tuples q ∈ Q4
j , computing the

maximum in (2.3) takes O(K4) time. A K3 speed-up is obtained by identifying and

re-using common terms between the maximums (2.3) corresponding to different 4-

tuples q. Thus, instead of applying (2.3) directly we compute, for every j, the

following:

• m1(j; q1, q
′
2, q

′
3, q

′
4) = maxq′1∈Qj

{Vf (j−1; (q′1, q
′
2, q

′
3, q

′
4))γ(q′1, q1)} for each (q1, q

′
2, q

′
3, q

′
4) ∈

Qj × Q3
j−1

• m2(j; q1, q2, q
′
3, q

′
4) = maxq′2∈Qj

{m1(j; (q1, q
′
2, q

′
3, q

′
4))γ(q′2, q2)} for each (q1, q2, q

′
3, q

′
4) ∈

Q2
j × Q2

j−1
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• m3(j; q1, q2, q3, q
′
4) = maxq′3∈Qj

{m2(j; (q1, q2, q
′
3, q

′
4))γ(q′3, q3)}for each (q1, q2, q3, q

′
4) ∈

Q3
j × Qj−1

• Vf (j; q) = E(j; q) maxq′4∈Qj
{m3(j; (q1, q2, q3, q

′
4))γ(q′4, q4)} for each q = (q1, q2, q3, q4) ∈

Q4
j

A similar speed-up idea was proposed in the context of single genotype phasing

by [64].

To apply the likelihood ratio test, we also need to compute Viterbi probabilities

for trios with one of the SNP genotypes deleted. A näıve approach is to compute

each of these probabilities from scratch using the above O(nK5) algorithm. How-

ever, this would result in a runtime that grows quadratically with the number of

SNPs. A more efficient algorithm is obtained by also computing backward Viterbi

values Vb(j; q), defined as the maximum probability of emitting alleles that ex-

plain genotypes at SNP loci j + 1, . . . , n of trio T along a set of 4 paths starting

at the states of q ∈ Q4
j . Once forward and backward Viterbi values are avail-

able, the Viterbi probability of a modified trio can be computed in O(K5) time by

using again the above speed-up idea, for an overall runtime of O(nK5) per trio.

For unrelated individuals similar speed-up ideas lead to a runtime of O(nK3) per

individual.

Probability of Viterbi Haplotypes

The Viterbi algorithm described in previous section yields, together with the 4

Viterbi paths, a 4-tuple of haplotypes which we refer to as the Viterbi haplotypes.

Viterbi haplotypes for the original trio can be computed by traceback. Similarly,

Viterbi haplotypes corresponding to modified trios can be computed without in-

creasing the asymptotic runtime via a bi-directional traceback. The second likeli-

hood function that we considered is the probability of Viterbi haplotypes, which is
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obtained by multiplying individual probabilities of Viterbi haplotypes. The prob-

ability of each Viterbi haplotype can be computed using the standard forward

algorithm in O(nK) time. Unfortunately, Viterbi paths for modified trios can be

completely different from each other, and the probability of each of them must be

computed from scratch by using the forward algorithm. This results in an overall

runtime of O(nK5 + n2K) per trio, respectively O(nK3 + n2K) per individual for

genotype data from unrelated individuals.

Total Trio Genotype Probability

The third considered likelihood function is the total trio genotype probability, i.e.,

the total probability P (T ) with which M emits any four haplotypes that explain

T along any 4-tuple of paths. Using again the forward algorithm, P (T ) can be

computed as
∑

q∈Q4
n

p(n; q), where p(0; (q0, q0, q0, q0)) = 1 and

p(j; q) = E(j; q)
∑

q′∈Q4
j−1

p(j − 1; q′)Γ(q′, q) (2.4)

The time needed to compute P (T ) with the standard recurrence is O(nK8), but a

K3 speed-up can again be achieved by re-using common terms and computing, in

order:

• s1(j; q1, q
′
2, q

′
3, q

′
4) =

∑
q′1∈Qj−1

p(j−1; (q′1, q
′
2, q

′
3, q

′
4))γ(q′1, q1) for each (q1, q

′
2, q

′
3, q

′
4) ∈

Qj × Q3
j−1

• s2(j; q1, q2, q
′
3, q

′
4) =

∑
q′2∈Qj−1

s1(j; (q1, q
′
2, q

′
3, q

′
4))γ(q′2, q2) for each (q1, q2, q

′
3, q

′
4) ∈

Q2
j × Q2

j−1

• s3(j; q1, q2, q3, q
′
4) =

∑
q′3∈Qj−1

s2(j; (q1, q2, q
′
3, q

′
4))γ(q′3, q3) for each (q1, q2, q3, q

′
4) ∈

Q3
j × Qj−1
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• p(j; q) = E(j; q)
∑

q′4∈Qj−1
s3(j; (q1, q2, q3, q

′
4))γ(q′4, q4) for each q = (q1, q2, q3, q4) ∈

Q4
j

This allows computing P (T |M) in O(nK5) time. By using a forward-backward

algorithm, we can obtain within the same time bound all likelihood ratios for the

SNP genotypes in the trio T . For unrelated individuals the runtime reduces to

O(nK3) per individual.

2.2.4 Trie Speed-up

For a dataset consisting of m unrelated samples (i.e., multi-locus genotypes of

unrelated individuals), running the forward-backward algorithm independently on

each sample results in a runtime of O(mnK3), where n is the number of SNP

loci, and K is the number of founder haplotypes. However, due to the relatively

limited genotype variation across individuals of the same population, independent

processing of the samples leads to repeated computation of forward and backward

probabilities corresponding to genotype prefixes (respectively suffixes) shared by

multiple genotypes. To avoid this, we build PopTree, which is a prefix tree, or

trie, from the given multilocus genotypes (see Fig. 2.2 for an example) and then

computes probabilities by performing a preorder traversal of the trie. Specifically,

the PopTree data structure for unrelated individuals in a population consists of up

to n levels, where each node has up to 3 child edges- one for each possible genotype

value (0, 1, 2). Computation of backward probabilities is sped-up in a similar way

using a trie of reversed genotypes.

The speed-up achieved by using the PopTree trie depends on the number and

the similarity of the samples, as well as the number of SNP loci. See section 2.4.1

for an experiment which gives an approximate speed-up of 3× when using PopTree.
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pop= 

Ind SNP1 SNP2 SNP3 SNP4 SNP5 

A 1 1 1 2 2 

B 1 2 1 0 2 

C 1 2 2 0 2 

D 1 1 2 2 2 

E 1 2 1 0 2 

F 1 2 1 0 0 

G 2 1 2 1 1 

H 1 1 1 1 1 

I 1 1 1 1 1 

J 1 1 1 2 2 

(a)

A,B,C,D,E,F,G,H,I,J 

A,B,C,D,E,F,H,I,J G 
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1 
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1 0 

2 
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2 
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1 1 
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2 

A,J H,I 

1 

H,I 

2 

A,J 
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B,E F 

D 

2 

C 

2 

(b)

Figure 2.2: Sample dataset over 5 SNPs (a) and corresponding trie (b).

2.3 Experimental results

2.3.1 Experimental Setup

HMM-based genotype error detection algorithms using the three likelihood func-

tions described in Section 2.2.3 were implemented in GEDI using C++. We tested

the performance of our methods on both synthetic datasets and a real dataset ob-

tained from [8]. Synthetic datasets were generated as follows. We started from the

real dataset in [8], which consists of 551 trios genotyped at 35 SNP loci spanning

a region of 91,391 base pairs from chromosome 16. The FAMHAP software [7]

was used to estimate the frequencies of the haplotypes present in the population.

The 705 haplotypes that had positive FAMHAP estimated frequencies were used

to derive synthetic datasets with 30-551 trios as follows. For each trio, four hap-
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lotypes were randomly picked by random sampling from the estimated haplotype

frequency distribution. Two of these haplotypes were paired to form the mother

genotype, and the other two were paired to form the father genotype. We created

child genotypes by randomly picking from each parent a transmitted haplotype

(assuming that no recombination is taking place). To make the datasets more

realistic, missing data was inserted into the resulting genotypes by replicating the

missing data patterns observed in the real dataset.

Finally, errors were inserted to the genotype data using four models simulating

error types generated by commonly used genotyping technologies [19]:

• Random allele model. Under this model, we selected each (trio, SNP locus)

pair with a probability of δ (δ was set to 1% in our experiments). For each

selected pair, we picked uniformly at random one of the non-missing alleles

and flipped its value.

• Random genotype model. Again, we selected each (trio, SNP locus) pair

with probability δ. For each selected pair, we picked uniformly at random

one of the non-missing SNP genotypes and replaced it at random with one

of the two other possible SNP genotypes, according to the expected Hardy-

Weinberg equilibrium genotype frequencies (p2, q2, respectively 2pq for 0,

1, and 2 genotypes, where p is the estimated probability of allele 0 and

q = 1 − p).

• Heterozygous-to-homozygous model. Each heterozygous SNP genotype was

selected with probability δ, and selected genotypes were replaced with equal

probability by one of the two homozygous SNP genotypes.

• Homozygous-to-heterozygous model. Each homozygous SNP genotype was

replaced by the heterozygous SNP genotype with probability δ.
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Figure 2.3: Detection ROC curves for parents (P) and children (C) using the three
likelihood functions in Section 2.2.3.

2.3.2 Results on Synthetic Datasets

Following the standard practice, we first removed the trivially detected MI errors

by marking child SNP genotypes involved in MIs as missing (similar results were

obtained by marking all three SNP genotypes as missing). To assess error detection

accuracy of different methods in a threshold-independent manner we use receiver

operating characteristic (ROC) curves, i.e., plots of achievable sensitivity vs. false

positive rates, where

• the sensitivity is defined as the ratio between the number of Mendelian con-

sistent errors flagged by the algorithm and the total number of Mendelian

consistent errors inserted; and

• the false positive rate is defined as the ratio between the number of non-errors

flagged by the algorithm and the total number of non-errors.
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Figure 2.3 gives ROC curves for detection algorithms based on the three like-

lihood functions described in Section 2.2.3. These results are based on averages

over 10 synthetic instances of 551 trios typed at 35 SNP loci, with errors inserted

using the random allele model with δ = 1%. Since the detection accuracy achieved

by the three likelihood functions is very similar in both parents and children, for

the remaining experiments we use only the total trio genotype probability.

It is well known that there is an asymmetry in the amount of information gained

from trio genotype data about children and parent haplotypes: while each of the

two child haplotypes are constrained to be compatible with two genotypes, only

one of the parent haplotypes has the same degree of constraint. This asymmetry

is known to make errors in children more likely to result in MIs [20,29]. As shown

by the ROC curves in Figure 2.3, the asymmetry also leads to significantly higher

detection sensitivity in children versus parents.

Figure 2.4 shows a different view of the asymmetry between children and par-

ents. The top two histograms show the distributions of log-likelihood ratios (com-

puted using the total trio genotype probability as likelihood function) for error

and non-error SNP genotypes in both parents and children. Clearly, the separa-

tion between errors and non-errors is much sharper in children than in parents.

Surprisingly, the histogram of log-likelihood ratios for non-error SNP genotypes in

children also shows a significant peak between 3 and 4. Upon inspection, we found

that these SNP genotypes are at loci for which parents have inserted errors. A

similar bias towards higher false positive rates in correctly typed SNP genotypes

for which the same locus is mistyped in related individuals has been noted for other

pedigree-based error detection algorithms [54]. Since such a peak is not present in

the distributions of log-likelihood ratios computed based on child-parent duos (see

Figure 2.4), this suggests that reducing the above bias can be done by combining

likelihood ratios computed for different subsets of trio members. We devised such
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Figure 2.4: Histograms of log-likelihood ratios for parents (left) and children (right)
SNP genotypes, computed based on trios, unos, duos, or the minimum of uno, duo,
and trio log-likelihood ratios.
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Figure 2.5: Comparison with FAMHAP accuracy for parents (top) and children
(bottom).

a combined approach, referred to as TotalProb-Combined, whereby for each SNP

genotype under test we compute three likelihood ratios using the total probability

of (a) the trio genotype, (b) the duo genotypes formed by parent-child pairs, and

(c) the individual’s multi-locus genotype by itself. Likelihood ratios (b) and (c)

can be computed without increasing the asymptotic running time via simple mod-

ifications of the algorithm in Section 2.2.3. A SNP genotype is then flagged as a

potential error only if all above likelihood ratios exceed the detection threshold.

