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Abstract

Background: The assignment of DNA samples to coarse population groups can be a useful but difficult task. One
such example is the inference of coarse ethnic groupings for forensic applications. Ethnicity plays an important
role in forensic investigation and can be inferred with the help of genetic markers. Being maternally inherited, of
high copy number, and robust persistence in degraded samples, mitochondrial DNA may be useful for inferring
coarse ethnicity. In this study, we compare the performance of methods for inferring ethnicity from the sequence
of the hypervariable region of the mitochondrial genome.

Results: We present the results of comprehensive experiments conducted on datasets extracted from the mtDNA
population database, showing that ethnicity inference based on support vector machines (SVM) achieves an
overall accuracy of 80-90%, consistently outperforming nearest neighbor and discriminant analysis methods pre-
viously proposed in the literature. We also evaluate methods of handling missing data and characterize the most
informative segments of the hypervariable region of the mitochondrial genome.

Conclusions: Support vector machines can be used to infer coarse ethnicity from a small region of mitochondrial
DNA sequence with surprisingly high accuracy. In the presence of missing data, utilizing only the regions common
to the training sequences and a test sequence proves to be the best strategy. Given these results, SVM algorithms
are likely to also be useful in other DNA sequence classification applications.

Introduction

Human ethnic identity is a controversial and com-
plex topic. Each human individual is a complex mo-
saic of genetic material originating from a multitude
of ancestral sources. However, despite this complex-
ity, the division of humans into coarse ethnic group-
ings can greatly assist forensic investigators and is
also increasingly being used as a predictor of drug
effectiveness in the emerging fields of personalized
medicine and race-based therapeutics. Self-reported

and investigator-assigned ethnicity typically rely on
the subjective interpretation of a complex combina-
tion of both genetic and non-genetic information in-
cluding behavior, cultural and societal norms, skin
color, and other influences. For this reason, attempts
to accurately infer probable coarse ethnic identity
can be difficult in contexts with limited access to
most informative markers, such as skin and hair
samples. In these situations genetic information can
be extremely valuable to forensic pursuits by sig-
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nificantly enhancing the accuracy of coarse ethnic
classification in these contexts.

Several approaches to genetic-based inference of
ethnicity have been proposed in the literature. In
particular, the use of panels of autosomal markers
have been shown to provide excellent accuracy for
assigning samples to specific clades [1, 2]. Unfortu-
nately, these approaches rely on typing large num-
bers of autosomal loci that may not survive long
periods of degradation. Mitochondrial DNA, how-
ever, due to its high-copy number, is recoverable
even from minute or highly degraded samples. Fur-
thermore, due to its high polymorphism and ma-
ternal inheritance, mitochondrial DNA has proved
to be an excellent marker for the inference of eth-
nic affiliation. Indeed, several studies including [3–5]
have previously shown the feasibility of inferring the
probable ethnicity and/or geographic origin from the
sequence of the hypervariable region (HVR) of the
mitochondrial genome. These studies clearly demon-
strate that, although the mitochondrial sequence
alone does not by itself determine one’s ethnicity,
the two are nevertheless strongly associated.

In this paper we test the utility and robustness
of several methods for the classification of HVR mi-
tochondrial sequences into coarse ethnic groups as
previously assigned by investigators from the FBI,
self-assigned by study subjects, or by anthropolo-
gists. The goal was to identify a method that could
most accurately reproduce these classifications using
only a small region of the mitochondrial genome. As
Egeland et al. [5], we consider a supervised learn-
ing approach to ethnicity inference. In this set-
ting, mtDNA sequences with annotated ethnicity are
used to “train” a classification function that is then
used to assign ethnicities to new mtDNA sequences.
Adopting this approach allows us to draw on the
large body of knowledge developed within the ma-
chine learning community (see, e.g., [6]). The main
goal of the paper is to assess the performance of four
well-known classification algorithms (support vec-
tor machines, linear discriminant analysis, quadratic
discriminant analysis, and nearest neighbor) on a va-
riety of benchmark datasets including realistic levels
of missing data and training data bias.

Comprehensive experiments conducted on
mtDNA profiles extracted from the mtDNA pop-
ulation database [7] show that the support vector
machine algorithm is the most accurate of com-
pared methods, outperforming both discriminant
analysis methods previously employed in [3, 5] as

well as a nearest neighbor algorithm similar to
that used for haplogroup inference in [8]. In both
cross-validation and experiments conducted on in-
dependently collected training and test data, SVM
achieves an overall accuracy of 80-90%, matching
the accuracy of human experts making ethnicity as-
signments based on physical measurements of the
skull and large bones [9, 10], and coming close to
the accuracy achieved by using approximately sixty
autosomal loci [11]. These results demonstrate that
SVM effectively classifies sequences from a small seg-
ment of the mitochondrial genome and that these
classifications can be used to predict the probable
assignment of coarse ethnicity with reasonable accu-
racy. The superiority of SVM in this classification
problem suggests that it is also likely to be superior
in similar sequence classification applications.

Methods

In this section, we introduce the four methods of
ethnicity assignment investigated in this study and
the datasets used to evaluate their empirical per-
formance. We begin by briefly introducing prin-
cipal component analysis (PCA), a dimensional-
ity reduction technique used as a preprocessing
step for three of the four methods. We then de-
scribe the four classification algorithms – support
vector machines (SVM), linear discriminant analy-
sis (LDA), quadratic discriminant analysis (QDA)
and 1-nearest neighbor (1NN). Finally, we describe
the datasets used for evaluation, the conversion of
mtDNA sequence profiles into feature vectors, and
methods of encoding sequences with missing regions.

Principal Component Analysis

PCA (see [6] for an introduction) is a factor analy-
sis technique of dimensionality reduction. Given m
samples over n variables, the m samples can be rep-
resented as a m × n matrix X. We further assume
that the sample mean of each variable is 0, that is,∑m

i=1 Xij = 0 for every j. Projecting the m sam-
ples onto n new axes yields another m × n matrix
Y = XP, where P is a n × n orthogonal matrix
whose columns are unit vectors defining the n new
axes. PCA finds a P such that the sample covariance
matrix of the n new variables is a diagonal matrix,
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that is,

ΣY =
1

m
YTY =

1

m
(XP)

T
XP = PTΣXP = D,

(1)
where D is a diagonal matrix, and ΣX and ΣY are
the sample covariance matrices of the original and
new variables, respectively. The orthogonal matrix
P can be easily obtained by eigenvalue decomposi-
tion of ΣX.

PCA is a dimensionality reduction technique in
that only k of the n new variables are kept for fur-
ther analysis. A standard approach is to pick the k
variables with the largest sample variances. There-
fore, all we need to do is to pick the value of k.
Fortunately, when PCA is used in conjunction with
supervised learning algorithms like classification al-
gorithms, the best value of k can be selected by per-
forming cross-validation. In this study, k was se-
lected by performing 5-fold cross-validation (CV) on
the training data for each combination of dataset
and classification algorithm.

Classification Algorithms

Support Vector Machines. The SVM [12] is
a binary classification algorithm. In the case of
perfectly separable classes, SVM seeks a separating
hyperplane with maximum margin, while for non-
separable classes the goal is to maximize a linear
combination of the separation margin and the total
amount by which SVM predictions fall on the wrong
side of their margin. Given n-element feature vec-
tors xi, i = 1, . . . ,m, and an m-element label vector
y such that yi ∈ {1,−1}, this amounts to solving
the following optimization problem:

min
β,β0,ξ

1

2
βTβ + C

m∑

i=1

ξi subject to

ξi ≥ 0, yi(β
Tφ(xi) + βo) ≥ 1− ξi i = 1, . . . ,m

(2)

where C > 0 is a penalty constant, ξi is the slack
variable allowing misclassification of sample i, φ(·) is
a function that maps xi to a high-dimensional space,
often called the feature space, and β, β0 define the
optimum separating hyperplane βTz+β0 = 0 in fea-
ture space. Once the optimal separating hyperplane
is found, a test sample t is classified according to the
sign of βTφ(t) + β0.