Figure 2.5 shows the ROC curves for TotalProb-Combined and flagging algo-

rithms that use single log-likelihood ratios computed from the total probability

of uno/duo/trio genotypes. We also included ROC curves for two versions of the
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algorithm of [8], which test one SNP genotype at a time (FAMHAP-1) or simulta-

neously test the mother/father/child SNP genotypes at a locus (FAMHAP-3). The

results show that simultaneous testing yields low detection accuracy, particularly

in parents, and it is therefore not advisable. The combined algorithm yields the

best accuracy of all compared methods. The improvement over the trio-based ver-

sion is most significant in parents, where, surprisingly, uno and duo log-likelihood

ratios appear to be more informative than the trio log-likelihood ratio.

In next simulation experiments we attempted to quantify the robustness of

TotalProb-Combined to changes in error type, sample size, and SNP density. Fig-

ure 2.6(a) gives ROC curves obtained by TotalProb-Combined on datasets gener-

ated using the four error models described in Section 2.3.1. The results show that

TotalProb-Combined has high detection accuracy regardless of the error model. In-

deed, detection accuracy seems to depends very little on the error model, with the

largest difference arising between heterozygous-to-homozygous and random allele

errors inserted in parents.

The error detection accuracy of TotalProb-Combined directly depends on the

accurate representation of haplotype frequencies by the HMM. The quality of both

the ENT phasing and HMM parameter estimation are expected to degrade with

decreased sample size. To assess the effect of the number of trios on error detection

accuracy we simulated test cases with 30, 129, and 551 trios in which errors were

inserted using the random allele model with δ = 1%. Simulation results for the

TotalProb-Combined method are shown in Figure 2.6(b). While detection accuracy

does decrease with sample size, the method does retain high accuracy even for

datasets with as few as 30 trios.

Finally, we ran experiments to assess the effect of SNP density on error detec-

tion accuracy. All previous results are based on simulated data derived from the

real dataset of [8], which consists of a very dense (and hence tightly linked) set
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Figure 2.6: Effect of the error model (a), sample size (b), and SNP density (c) on
detection accuracy of TotalProb-Combined.

26



Total Signals True Positives False Positives Unknown Signals
FP rate 1% 0.5% 0.1% 1% 0.5% 0.1% 1% 0.5% 0.1% 1% 0.5% 0.1%

Parents 218 127 69 9 9 8 1 0 0 208 118 61
Children 104 74 24 11 11 11 3 3 2 90 60 11

Total 322 201 93 20 20 19 4 3 2 298 178 72

Table 2.1: Results of TotalProb-Combined on Becker et al. dataset.

of 35 SNP loci spanning a region of 91,391 base pairs. We used the GENOME

coalescent-based whole genome simulator [47] to generate 10 sets of 551 unrelated

genotypes with 35 SNP loci for each of four different region lengths (10 kilobases,

100 kilobases, 1 megabase, and 10 megabases). All datasets were generated as-

suming recombination and mutation rates of 10−8 per generation per base pair.

The ROC curves in Figure 2.6(c) show that, as expected, error detection accuracy

decreases as the density of SNP loci is reduced. Even at comparable SNP density,

error detection in unrelated individuals is significantly less accurate compared to

parents from trio data. Part of this accuracy loss is explained by the reduced sensi-

tivity of uno-based likelihood ratio tests (already apparent in Figure 2.5) compared

to combined likelihood ratio tests. Remaining accuracy loss is due to the higher

ambiguity in haplotype phase of unrelated genotypes compared to trio data, which

leads to a less accurate HMM representation of haplotype frequencies.

2.3.3 Results on Real Data from [8]

For simplicity, in previous section we used the same detection threshold in both

children and parents. However, histograms in Figure 2.4 suggest that better trade-

offs between sensitivity and false positive rate can be achieved by using differential

detection thresholds. For the results on the real dataset from Becker et al. [8]

(Table 2.1) we independently picked parent and children thresholds by finding the

minimum detection threshold that achieves false positive rates of 0.1-1% under
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log-likelihood ratio distributions of simulated data.

Unfortunately, for this dataset we do not know all existing genotyping errors.

Becker et al. resequenced all trio members at a number of 41 SNP loci flagged

by their FAMHAP-3 method with a detection threshold of 104. Of the 41 × 3

resequenced SNP genotypes, 26 (12 in children and 14 in parents) were identified

as being true errors, 90 were confirmed as originally correct. The error status

of remaining 7 resequenced SNP genotypes is ambiguous due to missing calls in

either the original or re-sequencing data. The “True Positive” columns in Table

2.1 give the number of TotalProb-Combined flags among the 26 known errors, the

“False Positive” columns give the number of flags among the 90 known non-errors,

and the “Unknown Signals” columns give the number flags among the 57,739 SNP

genotypes for which the error status is not known (since re-sequencing was not

performed or due to missing calls). With a predicted false positive rate of 0.1%,

TotalProb-Combined detects 11 out of the 12 known errors in children, and 8 out

of the 14 known errors in parents, with only 2 false positives (both in children).

TotalProb-Combined also flags 72 SNP genotypes with unknown error status, 61

of which are in parents. We conjecture that most of these are true typing errors

missed by FAMHAP-3, which, as suggested by the simulation results in Figure

2.5, has very poor sensitivity to errors in parent genotypes. We also note that

the number of Mendelian consistent errors in parents is expected to be more than

twice higher than the number of Mendelian consistent errors in children, due on

one hand to the fact that there are twice more parents than children and on the

other hand to the higher probability that errors in parents remain undetected as

Mendelian inconsistencies [20,29].
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2.4 GEDI Software

In this section we describe GEDI, a software package implementing efficient algo-

rithms for several common tasks in the analysis of GWAS data:

• Genotype error detection and correction. GEDI implements the likeli-

hood ratio method described in previous sections, using total genotype prob-

ability as likelihood function.

• Missing data recovery. High-throughput genotyping platforms leave un-

called large numbers of SNP genotypes. To complement quality control pro-

cedures that exclude SNP loci and samples with high proportions of missing

genotypes, GEDI provides methods for maximum-likelihood inference of re-

maining missing genotypes. A missing SNP genotype at a typed SNP locus

i is replaced by argmaxxPM(g[gi ← x]).

• Imputation of genotypes at untyped SNP loci. Current genotyping

platforms allow simultaneous typing of as many as a million SNP loci, but

this is still just a fraction of the polymorphisms present in the human popula-

tion. Imputation of genotypes at untyped SNP loci based on linkage disequi-

librium information extracted from reference panels such as HapMap [34] is

often performed to increase statistical power of GWAS studies, see, e.g., [51].

Furthermore, imputation is critical for performing meta-analysis of datasets

generated using different platforms [85]. Similar to missing data recovery,

imputation of genotypes at an untyped SNP locus is performed at an un-

typed locus i, and is replaced by argmaxxPM(g[gi ← x]). Also, in the case of

imputation, genotype probabilities are computed based on a “local” HMM

model that spans the untyped locus and a user-specified number of typed

SNP loci flanking it on each side.
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• Genotype phasing. Haplotype based association tests can improve statis-

tical power compared to single-SNP approaches, but have seen limited use

in the analysis of GWAS data, in part due to the lack of haplotype inference

methods that are both accurate and scalable. In an attempt to fill in this gap,

GEDI includes an implementation of the highly-scalable phasing algorithm

of [30], based on entropy minimization. This algorithm has been recently

used by [5] in conjunction with a haplotyping sharing approach to implicate

in Parkinson’s disease a novel gene missed by traditional single-SNP analyses.

GEDI also handles genotype data of related individuals; in this case imputa-

tion probabilities are computed with a simple extension to small pedigrees, and

log-likelihood ratios are computed jointly over nuclear families such as trios, as

described in the previous chapter.

2.4.1 GEDI Results and Discussion

A comparison of imputation algorithms implemented by GEDI and several other

publicly available software packages including [10, 21, 45, 48, 51, 68] is currently

underway [26]. Here we present experimental results exploring the effect of GEDI’s

user-selected parameters on imputation accuracy.

Imputation experiments were performed on the Perlegen 600k genotype data

(dbGaP accession number phs000016.v1.p1) generated by the International Multi-

site ADHD Genetics (IMAGE) project, comprising 958 parents-child trios from

seven European countries and Israel. After excluding trios with one or more

samples removed by data cleaning steps described in [56], we randomly selected

100 trios and phased them using the entropy minimization algorithm and pooled

parental haplotypes with the 120 CEU haplotypes from HapMap release 22 to form

a reference panel of 520 haplotypes. The test data consisted of the genotypes of re-
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maining 2502 IMAGE individuals, treated as unrelated unless otherwise indicated.

Specifically, we masked 9% of the typed SNP loci on chromosome 22 (530 out of

5835), and computed the imputation error rate as the percentage of discordant

imputations out of the total of 1,326,060 masked SNP genotypes. In all imputa-

tion experiments we used 10 typed SNP loci on each side of masked loci, which,

as shown in Fig. 2.7, yields an excellent tradeoff between accuracy and runtime.
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Figure 2.7: Imputation error rate and runtime for varying number of flanking typed
SNP loci (IMAGE chr. 22 dataset, 520 training haplotypes).

Table 2.2: Imputation error rate on the IMAGE chr. 22 dataset for varying num-
bers of HMM founders and training haplotypes.

# Training # Founders
Haplotypes 3 5 7 9 11 13 15

30 17.02% 13.65% 13.11% 12.82% 12.27% 12.37% 12.47%
60 15.21% 11.10% 10.00% 9.75% 9.62% 9.59% 9.55%
90 14.82% 10.35% 9.58% 9.04% 8.63% 8.71% 8.57%
120 14.39% 10.11% 8.93% 8.52% 8.30% 8.23% 8.13%
220 13.73% 9.42% 8.28% 7.58% 7.26% 7.27% 7.16%
320 14.31% 9.53% 7.91% 7.37% 6.94% 6.81% 6.78%
420 14.10% 8.82% 7.70% 7.09% 6.75% 6.56% 6.51%
520 13.54% 9.38% 7.48% 6.86% 6.61% 6.47% 6.33%

Fig. 2.8 and Table 2.2 give GEDI imputation accuracy when the number of
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Figure 2.8: Imputation error rate on the IMAGE chr. 22 dataset for varying
numbers of HMM founders and training haplotypes.

HMM founders is varied between 3 and 15 and the number of training haplotypes is

varied between 30 and 520. Accuracy improves significantly when using reference

panels larger than the commonly used HapMap panels, particularly in conjunction

with increasing the number of HMM founders. For example, compared to the

GEDI settings used in [26] (120 training haplotypes and 7 founders), increasing

the number of training haplotypes to 520 and the number of founders to 15 yields

an accuracy gain of over 2.5%.

Although the accuracy gained by using a larger number of HMM founders

comes at the cost of increased imputation time, the latter remains practical for up

to 15 founders, above which accuracy gains become very small. Indeed, as shown

in Fig. 2.9, GEDI optimizations such as the PopTree trie speed-up described in

Section 2.2.4 lead to sub-cubic runtime growth within the tested range of HMM

founders, allowing users to better control the tradeoff between imputation speed

and accuracy.

Indeed, the PopTree speed-up achieved by using tries depends on the number

and the similarity of the samples, as well as the number of SNP loci. For exam-
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Figure 2.9: GEDI imputation error rate and runtime for varying number of
founders (IMAGE chr. 22 dataset, 520 training haplotypes).

ple, when performing imputation using 10 flanking SNPs on the 2502 samples of

the IMAGE dataset, using PopTree gives an approximate speed-up of 3×. See

fig. (2.10) for the runtime comparison between using GEDI imputation with and

without the speed-up (PopTree and Slow algorithms, respectively), when varying

the number of flanking SNPs between 3 and 100 and the 7 or 13 HMM founders.

GEDI is also able to exploit pedigree information when available. For genotype

data of related individuals, imputation probabilities (and log-likelihood ratios) are

computed jointly over parents-child trios, using an extended version of the forward-

backward algorithm as described in the previous chapter (see [39] for details).

Fig. 2.11) compares the imputation error achieved by running GEDI with 13

HMM founders on the IMAGE dataset under two scenarios: (a) treating the 2502

test individuals as unrelated (as we have done in all previous experiments), and

(b) analyzing them as 834 parents-child trios. Performing trio-based imputation

reduces error rate by 0.22-0.44%, depending on the number of haplotypes used for

training the model, pointing out to the value of using pedigree information.