In practice, the solution to the convex optimiza-
tion problem (2) is obtained by solving the so-called

Wolfe dual. Instead of explicitly mapping samples
to the feature space, solving the dual requires only
a kernel function K(x1,x2) = φ(x1)

Tφ(x2), which
implicitly maps samples to the feature space and si-
multaneously computes the inner product [12]. In
this study, we used the software package LIBSVM
[13] to conduct all SVM experiments. LIBSVM
uses the “one-against-one” approach [14] when more
than two classes are present. For all SVM experi-
ments we used the radial basis kernel K(x1,x2) =
exp(−γ|x1 − x2|

2), where γ is a parameter. The
penalty constant C and the parameter γ were tuned
using 5-fold cross-validation on the training data.

Linear and Quadratic Discriminant Analysis.
LDA and QDA assume that for each class the feature
vectors follow a multivariate normal distribution [6].
That is, the conditional probability of a sample x

given that it belongs to class g is given by

fg(x) = Pr(X = x|G = g)

=
1

|2πΣg|1/2
e−

1

2
(x−µg)

T
Σ

−1

g
(x−µg)

(3)

By applying Bayes’ theorem, we obtain the posterior
distribution as follows.

Pr(G = g|X = x) =
fg(x)πg∑K
i=1 fi(x)πi

(4)

where πg is the prior probability of class g. The
parameters of the multivariate normal distribution
are estimated using the training dataset. LDA as-
sumes that the classes have a common covariance
matrix (i.e., Σg = Σ for every g) therefore fewer
parameters need to be estimated for LDA compared
to QDA. For both methods, a given test sample t

is assigned to the class with the highest posterior
probability

argmaxg Pr(G = g|X = t).

In this study, we used MCLUST Version 3 [15] to
conduct all LDA and QDA experiments.

1-Nearest Neighbor (1NN). 1NN is a simple non-
parametric classification algorithm, which does not
have a training process. Given a set of reference sam-
ples and a test sample, 1NN searches the reference
dataset for the sample nearest to the test sample
and assigns the test sample to the class to which the
nearest sample belongs. In case there are multiple
nearest reference samples, voting is used to assign
the test sample to the class containing the largest
number of nearest reference samples. As discussed
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below, mtDNA profiles are encoded into binary fea-
ture vectors. We used the number of mismatch posi-
tions (a.k.a. the Hamming distance) to measure the
distance between samples, and did not apply PCA
to the data before applying 1-NN.

Datasets

We used the forensic and published tables in the
mtDNA population database [7] to empirically eval-
uate the performance of the four algorithms for eth-
nicity assignment. The forensic table contains 4,839
samples collected and typed by the Federal Bureau
of Investigation (FBI), while the published table con-
tains 6,106 samples collected from the literature.

In this study, we focus only on the samples an-
notated as belonging to one of the four coarse ethnic
groups – Caucasian, African, Asian and Hispanic.
Filtering the forensic and published tables by this
criteria results in 4,426 and 3,976 samples, respec-
tively. In the rest of the paper we will refer to the two
filtered tables simply as the forensic and published

datasets. The forensic dataset contains 1,674 Cau-
casian (37.8%), 1,305 African (29.5%), 761 Asian
(17.2%) and 686 Hispanic (15.5%) samples, while
the published dataset is comprised of 2,807 Cau-
casian (70.6%), 254 African (6.4%) and 915 Asian
(23%) samples. Additional file 1 shows the percent-
age of samples sequenced at each position for the
forensic and published datasets. We note that the
forensic dataset has a significantly better coverage
than the published dataset. All the samples in the
forensic dataset cover portions of both hypervariable
region 1 (HVR1) and hypervariable region 2 (HVR2)
of mtDNA, whereas over 60% of samples in the pub-
lished dataset do not cover HVR2 and around 5% of
them do not cover HVR1.