Finally, we conducted experiments to assess the value of performing genotype

error correction and missing data recovery prior to imputation. We generated a
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provided by GEDI:

6 5%

7.0%

7.5%

8.0%

8.5%

Unrelated

Trios

Im
p
u
ta
ti
o
n
E
rr
o
r
R
a
te

6.0%

6.5%

7.0%

7.5%

8.0%

8.5%

120 220 320 420 520

Unrelated

Trios

Im
p
u
ta
ti
o
n
E
rr
o
r
R
a
te

#Training Haplotypes
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Table 2.3: Comparison of two GEDI imputation flows on a version of the IMAGE
chr. 22 dataset generated by randomly inserting 1% errors and 1% missing data
(520 training haplotypes).

GEDI flow
7 Founders 13 Founders

Error Rate CPU sec. Error Rate CPU sec.

IMP 8.17% 410 7.20% 1,637
EDC+MDR+IMP 8.07% 4,153 6.91% 15,937

• In the first flow, referred to as IMP, genotypes at untyped SNP (the same

as those used in previous experiments) were imputed based on the genotype

data at typed SNPs and HMM models trained using 520 reference haplotypes.

• In the second flow, referred to as EDC+MDR+IMP, we first trained an

HMM model over typed SNPs using the 520 reference haplotypes together

with haplotypes inferred by phasing all test genotypes. This model was next

used to run GEDI’s error detection and correction and missing data recov-

ery functions, replacing every SNP genotype gi for which the likelihood ratio

maxx PM(g[gi ← x])/PM(g) is greater than 103, respectively every missing

SNP genotype gi, by argmaxxPM(g[gi ← x]). Finally, imputation was per-

formed as in the IMP flow, but based on the modified genotype data for

typed SNPs rather than the original genotypes.

Table 2.3 gives the error rate and runtime for running the two flows with 7,

respectively 13 HMM founders. Performing the EDC+MDR+IMP flow improves

accuracy over direct imputation in both cases, by almost 0.3% in the case of 13

founders. While EDC+MDR+IMP requires about 10× more time for the IMAGE

dataset used in our experiment, the runtime increase should be much smaller for

typical GWAS datasets, for which the number of typed loci is typically smaller

than that of untyped loci. Indeed, for such datasets imputation time (which grows

linearly with the number of untyped loci) is likely to dominate the time needed
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for performing error detection and correction and missing data recovery (which is

proportional to the number of typed loci).

While the accuracy gains obtained by using pedigree information or performing

the EDC+MDR+IMP flow are small, they can translate in non-negligible cost

savings. Indeed, as noted by [33], each 1% gain in imputation accuracy translates

into a 5-10% reduction in the sample size needed to achieve a desired statistical

power level.

2.5 Conclusion

In this chapter we have proposed high-accuracy methods for detection of errors

in trio and unrelated genotype data based on Hidden Markov Models of haplo-

type diversity. The need for such methods is expected to increase in the future as

genotype analysis methods shift towards the use of haplotypes. The runtime of

our methods scales linearly with the number of individuals or trios and SNP loci,

making them appropriate for handling the datasets generated by current large-

scale association studies. Additionally, GEDI optimizations such as the PopTree

trie speed-up lead to sub-cubic runtime growth within the tested range of HMM

founders, allowing users to better control the tradeoff between runtime speed and

accuracy. Our simulation results further indicate the significant increase in detec-

tion accuracy when using genotype data for families of related genotypes such as

trios. Parent-child relationships are well-known to help disambiguating a signifi-

cant amount of phase uncertainty by application of simple Mendelian transmission

rules. However, our results suggest that the value of incorporating family relation-

ships in analysis methods can go well beyond these “first order” effects. A case in

point is the sharp increase observed in children genotype error detection sensitivity

due to the use of a trio-based likelihood function. A similar “virtuous cycle” effect
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was pointed out in ENT phasing accuracy: not only the number of ambiguous posi-

tions decreases significantly when phasing related versus unrelated genotypes, but

the relative phasing accuracy of the algorithm increases significantly as well [30].

Accuracy further benefits performing genotype error correction and missing data

recovery prior to imputation using the GEDI software. As noted earlier, each 1the

sample size needed to achieve a desired statistical power level.

In ongoing work we are extending the TotalProb-Combined method to arbitrary

pedigrees. We are also exploring the use of locus dependent detection thresholds,

methods for assigning p-values to error predictions, and iterative methods which

use maximum likelihood to correct MIs and SNP genotypes flagged with a high

detection threshold, then recompute log-likelihoods to flag additional genotypes.

Finally, we are exploring integration of population-level haplotype frequency infor-

mation with typing confidence scores for further improvements in error detection

accuracy, particularly in the case of unrelated genotype data.
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Chapter 3

Imputation-based Local Ancestry

Inference in Admixed

Populations1

3.1 Introduction

Rapid advances in SNP genotyping technologies have enabled the collection of

large amounts of population genotype data, accelerating the discovery of genes as-

sociated with common human diseases. Admixture mapping has recently emerged

as a powerful method for detecting risk factors for diseases that differ in preva-

lence across populations [65]. This type of mapping relies on genotyping hundreds

of thousands of single nucleotide polymorphisms (SNPs) across the genome in a

population of recently admixed individuals and is based on the assumption that

near a disease-associated locus there will be an enhanced ancestry content from the

population with higher disease prevalence. Therefore, a critical step in admixture

mapping is to obtain accurate estimates of local ancestry around each genomic

1The results presented in this chapter are based on joint work with I. Mandoiu and B. Pasaniuc
[59].
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locus.

Several methods have been developed for addressing the local ancestry infer-

ence problem. Most of these methods use a detailed model of the data in the

form of a hidden Markov model, e.g. SABER [75], SWITCH [66], HAPAA [74]

but differ in the exact structure of the model and the procedures used for estimat-

ing model parameters. A second class of methods estimate the ancestry structure

using a window-based framework and aggregate the results for each SNP using a

majority vote: LAMP [67] uses an assumption of no recent recombination events

within each window to estimate the ancestries, while WINPOP [60] employs a

more refined model of recombination events coupled with an adaptive window

size computation to achieve increased accuracy. Local ancestry inference meth-

ods also differ in the type of information used to make local ancestry inferences.

Surprisingly, methods that do not model the linkage disequilibrium (LD) struc-

ture between SNPs currently outperform methods that model the LD information

extracted from ancestral population haplotypes.

The main contribution of this chapter is a novel method for imputation-based

local ancestry inference that more effectively exploits LD information. Our method

uses a factorial HMMs trained on ancestral haplotypes to impute genotypes at

all typed SNP loci (temporarily marking each SNP genotype as missing) under

each possible local ancestry. We then assign to each locus the local ancestry that

yields the highest imputation accuracy, as assessed using a weighted-voting scheme

based on multiple SNP windows centered on the locus of interest. Preliminary

experiments on simulated admixed populations generated starting from the four

HapMap panels [78] show that imputation-based ancestry inference has accuracy

competitive with best existing methods in the case of distant ancestral populations,

and is significantly more accurate for closely related ancestral populations. We

also give results showing that the accuracy of untyped SNP genotype imputation
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in admixed individuals improves significantly when taking into account estimates

of local ancestry.

3.2 Methods

In this work we consider the inference of locus-specific ancestry in recently ad-

mixed populations. We assume that for each admixed individual we are given the

genotypes at a dense set of autosomal SNP loci, and seek to infer the two an-

cestral populations of origin at each genotyped locus. For simplicity we consider

only bi-allelic SNPs. For every SNP locus, we denote the major and minor alleles

by 0 and 1. A SNP genotype is encoded as the number of minor alleles at the

corresponding locus, i.e., 0 and 2 encode homozygous major and minor genotypes,

while 1 denotes a heterozygous genotype.

3.2.1 Genotype Imputation Within Windows with Known

Local Ancestry

Various forms of left-to-right HMM models of haplotype diversity in a homogeneous

population have been successfully used for numerous genetic data analysis problems

including SNP genotype error detection [36], genotype phasing [64,68], testing for

disease association [41, 69], and imputation of untyped SNP genotypes [40, 45, 51,

68]. In this section we extend the imputation model described in the previous

chapter to the case of individuals with known mixed local ancestry. Specifically,

we assume that, over the set of SNPs considered, the individual has one haplotype

inherited from ancestral population Pk and the other inherited from ancestral

population Pl, where Pk and Pl are known (not necessarily distinct) populations.

Multilocus SNP genotypes of individuals with such mixed ancestry are mod-

eled statistically using a factorial HMM (F-HMM) [27] referred to as Mkl and
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Figure 3.1: Factorial HMM model for a multilocus SNP genotype (G1, . . . , Gn)
over an n-locus window within which one haplotype is inherited from ancestral
population Pk and the other from ancestral population Pl. For every locus i,
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i and Hk
i denote the founder haplotype, respectively the allele observed on the

haplotype originating from population Pk; similarly, F l
i and H l

i denote the founder
haplotype and observed allele for the haplotype originating from population Pl.

graphically represented in Figure 3.1. At the core of the model are two left-to-

right HMMs representing haplotype frequencies for the two ancestral populations

(dotted boxes in Figure 3.1). Under these models, a haplotype from population

Pj, j ∈ {k, l} is viewed as a mosaic formed as a result of historical recombination

among a set of Kj founder haplotypes, where Kj is a population specific parameter

(unless specified otherwise, we used Kj = 7 in our experiments).

Formally, for each SNP locus i ∈ {1, . . . , n}, we let Gi ∈ {0, 1, 2} be a random

variable representing the genotype at locus i, Hj
i ∈ {0, 1} be a random variable rep-

resenting the allele inherited from population Pj at locus i, and F j
i ∈ {1, . . . , Kj}

be a random variable denoting the founder haplotype from which Hj
i originates.

Values taken by these random variables are denoted by the corresponding lower-

case letters (e.g., gi, hj
i , f j

i ). The model postulates that for each j ∈ {k, l}, F j
i ,

i = 1, . . . , n, form the states of a first order HMM with emissions Hj
i . We set

P (gi|h
k
i , h

l
i) to be 1 if gi = hk

i + hl
i and 0 otherwise. Model training is completed

by separately estimating probabilities P (f j
1 ), P (f j

i+1|f
j
i ), and P (hj

i |f
j
i ) using the
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classical Baum-Welch algorithm [6] based on haplotypes inferred from a panel rep-

resenting each ancestral population Pj, j ∈ {k, l}. The parameters of the two

left-to-right HMMs can alternatively be estimated directly from unphased geno-

type data using an EM algorithm similar to those in [41,64].

Let g = (g1, . . . , gn) be the multilocus genotype of a mixed ancestry individual

and let g−i = (g1, . . . , gi−1, gi+1, . . . , gn). If the individual’s SNP genotype at locus

i is unknown, it can be imputed based on the model Mkl by maximizing over

g ∈ {0, 1, 2}

PMkl
(Gi = g|g−i) ∝ PMkl

(g[gi ← g]) (3.1)

where g[gi ← g] = (g1, . . . , gi−1, g, gi+1, . . . , gn). The ancestry inference method

described in Section 3.2.2 temporarily marks as missing and imputes each SNP

genotype, and thus requires computing probabilities (3.1) for all n SNP loci. This

computation can be done efficiently using a forward-backward algorithm, as de-

scribed below.

For every i ∈ {1, . . . , n}, fk
i ∈ {1, . . . , Kk}, and f l

i ∈ {1, . . . , Kl}, we let

F i
fk

i ,f l
i
= PMkl

(g1, . . . , gi−1, f
k
i , f l

i ), which we refer to as the forward probability as-

sociated with the partial multilocus genotype (g1, . . . , gi−1) and the pair of founder

states (fk
i , f l

i ) at locus i. The forward probabilities can be computed using the

recurrence:

F1
fk
1 ,f l

1
= P (f1)P (f ′

1) (3.2)

F i
fk

i ,f l
i

=

Kk∑

fk
i−1=1

Kl∑

f l
i−1=1

F i−1
fk

i−1,f l
i−1

E i−1
fk

i−1,f l
i−1

(gi−1)P (fk
i |f

k
i−1)P (f l

i |f
l
i−1)

=

Kk∑

fk
i−1=1

P (fk
i |f

k
i−1)

Kl∑

f l
i−1=1

F i−1
fk

i−1,f l
i−1

E i−1
fk

i−1,f l
i−1

(gi−1)P (f l
i |f

l
i−1) (3.3)
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where

E i
fk

i ,f l
i
(gi) =

∑

hk
i ,hl

i∈{0,1}

hk
i +hl

i=gi

P (hk
i |f

k
i )P (hl

i|f
l
i ) (3.4)

The innermost sum in (4.18) is independent of fk
i , and so its repeated computation

can be avoided by replacing (4.18) with:

Ci
fk

i−1,f l
i

=

Kl∑

f l
i−1=1

F i−1
fk

i−1,f l
i−1

E i−1
fk

i−1,f l
i−1

(gi−1)P (f l
i |f

l
i−1) (3.5)

F i
fk

i ,f l
i

=

Kk∑

fk
i−1=1

P (fk
i |f

k
i−1)C

i
fk

i−1,f l
i

(3.6)

By using recurrences (4.17), (4.20), and (4.21), all forward probabilities can be

computed in O(nK3) time, where n is the number of SNP loci and K = max{Kk, Kl}.

Backward probabilities Bi
fk

i ,f l
i
= PMkl

(fk
i , f l

i , gi+1, . . . , gn) can be computed in

O(nK3) time using similar recurrences:

Bn
fk

n ,f l
n

= 1

Di
fk

i+1,f l
i

=

Kl∑

f l
i+1=1

Bi+1
fk

i+1,f l
i+1

E i+1
fk

i+1,f l
i+1

(gi+1)P (f l
i+1|f

l
i )

Bi
fk

i ,f l
i

=

Kk∑

fk
i+1=1

P (fk
i+1|f

k
i )Di

fk
i+1,f l

i

After computing forward and backward probabilities, posterior SNP genotype

probabilities (3.1) can be evaluated in O(K2) time per SNP locus by observing

that:

PMkl
(g[gi ← g]) =

Kk∑

fk
i =1

Kl∑

f l
i=1

F i
fk

i ,f l
i
E i

fk
i ,f l

i
(g)Bi

fk
i ,f l

i
(3.7)

Thus, the total time for computing all posterior SNP genotype probabilities is

O(nK3).
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Input: multilocus genotype g = (g1, . . . , gn), window half-size w, and reference
haplotypes for ancestral populations P1, . . . ,PN

Output: inferred local ancestries âi ∈ A for each i = 1, . . . , n

1. Train HMM models for each ancestral population and combine them to form
factorial HMM models Mkl for every kl ∈ A

2. For each locus i, compute posterior SNP genotype probabilities (Equation
3.1) under each local ancestry model Mkl

3. For each locus i = 1, . . . , n,

âi ← argmax
kl∈A

∑

j∈Wi

PMkl
(Gi = gi|g−i) (3.8)

where Wi = {max{1, i − w}, . . . , min{n, i + w}}

Figure 3.2: Single-window imputation-based ancestry inference algorithm.

3.2.2 Local Ancestry Inference

Consider an individual coming from an admixture of (a subset of) of N ancestral

populations P1, . . . ,PN . As in previous works [75,67,66,74,60], we view the local

ancestry at a locus as an unordered pair of (not necessarily distinct) ancestral

populations. The set of possible local ancestries is denoted by A = {kl | 1 ≤ k ≤

l ≤ N}.

Our local ancestry inference method is based on two observations: (1) for

individuals from recently admixed populations the local ancestry of a SNP locus

is typically shared with a large number of neighboring loci, and (2) the accuracy

of SNP genotype imputation within such a neighborhood is typically higher when

using the factorial HMM model Mkl corresponding to the correct local ancestry

compared to a mis-specified model. These observations suggest using the algorithm

in Figure 3.2 for inferring local ancestry based on imputation accuracy within

windows centered at each SNP locus. More precisely, the algorithm assigns to each
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SNP locus i the local ancestry that maximizes the average posterior probability

for the true SNP genotypes over a window of up to 2w + 1 SNPs centered at i (w

SNPs downstream and w SNPs upstream of i).

Step 1 of the algorithm requires training N left-to-right HMMs based on haplo-

type data using the Baum-Welch algorithm, which takes O(nK2) per iteration and

typically converges in a small number of iterations. As described in Section 3.2.1,

Step 2 of the algorithm is implemented in O(nK3) time for each local ancestry

model Mkl. Once posterior SNP genotype probabilities are computed in Step 2,

the window average probabilities required in Step 3 for each local ancestry model

Mkl can be computed in O(1) per window after precomputing in O(n) time the

sums of posterior probabilities for all prefix sets {1, . . . , i}. Thus, since the num-

ber of possible ancestry models is |A| = O(N2), the algorithm requires O(nK3N2)

time overall.

As previously observed for other window-based methods of local ancestry in-

ference [67,60], optimal window size selection plays a significant role in the overall

estimation accuracy. Window-based methods must balance two conflicting require-

ments: on one hand, small window sizes may not provide enough information to

accurately differentiate between the |A| possible local ancestries (particularly when

ancestral populations are closely related) and on the other hand, large window sizes

lead to more frequent violations of the assumption that local ancestry is uniform

within each window. In the case of imputation-based ancestry inference we ob-

tained good results by using a multi-window approach: for each SNP genotype gi

we run the algorithm of Figure 3.2 for all w ∈ {100, 200, . . . , 1500} and aggregate

the results over all windows using a simple weighted voting scheme. Specifically,

within each window we assign to each ancestry model Mkl a weight obtained by di-

viding the average posterior probability of the true genotypes, 1
|Wi|

∑
j∈Wi

PMkl
(Gi =

gi|g−i) by the sum of the averages achieved by all local ancestry models, and select
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for each locus the model with maximum sum of weights over all windows. Prelim-

inary experiments (see Figure 3.3 and Table 3.1) suggest that the multi-window

strategy yields an average accuracy that is very close to (and, for some admixed

populations, better than) the maximum average accuracy achieved by running the

single-window algorithm with any window size from the above set.

3.3 Experimental results

In this section we present preliminary results comparing our approach to sev-

eral state-of-the-art methods for local ancestry inference. We begin with results

demonstrating the accuracy of imputation based on the factorial HMM model. In

the first set of experiments, we compare our imputation-based algorithm to exist-

ing methods for local ancestry inference on admixture datasets simulated starting

from the four populations represented in HapMap [78]. Finally, we present results

demonstrating the benefit of incorporating accurate local ancestry estimates when

performing genotype imputation for admixed individuals.

3.3.1 Inference of Local Ancestry in Admixed Populations

The method described in Section 3.2.2 was implemented in an extension of the

GEDI software package [40], referred to as GEDI-ADMX. We compared GEDI-

ADMX to several local ancestry inference methods capable of handling genome-

wide data. Three of the competing methods (SABER [75], SWITCH [66], and HA-

PAA [74]) are HMM based, while the other two (LAMP [67] and WINPOP [60])

perform window-based estimation based on genotype data at a set of unlinked

SNPs. When comparing various methods for ancestry inference one needs to take

into account the fact that different methods use different types of information

to make ancestry predictions. LAMP, WINPOP and SWITCH only require in-
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formation about ancestral allele frequencies, while the other methods require the

ancestral genotypes. In addition, HAPAA and GEDI-ADMX use additional infor-

mation about ancestral haplotypes. Some of the methods also require the number

of generations since the admixture process started. In general, we provided each

method the maximum amount of information about the admixture process (e.g.

number of generations g or the admixture ratio α) that it could take into account.

Although these parameters can be estimated from genotype data when needed [76],

we note that GEDI-ADMX does not require any additional parameters besides the

ancestral haplotypes.

Experiments were performed on simulated admixtures using as ancestral pop-

ulations the four HapMap [78] panels: Yoruba people from Ibadan Nigeria (YRI),

Japanese from the Tokyo area (JPT), Han Chinese from Beijing (CHB) and Utah

residents with northern European ancestry (CEU). We simulated admixtures for

each of the YRI-CEU, CEU-JPT, and JPT-CHB pairs of populations as follows:

we started the simulation by joining a random set of α × n individuals from the

first population and (1−α)×n individuals from the second population. Within the

merged panel we simulated g generations of random mating with a mutation and

recombination rate of 10−8 per base pair per generation. We used only the 38,864

SNPs located on Chromosome 1 found on the Affymetrix 500K GeneChip Assay.

For these simulations we used n = 2000, g = 7 and α = 0.2 as it roughly corre-

sponds to the admixture history of the African American population [77, 70, 58].

Our simulations result in an admixed population with known local ancestry. Each

of the evaluated methods infers an ancestry estimate for every SNP genotype;

we measure the accuracy as the fraction of SNP genotypes for which the correct

ancestry is inferred.
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Figure 3.3: Accuracy of local ancestry estimates obtained by GEDI-ADMX on the
three HapMap admixtures using a single window of varying size.

Effect of Window Size on the Local Ancestry Estimates.

Figure 3.3 plots the accuracy of the local ancestry prediction of GEDI-ADMX on

the HapMap admixtures for different window sizes. As expected, the accuracy

initially increases with window size for all three datasets, since more information

is available to differentiate between ancestry models. However, very large window

sizes lead to more violations in the assumption of uniform ancestry within each

window, overshadowing these initial benefits. As previously reported in other

window-based methods [67,60] we also notice that the best window size employed

by our method for the three datasets is correlated with the genetic distance between

ancestral populations as closer ancestral populations require longer window size for

accurate predictions. Finally, we notice that the combined multi-window approach

described in Section 3.2.2 achieves accuracy close to the best window size for the

YRI-CEU and CEU-JPT admixtures and better than any window size for the

JPT-CHB admixture (see Table 3.1). All remaining results were obtained using

the multi-window approach.
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Figure 3.4: GEDI-ADMX accuracy (solid) and runtime (dashed) for varying values
of the number K of HMM founder haplotypes on the CEU-JPT dataset, consisting
of n = 38, 864 SNPs on Chromosome 1.

Effect of Number of Founders on Local Ancestry Inference Accuracy

and Runtime Scalability.

An important parameter of the HMM models used to represent the LD in ancestral

populations is the number of founder haplotypes K. As discussed in Section 3.2.2,

the runtime of the algorithms grows asymptotically with the cube of K, which

renders the use of very large values of K impractical. Using very large values of K

may also be problematic when the number of training haplotypes is limited, due

to model overfitting. On the other hand, HMMs with very few founder haplotypes

have a limited ability of capturing LD patterns in the ancestral populations, and

is expected to lead to poor accuracy.

To assess these potentially complex tradeoffs between runtime and accuracy we

run GEDI-ADMX on the CEU-JPT dataset using for both ancestral populations

a number of founder haplotypes K varied between 1 and 10. The accuracy and

runtime achieved by GEDI-ADMX for each value of K are plotted in Figure 3.4.

Since for K = 1 our HMM model degenerates into a simple multinomial i.i.d. model
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that captures allele frequency at each SNP but completely ignores LD, it is not

surprising that ancestry inference accuracy is relatively poor (about 78%). For K =

2 accuracy improves significantly (to 93.5%), as the model is now able to represent

pairwise LD between adjacent SNPs. As K is further increased, the model can

capture more of the longer range LD, leading to further accuracy improvements.

However, improvements in accuracy are quickly diminishing, with only 1% accuracy

improvement achieved when increasing K from 3 to 10.

Although for small values of K lower order terms make the runtime growth in

Figure 3.4 appear sub-cubic, the asymptotic cubic growth is already apparent for

the largest tested values of K. For remaining experiments we used K = 7 since

this setting achieves a good tradeoff between runtime and accuracy.

Comparison with Other Methods.

Table 3.1 presents accuracies achieved by the six compared methods on the three

simulated HapMap admixtures. We note that GEDI-ADMX achieves similar accu-

racy to the best performing methods on the YRI-CEU and CEU-JPT admixture,

while yielding a significant improvement in accuracy for the JPT-CHB dataset.

Indeed, on the JPT-CHB admixture our method achieves an accuracy of 94.0%,

which is an increase of more than 11% over the second best performing method

WINPOP. Table 3.1 also reports an upper-bound on the maximum accuracy that

can be obtained by methods that do not model the linkage disequilibrium (LD)

between SNPs, computed as described in [60]. Notably, GEDI-ADMX accuracy

on the JPT-CHB dataset exceeds the upper-bound for methods that do not model

the LD. This underscores the importance of exploiting ancestral haplotypes when

performing local ancestry inference for admixtures of closely related populations.
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Method YRI-CEU CEU-JPT JPT-CHB
SABER 89.4 85.2 68.2
HAPAA 93.7 88.2 72.0
SWITCH 97.8 94.8 74.8
LAMP 94.8 93.0 65.8
WINPOP 98.0 95.9 82.8
Upper Bound(no LD) 99.9 99.6 91.9
GEDI-ADMX 97.5 96.5 94.0

Table 3.1: Percentage of correctly recovered SNP ancestries on three HapMap
admixtures with α = 0.2.