To better characterize and compare the forensic
and published datasets, we assign each sample in the
two datasets to one of the 23 basal haplogroups de-
fined in [8]. Haplogroup assignment was performed
using the unweighted 1NN algorithm described in
[8] along with the Genographic Project open re-
source mitochondrial DNA database (the consented
database) of 21,164 samples [16]. Behar et al. [8] re-
ported a leave-one-out cross-validation accuracy of
96.72% on a reference database of 16,609 samples.
We observed a comparable accuracy of 96.51% on
the consented database. Therefore, we expect the
inferred haplogroups of samples in the forensic and
published datasets to have a similarly high accuracy.

The ethnicity composition of each haplogroup and
the inferred haplogroup composition of each broad
ethnic group represented in the forensic and pub-
lished datasets are given in Additional file 2. Addi-
tional file 2(A) supports the well known fact that
many haplogroups are strongly associated with a
specific ancestry. For example, most samples with
inferred haplogroup H, J, K, R0*, T, U*, and V are
Caucasian, most samples with inferred haplogroup
B, D, M, N, and R9 are Asian, and most samples
with inferred haplogroup L are African. However,
the association is not perfect, and significant per-
centages of these haplogroups are present in other
ethnic groups. For some haplogroups, such as B,
N1*, W, and X the association with ethnicity is
particularly weak, with two or three ethnicities be-
ing represented in almost equal proportions. Addi-
tional file 2 further shows that the forensic and pub-
lished datasets have significant differences in their
ethnic and haplogroup compositions. Most strik-
ingly, Caucasians are significantly over-represented
and Hispanics are completely missing from the pub-
lished dataset. Such differences are most likely due
to the procedure used to assemble the published
dataset, and reflects preferential use of samples from
some ethnic groups in published studies.

For some of the experiments described in the Re-
sults section, we used specific subsets of the foren-
sic and published datasets. The full-length foren-

sic dataset consists of the 1,904 samples typed for
the most extensive ranges of HVR1 (16024–16569)
and HVR2 (1–576). This dataset is comprised of
222 Caucasian (11.7%), 820 African (43.1%), 415
Asian (21.8%) and 447 Hispanic (23.5%) samples.
The trimmed forensic dataset was produced by trim-
ming the samples in the forensic dataset such that
only the region of 16024–16365 in HVR1 is kept. It
has the same ethnicity composition as the forensic
dataset since all samples in the forensic dataset are
typed in this range. The trimmed published dataset

was created in a similar fashion, except that only
2,540 samples covering the 16024-16365 region were
kept. This subset contains 1,956 Caucasian (77%),
134 African (5.3%) and 450 Asian (17.7%) samples.

Encoding mtDNA Profiles into Feature Vectors

Each sample in the forensic and published datasets
is given as a list of polymorphic changes when com-
pared to the revised Cambridge Reference Sequence
(rCRS). For example, 16298C denotes a substitution
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at position 16298 and 16124.1C denotes the insertion
of a C after position 16124. For a fixed dataset,
we represent each sample as an n-element binary
vector, where n is the number of unique polymor-
phisms present in the dataset. An element in the
binary vector of a sample is set to 1 if the sample
harbors the corresponding polymorphism, and to 0
otherwise. This encoding method works well when
all the samples in the dataset are sequenced over
the same or very similar ranges. An example is the
forensic dataset, in which all samples cover range
16024-16365 of HVR1 and range 73-340 of HVR2.
While most of our experiments were obtained us-
ing the above binary encoding, we also discuss and
evaluate in the Results section several alternative
schemes for encoding mtDNA profiles with signifi-
cant amounts of missing data.

Results
Comparison of the Four Classification Algorithms

For an initial evaluation of the four classification al-
gorithms, we performed cross-validation (CV) anal-
ysis using the trimmed forensic dataset. Cross-
validation is one of the simplest and most widely
used methods for estimating the accuracy of clas-
sification algorithms. Briefly, available samples are
randomly split into K roughly equal parts, and then
each part is used to evaluate classification accuracy
of a model trained on the remaining K− 1 parts. In
our experiments we used K = 5, i.e., 5-fold cross-
validation.

In addition to ethnicity-wise average accuracies,
we also use micro- and macro-accuracy as measures
of the overall performance of the classification algo-
rithms. These metrics, similar to the micro-average
and macro-average of [17], are defined as follows:

Micro-Accuracy =

∑K
i=1 Ci∑K
i=1 Ni

; (5)

Macro-Accuracy =
1

K

K∑

i=1

Ci

Ni
, (6)

where K is the number of classes in the dataset, Ni

is the number of samples in class i and Ci is the
number of samples correctly labeled by the classifier
in class i. Note that micro- and macro-accuracy be-
come the same when classes sizes are balanced, i.e.,
N1 = N2 = · · · = NK . For imbalanced class sizes,

micro-accuracy tends to over-emphasize the perfor-
mance on the largest classes compared to macro-
accuracy, which gives equal weight to the accuracy
achieved for each class.

Table 1 summarizes the 5-fold CV accuracy met-
rics for PCA-QDA, PCA-LDA, 1NN, and PCA-SVM
on the trimmed forensic dataset. PCA-SVM con-
sistently outperforms the other three classification
algorithms with respect to all accuracy measures.
Since the performance of different classification al-
gorithms may depend significantly on the typed
mtDNA region, we conducted three additional ex-
periments to assess its effect on the classification
accuracy of the four compared algorithms. In all
three of them we started from the full-length foren-
sics dataset. In the first experiment, we iteratively
deleted 10% of the polymorphisms, starting from the
HVR2 end non-adjacent to HVR1. Similarly, in the
second experiment, we iteratively deleted 10% of the
polymorphisms starting from the HVR1 end non-
adjacent to HVR2. Finally, in the third experiment,
we used a sliding window approach to generate 20
different datasets, each of which retained from the
full-length forensics profiles 10% of the nucleotides.

Figure 1 gives the 5-fold CV micro-accuracy
achieved by PCA-QDA, PCA-LDA, 1NN, and PCA-
SVM in these three experiments. Again, PCA-SVM
consistently outperforms the other three classifica-
tion algorithms investigated in this study. PCA-
QDA is typically outperformed by the other meth-
ods, except that it outperforms 1NN when the en-
tire HVR is used. 1NN and PCA-LDA have compa-
rable performance, but PCA-LDA performs slightly
better than 1NN for near-complete mtDNA profiles.
Conversely, 1NN performs better than PCA-LDA for
some short typed regions. Indeed, for short windows
consisting of only 10% of the nucleotides in the entire
dataset, the performance of 1NN is often as good as
that of PCA-SVM, see Figure 1(C).

Figure 1(C) further shows that, regardless of the
classification method used, certain regions of HVR1
and HVR2 are more informative than others for the
purpose of ethnicity inference. Additional file 3 gives
the 5-fold CV micro-accuracy for 6 selected win-
dows of 165-271bp spanning the most informative
regions of HVR1 and HVR2. Interestingly, when
using about 200bp from the information-rich region
of HVR1, PCA-SVM yields a microaccuracy of over
80%, very close to the microaccuracy achieved on
this set when using the entire HVR region, i.e.,
HVR1+HVR2.
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Validating SVM on Independent Test Data