3.3.2 SNP Genotype Imputation in Admixed Populations

In this section we present results that further demonstrate the synergy between

SNP genotype imputation and local ancestry inference in admixed population.

More specifically, we focus on assessing the utility of inferring locus-specific ances-

tries when performing imputation of genotypes for untyped SNPs.

For this experiment we generated three admixtures, corresponding to the YRI-

CEU, CEU-JPT and JPT-CHB pairs of HapMap populations, using the same

simulation procedure as described in Section 3.3.1 with parameters of n = 2000,

α = 0.5 and g = 10. We randomly chose 10% of the SNPs as untyped and

we masked them from all the individuals in the admixture. We first ran GEDI-

ADMX using unmasked SNP genotypes to infer local ancestries as described in

Section 3.2.2. We then imputed masked genotypes using the model in Section

3.2.1 based on the ancestry inferred for the adjacent unmasked SNPs. We mea-

sured the error rate of the imputation procedure as the percentage of genotypes

inferred erroneously (using no cutoff threshold on posterior imputation probabil-

ity). To establish a baseline for the comparison, we also performed imputation

using the GEDI package [40], based on a factorial model similar to that in Section

3.2.2 except that it consists of two identical left-to-right HMMs trained on either

(1) panel haplotypes for only one of the ancestral populations (GEDI-1-Pop), re-
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Method YRI-CEU CEU-JPT JPT-CHB
GEDI-1-Pop Avg. 12.79 6.67 3.81
GEDI-2-Pop 7.31 3.90 3.02
GEDI-ADMX 4.34 2.81 2.74

Table 3.2: Imputation error rate, in percents, on three HapMap simulated admix-
tures with α = 0.5.

spectively on (2) a haplotype list obtained by merging the panel haplotypes of the

two ancestral populations (GEDI-2-Pop).

Table 3.2 shows the imputation accuracy achieved by the three compared meth-

ods. As expected, there is a large decrease in error rate when switching from using

only one panel of ancestral haplotypes to using the combined panel consisting

of haplotypes from both populations. Performing imputation based on the local

ancestry inferred by GEDI-ADMX yields further improvements in accuracy. Ac-

curacy gains are largest when admixed populations are distant (e.g. YRI-CEU).

3.4 GEDI-ADMX Software

The GEDI-ADMX package provides methods for the following in admixed popula-

tions based on whole-genome SNP genotype data and reference haplotype panels

for ancestral populations:

• local ancestry inference

• SNP genotype error detection and correction

• imputation of missing genotypes at typed SNPs, and

• imputation of genotypes at untyped SNPs

Currently GEDI-ADMX handles genotype data from unrelated individuals. As

described earlier in this chapter, local ancestry inference uses factorial HMMs
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trained on ancestral haplotypes to impute genotypes at all typed SNP loci (tem-

porarily marking each SNP genotype as missing) under each possible local ancestry.

GEDI-ADMX assigns to each locus the local ancestry that yields the highest im-

putation accuracy, as assessed using a weighted-voting scheme based on multiple

SNP windows centered on the locus of interest. Error detection and imputation of

missing genotypes at typed SNPs is performed using multilocus genotype proba-

bilities computed based on the factorial HMM corresponding to the inferred local

ancestry. Imputation of genotypes at each untyped SNP is performed based on

posterior genotype probabilities computed using a similar factorial HMM spanning

k (default k=10) typed SNPs before and after the imputed locus.

3.4.1 Gene Admix Viewer

Gene Admix Viewer is a graphical user interface for GEDI-ADMX as well as a

graphical viewer of local ancestry results. The graphical viewer is based on code

developed by Christian Wanamaker (see figure 3.5). It allows the user to run GEDI-

ADMX on Windows machines, as well as visually review inferred ancestry along a

chromosome from GEDI-ADMX results, with gene information also available for

analysis.

3.5 Discussion

In this chapter we propose a novel algorithm for imputation-based local ancestry

inference. Experiments on simulated data show that our method exploits ances-

tral haplotype information more effectively than previous methods, yielding con-

sistently accurate estimates of local ancestry for a variety of admixed populations.

Indeed, our method is competitive with best existing methods in the case of ad-

mixtures of two distant ancestral populations, and is significantly more accurate
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Figure 3.5: Gene Admix Viewer main screen

than previous methods for admixtures of closely related populations such as the

JPT and CHB populations from HapMap. We also show that accurate local an-

cestry estimates lead to improved accuracy of untyped SNP genotype imputation

for admixed individuals.

In ongoing work we are exploring methods that iteratively alternate between

rounds of imputation-based ancestry inference and ancestry-based imputation for

further improvements in accuracy. We are also conducting experiments to char-

acterize the accuracy of our imputation-based local ancestry inference methods in

the case of admixtures of more than two ancestral populations.
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Chapter 4

Single Individual Genotyping

from Low-Coverage Sequencing

Data 1

4.1 Introduction

Recent massively parallel sequencing technologies deliver orders of magnitude higher

throughput compared to classic Sanger sequencing. Sequencers like Roche/454

FLX Titanium, Illumina Genome Analizer II, ABI SOLiD 3 and Helicos HeliScope

are able to provide millions of short reads in a single run which lasts just a few

days in some cases and even less than one day in other cases. These advances

promise to enable cost-effective shotgun sequencing of individual genomes. After

recent publication of five complete individual genomes [9,22,52,62,80,23], ongoing

efforts focus on increasing the quality and coverage of short reads and on improv-

ing algorithms for mapping, genotyping and variations discovery to sequence over

a thousand more individual genomes [1].

1The results presented in this chapter are based on joint work with J. Duitama, S. Dinakar,
Y. Hernandez, I. Mandoiu and Y. Wu [35].
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These high-throughput sequence data allows one to reconstruct complete diploid

genomes. One important aspect of reconstructing diploid genomes from sequence

data is determining the genotypes of the sequenced individuals at single nucleotide

polymorphisms (SNPs). This process is called genotyping. That is, given a set

of sequence reads, we want to determine the alleles at given SNP sites of the

sequenced individual. Accurate genotyping is critical in many applications like

Genome Wide Association Studies (GWAS) where individual genotypes are the

base information to establish correlation between a genome location and a disease.

Sequence data based genotyping is in principle easy if we have a large number of

sequence reads covering these SNP sites. Here, the number of reads spanning a

SNP site is called sequencing depth or coverage depth. Despite some known biases

during the sequencing process, it is assumed that reads are sampled with uniform

distribution across the genome and hence raw coverage depth is calculated on av-

erage by dividing the total number of bases produced by the sequencer by the size

of the genome.

The genotyping problem becomes more challenging when only sequencing data

with low coverage depth is available (which is much cheaper to obtain). This is

because: (a) when sequencing depth is low, many alleles at SNP sites may not

be observed in any sequencing reads; (b) it is unknown from which of the two

chromosome copies a sequencing read originates; (c) other sources of noise, such

as sequencing errors or incorrect read mapping, can cause more uncertainty.

An obvious way to obtain high-quality SNP genotypes from sequence data is to

simply increase the sequencing depth. It was estimated that a coverage depth of

over 21× on each SNP is required to achieve 99% sensitivity at detecting heterozy-

gous SNPs [82], in absence of additional information. A coverage depth of (7.5×)

was found in [22,23] to correctly identify only 75% of the heterozygous SNPs, and

sensitivity drops rapidly as depth decreases. Clearly, obtaining sequence data with
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high sequencing depth can be very expensive. Thus, an important technical prob-

lem is to develop new SNP genotype calling methods using low coverage sequence

data.

Before we present our new genotyping method, we first briefly discuss how

genotyping is performed now. Current techniques for genotype calling are based

on the number of reads supporting the existence of each specific allele on each

SNP, which is called allele coverage. In [22, 23], an allele is called if there are at

least two reads supporting it. In [23], this rule is combined with a binomial test in

which it is assumed as null hypothesis that the genotype is heterozygous and the

allele counts follow a binomial distribution centered at 0.5. A p-value of less than

0.01 is required to reject this hypothesis. In [46] the binomial model is improved

by taking into account base quality scores and dependency between close SNPs.

While these techniques are adequate in absence of additional information, their

reliability is not enough for many applications like GWAS.

An important source of information not used in the above approach is the corre-

lation between alleles at nearby SNP sites (called linkage disequilibrium). We note

that previous works [36,45,51,73,81] suggest that when LD information is available

it is possible to impute with high accuracy the genotypes of untyped SNPs. Public

databases like the one published by the international HapMap project [15] provide

reference panels for many human populations, which are likely to improve in size

and accuracy as new genotype information is gathered.

In this chapter we present a statistical model for multilocus genotype inference

that fully exploits the linkage disequilibrium information contained in a reference

panel of haplotypes to improve the accuracy of genotype calls based on short

reads mapped to a reference sequence. We designed a hierarchical factorial hidden

markov model (HF-HMM), which assumes that the individual haplotypes are the

result of recombination events between a small set of founder haplotypes. We im-
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plemented a posterior decoding algorithm which, after training with the reference

haplotypes, combines the genotype probabilities given by the HMM with the geno-

type probabilities given the allele counts to calculate the most likely genotype. We

show how this model allows to achieve more than 95% accuracy on heterozygous

SNP calls and more than 99% accuracy on homozygous SNP calls with just 5×

coverage depth. We also show how the reference panel information helps to make

better guesses for loci with lack of enough reads support. Software implement-

ing this model has been released under the GNU General Public License and is

available at http://dna.engr.uconn.edu/software/GeneSeq/.

4.2 Methods

In this section we describe the statistical model that represents the assumed model

of haplotype diversity, the problem formulation, and the algorithm implemented

to solve this problem. After introducing basic notations we describe a simplified

model that assumes independence between sites and that is useful to introduce

some concepts and for comparison purposes. We then expand this model to include

dependences between SNP alleles at different sites. We formalize the multilocus

genotype problem in the context of the extended model and we show that com-

puting the most likely multilocus genotype is computationally hard. Finally, we

present several heuristics for inferring multi-locus genotypes

4.2.1 Notations

We use uppercase italic letters (e.g., X) to denote random variables and lowercase

italic letters (e.g., x) to denote generic values taken by them. Vectors of ran-

dom variables and generic variables are denoted by boldface uppercase (e.g., X),

respectively boldface lowercase letters (e.g., x). When there is no ambiguity on
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the underlying probabilistic event we use P (x) to denote P (X = x), with similar

shorthands used for joint and conditional probabilities of multiple events.

For simplicity we consider only biallelic SNPs on autosomes. For every SNP

locus, we denote the two possible alleles by 0 and 1, and the three genotypes by 0,

1, and 2, with 0 and 2 denoting the homozygous 0 and homozygous 1 genotypes,

and 1 denoting the heterozygous genotype.

4.2.2 Single SNP Genotype Calling

In this section we describe a genotype inference model that assumes the SNPs to

be unlinked as, e.g., in [23], but further incorporates allele uncertainty quantified

by sequencing quality scores, read mapping uncertainty, and population genotype

frequencies estimated from a reference panel.

Let r be a read mapped onto the genome. We denote by m(r) the probability

that r is aligned in the correct position. If r cover SNP locus i, we denote by r(i)

the allele observed in the read at this locus. Since our focus is on genotyping SNPs

represented in a reference panel, we further assume that panel SNPs at which the

individual under study has novel allele variants (observed at an estimated 0.02%

of the markers in [23]) have been identified in a preliminary analysis, e.g., by using

binomial probability tests as in [23]. Based on this assumption, all reads with

alleles not represented in the panel population are discarded, and for remaining

reads r, r(i) ∈ {0, 1}. The probability that allele r(i) is affected by a sequencing

error is denoted by εr(i). In our model we set εr(i) = 10−qr(i)/10, where qr(i) denotes

the phred quality score [24] of r(i).

Let Gi be a random variable denoting the unknown SNP genotype at locus i,

and let ri = {ri,1, . . . , ri,ci
} be the arbitrarily ordered set of shotgun reads covering

locus i, where ci is the coverage at this locus. Since for a homozygous genotype the

allele of origin for a read is the same regardless of which chromosome is sampled,
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we get:

P (ri|Gi = 0) =
∏

r∈ri

r(i)=0

(1 − εr(i))
m(r)

∏

r∈ri

r(i)=1

(εr(i))
m(r) (4.1)

and

P (ri|Gi = 2) =
∏

r∈ri

r(i)=1

(1 − εr(i))
m(r)

∏

r∈ri

r(i)=0

(εr(i))
m(r) (4.2)

We interpret a correct mapping probability m(r) < 1 as equivalent to observing

a “fractional” read and view the contribution of such fractional reads as satisfy-

ing additivity. For example, we view two reads with 50% mapping confidence as

equivalent to a single read with full confidence. This interpretation of mapping

probabilities is enforced by raising the terms corresponding to read r in equations

(4.1) and (4.2) to m(r).

For a read r covering a heterozygous SNP locus i allele r(i) can be observed

either as the result of sampling r from the chromosome bearing allele r(i) and

correctly sequencing it, or as the result of sampling the other chromosome followed

by a sequencing error. Hence:

P (ri|Gi = 1) =
∏

r∈ri

(
1

2
(1 − εr(i)) +

1

2
εr(i)

)m(r)

=

(
1

2

)P

r∈ri
m(r)

(4.3)

A natural approach to single-locus SNP genotyping is to call a genotype of ĝi =

argmaxgi∈{0,1,2}P (gi|ri) for every SNP locus i for which the maximum posterior

genotype probability exceeds a user-specified threshold. Posterior probabilities are

obtained from (4.1)-(4.3) by applying Bayes’ formula:

P (Gi = gi|ri) =
P (gi)P (ri|Gi = gi)∑

g P (Gi = g)P (ri|Gi = g)
(4.4)
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Figure 4.1: HF-HMM model for multilocus genotype inference.

where P (Gi = g) denotes the population frequency of genotype g, estimated from

the reference panel.

4.2.3 A Statistical Model for Multilocus Genotype Infer-

ence

In this section we introduce a statistical model that allows us to fully integrate

shotgun sequencing data and LD information in the inference of SNP genotypes.

Our model, represented graphically in Figure 4.1, can be thought of as a hierarchi-

cal factorial HMM (HF-HMM). Indeed, we use a distributed state (characteristic of

factorial HMMs [27]) to exploit the independence between maternal and paternal

chromosomes (implied by the assumption of random mating), while also employ-

ing a multilevel state representation as in hierarchical HMMs [25] to capture the

structured nature of the data. The hierarchical factorial structure of the model

leads to a reduced number of parameters and modular estimation procedures, and

enables highly scalable inference algorithms, with runtime scaling linearly with the

sum between the number of shotgun reads and that of SNP loci.

At the core of the model are two left-to-right HMMs M and M ′ representing
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haplotype frequencies in the populations of origin of the sequenced individual’s

parents (dotted boxes in Figure 4.1). Under M and M ′ each haplotype is viewed

as a mosaic formed as a result of historical recombination among a set of K founder

haplotypes, where K is a population specific model parameter. Formally, for every

SNP locus i ∈ {1, . . . , n}, we let Hi (H ′
i) be a random variable representing the

allele observed at this locus on the maternal (paternal) chromosome of the individ-

ual under study, and Fi (F ′
i ) be a random variable denoting the founder haplotype

from which Hi (respectively H ′
i) originates. As in previous works [36,41,51,64,69],

we assume that Fi form the states of a first order HMM with emissions Hi, and

estimate probabilities P (f1), P (fi+1|fi), and P (hi|fi)) using the classical Baum-

Welch algorithm [6] based on haplotypes inferred from a panel representing the

population of origin of the individual’s mother. Probabilities P (f ′
1), P (f ′

i+1|f
′
i),

and P (h′
i|f

′
i) are estimated in the same way based on haplotypes inferred from a

panel representing the population of origin of the individual’s father.

We define P (gi|hi, h
′
i) to be 1 if gi = hi+h′

i and 0 otherwise. Finally, we assume

that each read covers a single SNP locus, and set

P (Ri,j = r|Gi = gi) =
gi

2
(εr(i))

1−r(i)(1 − εr(i))
r(i)

+
2 − gi

2
(εr(i))

r(i)(1 − εr(i))
1−r(i) (4.5)

This implies that P (ri|gi) are given by Equations (4.1)-(4.3), and in the fol-

lowing we will assume that probabilities P (ri|gi) are precomputed in O(m) time,

where m =
∑n

i=1 ci is the total number of reads.

We can now formulate the following: Multilocus Genotyping Problem

(MGP)

Given: Two trained HMM models M,M ′ and a set of shotgun reads r = (r1, . . . , rn)
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Find: Multilocus genotype g∗ ∈ {0, 1, 2}n with maximum posterior probability, i.e.,

g∗ = argmaxgP (g|r,M,M ′) (4.6)

As shown below, MGP is NP-hard, and in fact, the maximum probability of

a multilocus genotype is as hard to approximate as the maximum clique size of a

graph. Formally, let us introduce the following optimization version of MGP:

Maximum Multilocus Genotype Probability Problem (MMGPP)

Given: Two trained HMM models M,M ′ and a set of shotgun reads r = (r1, . . . , rn)

Find: The maximum multilocus genotype probability,

max
g

P (g|r,M,M ′) (4.7)

Theorem 1 For any ǫ > 0, MMGPP cannot be approximated within O(n
1
2
−ǫ)

unless P=NP, and it cannot be approximated within O(n1−ǫ) unless ZPP=NP.

Furthermore, this holds even if M ′ = M .

Proof. Lyngsø et al. [50] gave an approximation preserving reduction from

the clique problem to the problem of computing the maximum probability of a

string emitted by an HMM. It is not difficult to modify their construction to show

that this reduction holds even for left-to-right HMMs that emit 0/1 strings of

fixed length. Next, we show that computing the maximum probability of a string

emitted by such an HMM M0 can be reduced in approximation preserving manner

to MMGPP with M ′ = M . The haplotype models M and M ′ are obtained from

M0 as follows (see the schematic state diagram in Figure 4.2):
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f1
1

f2
1

f3
1

fn-1
1

fn
1

1 M0

f1f1
2

Figure 4.2: Schematic of reduction of the consensus string problem to MMGPP.

• The number of SNPs n is set to one plus the length of the strings emitted

by M0.

• At the first SNP, for two founder states f 1
1 and f 1

2 we have P (f 1
i ) = 1/2; all

other founder states have zero initial probability.

• For every SNP locus i > 1 we add a new founder f i
1 as well as a set of

founders corresponding to the states at “column” i − 1 of M0.

• All founder f i
1, i = 1, . . . , n, emit 0 with probability 1. Furthermore, P (f i

1|f
i−1
1 ) =

1 for every i = 2, . . . , n.

• Founder f 1
2 emits 1 with probability 1, and has transitions to founders f 2

j ,

j > 1, according to the initial probabilities of M0.

• All other emission and transition probabilities are identical to those for the

corresponding states of M0.

Finally, we set r = {r0, r1} where r0 is a read that supports allele 0 at first

SNP and r1 is a read that supports the allele 1 at first SNP. Error probabilities for

both alleles are set to zero.

Note that P (g|r,M,M ′) 6= 0 only for multilocus genotypes with g1 = 1 and
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gi ∈ {0, 1} for i = 2, . . . , n. Furthermore, for such a genotype g,

P (g|r,M,M ′) =
P (r|g)P (g|M,M ′)

P (r)

=
1

4P (r)
P (g|M,M ′)

=
1

4P (r)

P (g2, . . . , gn|M0)

2
(4.8)

The last equality comes from the fact that g can only be observed when the

maternal haplotype is 0n and the paternal haplotype is g or vice versa, and each

of these configurations have a probability of P (g2, . . . , gn|M0)/4.

The inapproximability results follow from [50] since, by (4.8), P (g|r,M,M ′) is

constant fraction of P (g2, . . . , gn|M0). ¤

It is easy to see that an algorithm similar to the forward algorithm for HMMs

can be used to compute in polynomial time the marginal probability of a given

genotype. Combined with Theorem 1, this observation implies the following:

Corollary 1 MGP is NP-Hard.

4.3 Efficient MGP Heuristics

4.3.1 Posterior Decoding

We next present several MGP heuristics, the first is similar to the posterior decod-

ing algorithm for HMMs. Specifically, the algorithm selects for each SNP locus i the

genotype ĝi with maximum posterior probability given the read data r. Note that,

unlike the single SNP genotype calling method describe in Section 4.2.2, where

only the reads overlapping the SNP are taken into account, posterior decoding

uses the entire set of reads.
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Posterior Decoding Algorithm

1. For each i = 1, . . . , n, ĝi ← argmaxgi
P (gi|r)

2. Return ĝ = (ĝ1, . . . , ĝn)

Below we explain how the posterior algorithm can be implemented in O(m +

nK3) time. Since P (gi|r) ∝ P (gi, r), the maximization in Step 1 of the posterior

decoding algorithm can be equivalently restated as ĝi ← argmaxgi
P (gi, r). Thus,

we need to compute marginal probabilities P (gi, r) for every i = 1, . . . , n and

gi ∈ {0, 1, 2}.

For each SNP locus i and each pair of founders (fi, f
′
i) we let the forward prob-

ability be F
i
fi,f ′

i
= P (r1, . . . , ri−1, fi, f

′
i), and the backward probability be B

i
fi,f ′

i
=

P (ri+1, . . . , rn|fi, f
′
i), respectively. Using these forward and the backward proba-

bilities, the marginal probability P (gi, r) can be written as

P (gi, r) = P (ri|gi)
K∑

fi=1

K∑

f ′

i=1

F
i
fi,f ′

i
B

i
fi,f ′

i
P (gi|fi, f

′
i)

where P (gi|fi, f
′
i) is given by:

P (gi|fi, f
′
i) =

∑

hi,h′

i∈{0,1}

hi+h′

i=gi

P (hi|fi)P (h′
i|f

′
i)

Thus all probabilities P (gi, r) can be computed in O(nK2) once the forward and

backward probabilities F
i
fi,f ′

i
and B

i
fi,f ′

i
are available.
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The forward probabilities can be computed using the recurrence:

F
1
f1,f ′

1
= P (f1)P (f ′

1) (4.9)

F
i
fi,f ′

i
=

K∑

fi−1=1

K∑

f ′

i−1=1

(
F

i−1
fi−1,f ′

i−1
E

i−1
fi−1,f ′

i−1

P (fi|fi−1)P (f ′
i |f

′
i−1)

)

=
K∑

fi−1=1

P (fi|fi−1)

K∑

f ′

i−1=1

F
i−1
fi−1,f ′

i−1
E

i−1
fi−1,f ′

i−1
P (f ′

i |f
′
i−1) (4.10)

for every fi, f
′
i ∈ {1, . . . , K} and i = 2, . . . , n, where

E
i
fi,f ′

i
=

∑

hi,h′

i∈{0,1}

P (hi|fi)P (h′
i|f

′
i)P (ri|Gi = hi + h′

i) (4.11)

The inner sum in equation (4.10) is independent of fi, and so its repeated

computation can be avoided by replacing (4.10) with:

C
i
fi−1,f ′

i
=

K∑

f ′

i−1=1

F
i−1
fi−1,f ′

i−1
E

i−1
fi−1,f ′

i−1
P (f ′

i |f
′
i−1) (4.12)

F
i
fi,f ′

i
=

K∑

fi−1=1

P (fi|fi−1)C
i
fi−1,f ′

i
(4.13)

A similar optimization can be applied when computing the backward probabil-

ities, resulting in the following recurrence:

B
n
fn,f ′

n
= 1 (4.14)
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D
i
fi+1,f ′

i
=

K∑

f ′

i+1=1

B
i+1
fi+1,f ′

i+1
E

i+1
fi+1,f ′

i+1
P (f ′

i+1|f
′
i) (4.15)

B
i
fi,f ′

i
=

K∑

fi+1=1

P (fi+1|fi)D
i
fi+1,f ′

k
(4.16)

Forward and backward probabilities can thus be computed in O(nK3) by us-

ing recurrences (4.9), (4.12), and (4.13), respectively (4.14), (4.15), and (4.16),

resulting in an overall runtime of O(m + nK3).

4.3.2 Greedy Algorithm

Our second MGP algorithm picks SNP genotypes in left-to-right order using a

greedy strategy. Notice that P (g|r) ∝ P (g)P (r|g) = P (g1)P (r1|g1)
∏n

i=2[P (gi|g1:i−1)P (ri|gi)].

After having picked ĝ1, . . . , ĝi−1 in first i− 1 iterations, in next iteration the algo-

rithm makes its selection so that to maximize the i-th term of the above product:

Greedy Algorithm

1. ĝ1 ← argmaxg1
P (g1)P (r1|g1)

2. For each i = 2, . . . , n,

ĝi ← argmaxgi
P (gi|ĝ1, . . . , ĝi−1)P (ri|gi)

3. Return ĝ = (ĝ1, . . . , ĝn)

An O(m + nK3) time implementation of the algorithm is given as follows

Since for fixed ĝ1, . . . , ĝi−1 P (gi|ĝ1, . . . , ĝi−1) ∝ P (ĝ1, . . . , ĝi−1, gi), the maxi-

mization in Step 2 of the greedy algorithm can equivalently be restated as ĝi ←

argmaxgi
P (ĝ1, . . . , ĝi−1, gi)P (ri|gi). Thus, we need to evaluate P (ĝ1, . . . , ĝi−1, gi)
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for for every i = 2, . . . , n and gi ∈ {0, 1, 2}. These marginal probabilities can

be computed efficiently using a forward algorithm as follows. For every fi, f
′
i ∈

{1, . . . , K}, i ∈ {1, . . . , n}, let F i
fi,f ′

i
(gi) := P (ĝ1, . . . , ĝi−1, gi, fi, f

′
i), which we re-

fer to as the forward probability associated with the partial multilocus genotype

(ĝ1, . . . , ĝi−1, gi) and the pair of founder states fi, f
′
i at locus i. The forward prob-

abilities can be computed using the recurrence:

F1
f1,f ′

1
(g1) = P (f1)P (f ′

1)E
1
f1,f ′

1
(g1) (4.17)

F i
fi,f ′

i
(gi) =

K∑

fi−1=1

K∑

f ′

i−1=1

F i−1
fi−1,f ′

i−1

(ĝi−1)P (fi|fi−1)P (f ′
i |f

′
i−1)E

i
fi,f ′

i
(gi)

= E i
fi,f ′

i
(gi)

K∑

fi−1=1

P (fi|fi−1)
K∑

f ′

i−1=1

F i−1
fi−1,f ′

i−1
(ĝi−1)P (f ′

i |f
′
i−1)(4.18)

where fi, f
′
i ∈ {1, . . . , K}, i ∈ {2, . . . , n}, and

E i
fi,f ′

i
(gi) =

∑

hi,h′

i∈{0,1}

hi+h′

i=gi

P (hi|fi)P (h′
i|f

′
i) (4.19)

The inner sum in (4.18) is independent of fi and gi, and so its repeated com-

putation can be avoided by replacing (4.18) with:

Ci
fi−1,f ′

i
=

K∑

f ′

i−1=1

F i−1
fi−1,f ′

i−1
(ĝi−1)P (f ′

i |f
′
i−1) (4.20)

F i
fi,f ′

i
(gi) = E i

fi,f ′

i
(gi)

K∑

fi−1=1

P (fi|fi−1)C
i
fi−1,f ′

i
(4.21)

By using recurrences (4.17), (4.20), and (4.21), all forward probabilities can be

computed in O(nK3) time. Each multilocus genotype probability P (ĝ1, . . . , ĝi−1, gi)

can then obtained as
∑K

fi=1

∑K
f ′

i=1 F
i
fi,f ′

i
(gi), yielding an overall runtime of O(m +

nK3) for the greedy algorithm (the O(m) term comes from the preprocessing step
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needed to compute conditional probabilities P (ri|gi)).

4.3.3 Markov Approximation Algorithm

Our third algorithm uses dynamic programming to optimize an approximation of

the posterior probability based on assuming Markovian dependence between SNP

genotypes. As noted above, P (g|r) ∝ P (g)P (r|g) = P (g1)P (r1|g1)
∏n

i=2[P (gi|g1:i−1)(ri|gi)].

If Gi is independent of G1, . . . Gi−2 conditional on Gi−1, then P (gi|g1:i−1) = P (gi|gi−1)

and we can view the genotypes as being generated by an inhomogeneous Markov

chain with transition probabilities P (gi|gi−1). Although the above conditional in-

dependence assumption need not hold in our model, since long range dependencies

are possible through the founder haplotypes, it appears to be a reasonable ap-

proximation. Thus, we seek a multilocus genotype ĝ maximizing the posterior

probability computed under the assumtion of Markovian dependence, i.e.,

ĝ = argmaxgP (g1)P (r1|g1)
n∏

i=2

[P (gi|gi−1)(ri|gi)] (4.22)

The optimum in (4.22) can be found efficiently by dynamic programming. Let

M l(gl) denote maxg1,...,gl−1
P (g1)P (r1|g1)

∏l
i=2[P (gi|gi−1)(ri|gi)].

Markov Approximation Algorithm

1. For each g1 = 0, 1, 2, M1(g1) ← P (g1)P (r1|g1)

2. For each i = 2, . . . , n and gi = 0, 1, 2,

M i(gi) ← P (ri|gi)maxgi−1 M i−1(gi−1)P (gi|gi−1)

3. ĝn ← argmaxgn
Mn(gn)

4. For each i = n, . . . , 2,
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ĝi−1 ← argmaxgi−1
M i−1(gi−1)P (ĝi|gi−1)

5. Return ĝ = (ĝ1, . . . , ĝn)

The above dynamic programming algorithm requires O(n) time assuming that

probabilities P (g1) of first SNP locus genotypes and conditional probabilities P (gi|gi−1)

are available. As described below, the latter can be computed in O(nK2) time,

yielding an overall runtime of O(m + nK2).

The Markov approximation algorithm requires computing genotype probabil-

ities P (g1) for the first SNP locus and all conditional probabilities of the form

P (gi|gi−1). The former are given by P (g1) =
∑K

f1=1

∑K
f ′

1=1 P (f1)P (f ′
1)E

1
f1,f ′

1
(g1)

where E1
f1,f ′

1
(g1) is given by (4.19). Since P (gi|gi−1) = P (gi−1, gi)/P (gi−1), it suf-

fices to compute all probabilities of the form P (gi−1, gi) and P (gi). We next show

how to compute these probabilities in O(nK2), resulting in an overall runtime of

O(m + nK2) for the algorithm.

We begin by computing in O(nK2) probabilities P (fi) and P (f ′
i), for every

fi, f
′
i ∈ {1, . . . , K}, i = 2, . . . , n, using the recurrences

P (fi) =
K∑

fi−1=1

P (fi|fi−1)

P (f ′
i) =

K∑

f ′

i−1=1

P (f ′
i |f

′
i−1)

Next, we compute in O(nK) time all probabilities P (hi, h
′
i) for every i = 1, . . . , n
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and hi, h
′
i ∈ {0, 1} using the factorization

P (hi, h
′
i) =

(
K∑

fi=1

P (fi)P (hi|fi)

)


K∑

f ′

i=1

P (f ′
i)P (h′

i|f
′
i)





This allows computing in O(nK) all probabilities P (gi) using

P (gi) =
∑

hi,h′

i

hi+h′

i=gi

P (hi, h
′
i)

To compute P (gi−1, gi) we use a similar method. We start by computing

P (hi−1, hi) for every hi−1, hi ∈ {0, 1} using the factorization

P (hi−1, hi) =
K∑

fi−1=1

P (fi−1)P (hi−1|fi−1)α
i(fi−1, hi)

where

αi(fi−1, hi) =
K∑

fi=1

P (fi|fi−1)P (hi|fi)

This requires O(nK2) time. Probabilities P (h′
i−1, h

′
i) are computed within the

same time bound using similar recurrences. Finally, we compute all probabilities

P (gi−1, gi) in O(n) using

P (gi−1, gi) =
∑

hi−1,h′

i−1

hi−1+h′

i−1=gi−1

∑

hi,h′

i

hi+h′

i=gi

P (hi−1, hi)P (h′
i−1, h

′
i)
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4.4 Results

4.4.1 Datasets

We evaluated the HMM-based posterior decoding algorithm on shotgun sequencing

datasets generated using three different sequencing technologies, as follows:

1. Watson 454: A set of 74.4 million reads downloaded from the NCBI SRA

database (submission number SRA000065). The reads, with an average

length of ∼265 bp, were generated using the Roche 454 FLX platform as

part of James Watson’s personal genome project. This is a subset of the

106.5 million 454 reads analyzed in [23]. Unless noted otherwise, the haplo-

type panel used to train identical HMM models for the maternal and pater-

nal populations was obtained by phasing CEU trio genotypes from HapMap

r23a [15] using the ENT algorithm of [30] and retaining parent haplotypes

from each trio. As in [23], genotype calling accuracy was assessed using the

SNP genotypes determined using duplicate hybridization experiments with

Affymetrix 500k microarrays (only concordant genotypes were retained in

the test set).

2. NA18507 Illumina: A set of 525 million paired-end reads downloaded from

the NCBI SRA database (submission number: SRA000271). These 36bp

reads, which were generated using the Illumina Genome Analyzer from a

HapMap Yoruban individual identified as NA18507, are a subset of the

dataset analyzed by [9]. For the analysis of this dataset the HMM models

for maternal and paternal populations were trained using YRI haplotypes

from HapMap r22, excluding the haplotypes of the YRI trio that contains

NA18507. As gold standard we used the genotypes published as part of

HapMap r22 for individual NA18507.
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Table 4.1: Summary statistics for the three datasets used in evaluation
Dataset Raw Raw Mapped Test Avg. Mapped

Reads Sequence Reads SNPs SNP coverage
Watson 74.2M 19.7Gb 49.8M 443K 5.85×

454 (67%)
NA18507 525M 18.9Gb 397M 2.85M 6.10×
Illumina (78%)
NA18507 764M 21.15Gb 324M 2.85M 3.21×
SOLiD (42%)

3. NA18507 ABI SOLiD: A set of 764 million single ABI SOLiD reads with

length between 20 and 44 bp, downloaded from the NCBI SRA database (sub-

mission number: SRA000272). The reads, also generated from the HapMap

NA18507 individual, are a subset of those analyzed by [52]. HMM models

and gold standard genotypes were determined in the same way as for the

NA18507 Illumina dataset.

4.4.2 Read Mapping

We mapped 454 reads on build 36.3 of the reference human genome using the

NUCMER tool of the MUMmer package [43] with default parameters. We dis-

carded alignments matching less than 90% of the reference or with 10 or more

errors (mismatches or indels). We then discarded surviving reads with multiple

matching positions. We mapped Illumina and SOLiD reads using MAQ version

0.68 [46] with default parameters. We discarded alignments with mapping proba-

bility less than 0.9 or with sum of quality scores of mismatching bases higher than

60. Filtering was performed using the “submap” command of MAQ. Table 1 shows

the number of initial and mapped reads for each dataset, the number of SNPs, and

the average coverage per SNP obtained after mapping.
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4.4.3 Genotype Accuracy

Fig. 4.3 gives accuracies for the three calling algorithms as described in Section

4.3. Since the calling accuracy achieved by the three likelihood functions vary, for

the remaining experiments we use the best (posterior decoding) algorithm.

For each dataset of m mapped reads, we created four more different subsets of

size m/16, m/8, m/4 and m/2 by picking reads at random, to evaluate the effects

of read coverage on genotype calling. We called genotypes taking each subset as

input and using separately the binomial test of [23] (with a threshold of 0.01), the

single SNP posterior probability computed as described in Section 4.2.2, and by

using the HMM posterior decoding algorithm presented in subsection 4.3.1. We

measured the accuracy of a genotype calling method on a particular dataset by

computing the percentage of SNP genotype calls that match the gold standard. As

in previous papers [9, 52, 23], we separately report accuracy for homozygous and

heterozygous SNPs.

Figure 4.4(a) shows that, for both homozygous and heterozygous SNPs, the

HMM-posterior decoding algorithm has higher accuracy than the binomial test

at every considered coverage for the Watson 454 dataset. The improvement in

accuracy is more pronounced for heterozygous SNPs, and as the average coverage

goes down. This is not surprising since, as previously noted by [22, 23, 52], at

low average coverage there is an increasingly high probability of not covering at

least one of the alleles at a heterozygous SNP, and coverage of each allele is an

implicit requirement of the binomial test method.2 In contrast, the HMM-posterior

algorithm does not have such a coverage requirement, and indeed, can accurately

call genotypes even in the absence of any read coverage.

The above behavior is confirmed by the experiments on reads generated from

2The binomial test used by [22,23] actually requires for each allele to be covered at least twice;
in this chapter we used the more relaxed requirement of covering each allele at least once.
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Figure 4.3: Comparison of genotype sequencing methods: Single SNP vs. Pos-
terior Decoding vs. Greedy vs. Markov Approximation; Heterozygous (a), and
Homozygous (b).
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the NA18507 HapMap individual (Figure 4.4(b)). Genotype calling accuracy

achieved on Illumina reads at various average coverages is similar to that observed

for the Watson 454 reads. However, the accuracy achieved on SOLiD reads is

slightly lower, even when normalized by average coverage. This is probably hap-

pens due at least part current mapping tools such as MAQ are better suited for

reads in nucleotide space rather than in color space.

Since both methods based on posterior probabilities include as output the pos-

terior probability of each genotype for each SNP, a minimum threshold can be

applied to this probability leaving uncalled SNPs with low posterior probability.

Figure 4.5(a) shows how the posterior decoding algorithm performed better than

posterior based on allele frequencies for different percentages of uncalled SNPs ob-

tained by varying the minimum threshold. This can be seen also in the results for

heterozygous SNPs shown in Figure 4.5(b). The full set of Watson 454 reads was

used in these experiments. Although no SNPs are left uncalled by the binomial

test, we included the accuracy of this test on the plot for the Watson reads set as

a single data point.

We performed some additional experiments to test how the posterior decoding

algorithm behaves under different circumstances. Figure 4.6(a) shows the percent-

age of concordance for different local recombination rates. The percentage of SNPs

in each category is included below in dashed lines. The plot shows how the accu-

racy increases as the recombination rate decreases, which is expected because in

regions with low recombination rates the LD information is more helpful. Figure

4.6(b) shows the percentage of concordance for different SNP coverages. The ac-

curacy increases with the SNP coverage until certain limit after which the results

become unpredictable. This could be the effect of SNPs on repetitive regions or

sequencing artifacts that distort the allele counts. Finally, Figure 4.6(c) shows

the percentage of concordance for different panel sizes. For this experiment we
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(a) Watson 454 reads

(b) NA18507 Illumina and SOLiD reads

Figure 4.4: Comparison between binomial and Multilocus genotype calling on per-
centage of concordance between predicted and gold standard genotype for different
average coverages on the Watson dataset (a) and on the NA18507 datasets (b).
Bold lines correspond to homozygous SNPs while dotted lines correspond to het-
erozygous SNPs
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(a) Homozygous

(b) Heterozygous

Figure 4.5: Comparison between single posterior and multilocus genotype calling
on percentage of concordance between predicted and gold standard genotype for
different probability thresholds expressed as uncalled genotype rates on the Watson
dataset. Results of binomial genotype calling are shown as a single datapoint
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(a) Recombination (b) SNP coverage

(c) Panel Size

Figure 4.6: Effects of the recombination rate (a), SNP coverage (b) and Panel size
(c) on concordance between predicted and gold standard genotype on the Watson
dataset.

considered 242 different haplotypes available in Hapmap3 for the CEU population

and, as in the experiments with variable coverage, we produced subsets of n/16,

n/8, n/4 and n/2 haplotypes. The plot shows that not significant improvement is

achieved by increasing the reference panel size and so just a few unrelated indi-

viduals of the population provide the LD information needed to improve the SNP

calling accuracy.
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4.5 Conclusions and Future Work

In this chapter we introduced a statistical model for multi-locus genotyping that

integrates shotgun sequencing data with LD information extracted from a reference

panel. Although finding the multi-locus genotype with maximum posterior proba-

bility under the integrated model is NP-Hard, experimental results suggest that a

simple posterior decoding algorithm produces highly accurate genotype calls even

from low-coverage sequencing data. Compared to current LD-oblivious genotype

calling methods, our method allows researchers to achieve a desired accuracy target

with reduced sequencing costs. For example, genotype calling accuracy achieved

at 5-6× average coverage by a previously proposed binomial test is matched by the

HMM-based posterior decoding algorithm using less than 1/4 of the reads. For a

mapped coverage depth of 5-6× the HMM-based posterior decoding algorithm al-

ready achieves an accuracy comparable to that of microarray platforms, potentially

over a much larger set of variants. Indeed, the number of interrogated variants is

limited only by the available reference panels, and this limitation is expected to

become less significant as ongoing large-scale sequencing efforts such as the 1000

Genomes project generate ever denser sets of genomic variants for an increasing

number of human populations.

In ongoing work we are exploring efficient algorithms for LD-based haplotype

reconstruction from shotgun sequencing reads. In particular, we seek to extend

our multi-locus model in order to capture co-occurrence of SNP alleles in reads or

mate-pairs; as read lengths continue to grow such co-occurrence information will

become increasingly valuable.

Also, we are currently expanding our work to take population-level data into

account as opposed to a single individual. We consider the problem of inferring

genotypes from shotgun reads collected in a population. A potential benefit for
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this genotyping approach is great cost reduction in accurately calling genotypes at

very dense SNP sites.

In population-based genotype calling, we use the same HF-HMM structure as

described in section 4.2.3. However, the training of this HMM via a reference panel

of haplotypes is not done. Instead, we propose using the popular EM algorithm

to train our HMM model based on the population-level provided. We choose an

initial configuration and iteratively improve the likelihood value. To avoid getting

stuck in a local maximum, we run multiple different initial configurations. An

outline of our approach follows.

The input contains shotgun reads from a number of diploid individuals and we

know which read comes from which individuals. We assume the reference genome

is known, and reads mapping can be done with relatively small chance of error.

We also assume that either through preprocessing or from existing knowledge, the

SNP sites have been properly identified.

We are given a set of shotgun reads R = (R1, R2, . . . , Rn) that are from n diploid

individuals from a population, such that reads Ri contains a number of reads for

individual i. We assume the reads are short (e.g. from the Solexa sequencer), and

thus one read only cover at most one SNP site. For simplicity, we do not consider

reads with paired ends. That is, each read covers a contiguous (and short) genomic

region. We further denote the set of reads in Ri that covers SNP site j as Ri,j.

Note that there may be multiple reads in Ri,j. The goal is to infer the genotypes

G = (g1, g2, . . . , gn) from the given shotgun reads.

Our model and the method based on it is closely related to the previous work

in section 4.2.3. Note that the difference from the previous work is that we do not

have given genotypes, but just low coverage shotgun reads.

When the coverage is low, there is great uncertainty on the genotypes by the

observed shotgun reads at a given site. We use the HMM as shown in figure
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4.1, to represent the generation of a haplotype from a set of K founders. We

currently still assume K is fixed. A founder Fi has m state, where each state Fi,j

with an emission probability θi,j to emit allele 1, and 1 − θi,j to emit allele 0. To

model recombination, a transition from Fi1,j−1 to Fi2,j is allowed with probability

τi1,i2,j.Then a haplotype h in the population is modeled as the sequence of emitted

symbols from M . To model genotypes, we can simply pair up two identical M , one

for paternal haplotypes and one for maternal haplotypes.We use the popular EM

algorithm to train our HMM. We choose an initial configuration and iteratively

improve the likelihood value. To avoid getting stuck in a local maximum, we run

EM multiple times from different initial configurations.

Initial Configuration

. We start EM by initializing the transition probability τ uniformly (i.e., τi1,i2,j =

1/K for all i1, i2, j). We then initialize emission probability of state Fi,j based on

the expected allele frequency at site sj as follows. Suppose there are nj,0 reads with

allele 0 and nj,1 reads with allele 1. We assign θi,j to (nj,1 + 1)/(nj,0 + nj,1 + 2).

Then we perturb the parameters by multiplying each parameter value by eX . Here

X is randomly drawn from [−η, η]. This way, each EM run starts with a different

parameter configuration.

EM Algorithm

We want to find parameters (θ, τ) that maximize P (R|θ, τ). The EM algorithm

starts with initial values (θ0, τ 0) and iteratively improves the parameters by setting

θt+1, τ t+1 = argmaxθ,τ

∑

Z

P (Z|R, θt, τ t)logP (R,Z|θ, τ)

Choosing Z is often important for the efficiency of the EM algorithm. Here
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we choose Z = (G, T,H) to make the complete likelihood P (R,Z|θ, τ) easy to

compute. Here, G = (g1, . . . , gn) is the set of multi-locus genotypes for the sampled

individuals. T is a n×m×2 matrix, where T [i, j, k] indicates for diploid individual

i, its paternal haplotype (if k = 0) or maternal haplotype (if k = 1) takes Fi,j as

its founder state. In other words, T specifies 2n paths across M , one for each of

the 2n haplotypes. H is a n × m × 2 binary matrix, which indicates the emitted

2n haplotypes.
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Chapter 5

Conclusions

The need for highly accurate and efficient methods for genotype data analysis is expected

to increase in the future as genotype association studies grow in size. Ongoing efforts

such as the 1000 Genomes project generate ever denser sets of genomic variants for an in-

creasing number of human populations. Additionally, rapid advances in SNP genotyping

technologies are expected to continue, and will be able to produce even larger amounts

of population genotype data, accelerating the discovery of genes associated with com-

mon human diseases. For example, massively parallel sequencers like Roche/454 FLX

Titanium, Illumina Genome Analyzer II, ABI SOLiD 3 and Helicos HeliScope are able

to provide millions of short reads in a single run. In this thesis we attempted to address

this need by developing scalable algorithms for several analysis problems.

Genotype Error Detection Using HMMs of Haplotype Diversity

We have proposed high-accuracy methods for detection of errors in trio and unrelated

genotype data based on Hidden Markov Models of haplotype diversity. The need for

such methods is expected to increase in the future as genotype analysis methods shift

towards the use of haplotypes. The runtime of our methods scales linearly with the

number of trios and SNP loci, making them appropriate for handling the datasets gen-

erated by current large-scale association studies. Our simulation results further indicate
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the significant increase in detection accuracy when using genotype data for families of

related genotypes such as trios. Parent-child relationships are well-known to help disam-

biguating a significant amount of phase uncertainty by application of simple Mendelian

transmission rules.

We also introduced GEDI, a software package that implements efficient algorithms for

performing common tasks in the analysis of population genotype data, including error

detection and correction, imputation of both randomly missing and untyped genotypes,

and genotype phasing. By varying the user-selected parameters, we were able to display

parameter settings for GEDI that yield an excellent tradeoff between imputation accu-

racy and runtime. We have also shown that accuracy improves significantly when using

reference panels larger than the commonly used Hapmap panels, particularly in conjunc-

tion with the increase in the number of HMM founders. Accuracy further benefits from

exploiting available pedigree information and performing genotype error correction and

missing data recovery prior to imputation.

Imputation-based local ancestry inference in admixed populations

We proposed a novel algorithm for imputation-based local ancestry inference in Chapter

3. Experiments on simulated data show that our method exploits ancestral haplotype

information more effectively than previous methods, yielding consistently accurate es-

timates of local ancestry for a variety of admixed populations. Indeed, our method is

competitive with best existing methods in the case of admixtures of two distant ancestral

populations, and is significantly more accurate than previous methods for admixtures of

closely related populations such as the JPT and CHB populations from HapMap. We

also show that accurate local ancestry estimates lead to improved accuracy of untyped

SNP genotype imputation for admixed individuals. In ongoing work we are exploring

methods that iteratively alternate between rounds of imputation-based ancestry infer-

ence and ancestry-based imputation for further improvements in accuracy. We are also

conducting experiments to characterize the accuracy of our imputation-based local ances-

try inference methods in the case of admixtures of more than two ancestral populations.
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Single Individual Genotyping from Low-Coverage Sequencing Data

We introduced a statistical model for multi-locus genotyping that integrates shotgun

sequencing data with LD information extracted from a reference panel. Although find-

ing the multi-locus genotype with maximum posterior probability under the integrated

model is NP-Hard, experimental results suggest that a simple posterior decoding algo-

rithm produces highly accurate genotype calls even from low-coverage sequencing data.

Compared to current LD-oblivious genotype calling methods, our method allows re-

searchers to achieve a desired accuracy target with reduced sequencing costs. For exam-

ple, genotype calling accuracy achieved at 5-6 average coverage by a previously proposed

binomial test is matched by the HMM-based posterior decoding algorithm using less

than 1/4 of the reads. For a mapped coverage depth of 5-6 the HMM-based posterior

decoding algorithm already achieves an accuracy comparable to that of microarray plat-

forms, potentially over a much larger set of variants. Indeed, the number of interrogated

variants is limited only by the available reference panels, and this limitation is expected

to become less significant as ongoing large-scale sequencing efforts such as the 1000

Genomes project generate ever denser sets of genomic variants for an increasing number

of human populations. Also, we are currently expanding on the work which will take

population-level data into account as opposed to a single individual. We consider the

problem of inferring genotypes from shotgun reads collected in a population. The main

benefit for our LD-based genotyping approach is the significant reduction in sequencing

costs, which allows researchers to perform more and larger population sequencing studies

within the same budget.
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