Cross-validation may overestimate the practical
performance of classifiers since it ignores poten-
tially significant biases in the assembly of reference
databases. To obtain a more reliable estimate for
the practical accuracy of PCA-SVM, we evaluated
its performance using the trimmed forensic dataset
as training data and the trimmed published dataset
as test data. Table 2 gives the so called confusion
table for this experiment. There is no “Hispanic”
row since there are no samples annotated as His-
panic in the trimmed published dataset used for test-
ing. Since the Hispanic samples are present in the
trimmed forensic dataset used for training, test sam-
ples may be mis-classified as Hispanic, and thus we
do include a “Hispanic” column. PCA-SVM micro-
accuracy, as well as ethnicity-wise accuracies for the
Caucasian and African ethnic groups are similar to
the cross-validation results in Table 1. However,
ethnicity-wise accuracy for the Asian group is almost
17% lower than the accuracy achieved in the cross-
validation experiment. This is largely explained by
large mismatches between Asian profiles used for
training and testing in this experiment. The 761
Asian profiles in the Forensic dataset used for train-
ing come from only 5 countries: China (356 pro-
files), Japan (163), Korea (182), Pakistan (8), and
Thailand (52), with a strong bias towards East Asia.
Not surprisingly, a large percentage of misclassifica-
tions errors (90 out of the total of 145) are for pro-
files collected from two countries (Kazakhstan and
Kyrgyzstan) that are not represented in the training
dataset. Profiles with unknown country of origin
are also poorly classified (10 errors out of 22 sam-
ples) suggesting that they may come from regions
that are poorly represented in the forensics dataset
too.

Comparison of Methods for Handling Missing

Data

In practice, forensic mtDNA profiles are determined
by Sanger sequencing of PCR amplicons that span
hypervariable regions HVR1 and HVR2. Different
laboratories use different PCR primer pairs, some
of which amplify only parts of HVR1 and HVR2.
Quality trimming of Sanger chromatograms further
results in confident polymorphism calls for a (sample
dependent) subinterval of each amplicon. The end
result are mtDNA profiles with a variable degree of
sequence coverage, i.e., with unknown polymorphism

status for some parts of HVR1 and/or HVR2. In the
experiments reported in previous sections we relied
on training and test sequences covering essentially
the same range, so missing data was not an issue. In
this section we reassess the accuracy of PCA-SVM
under more realistic levels of missing data. Specifi-
cally, we report results of experiments performed us-
ing as training and test data the (untrimmed) foren-
sic and published datasets, respectively; as shown
in Additional file 1, the published dataset has in-
deed highly non-uniform coverage of different HVR
regions.

We investigated three different approaches of
dealing with missing data:

• rCRS. In this approach we simply assume
that missing regions are identical to the rCRS.
While easy to implement, this scheme is likely
to introduce a strong bias towards the Cau-
casian ethnicity since the rCRS sequence is of
a Caucasian.

• Probability. In this approach we augment
the feature encoding scheme described in the
Methods section by adding a set of l additional
variables, where l is the total length of HVR1
and HVR2 in bases. For typed bases, these
variables hold the mutation status of the base
– 1 if there is a polymorphism at this base and
0 otherwise. For bases that are not covered by
sequencing, the corresponding variable is set to
a fractional value between 0 and 1 representing
the polymorphism rate observed at this posi-
tion in the training data. While less biased
than the rCRS scheme, this scheme may still
introduce unwanted biases in case some eth-
nicities are over- or under-represented in the
training data.

• Common region. In this approach we com-
pute, for each test profile, the intersection be-
tween the region sequenced in the test profile
and each training sample. Only these com-
mon regions of the training sequences are then
used to infer the ethnicity of the test sample.
The common region approach is computation-
ally more demanding than the other two, since
it may require running PCA and training a
new SVM for each test sample.

Additional file 4 summarizes the results obtained
by using the three approaches to handling miss-
ing data in experiments in which the forensic and
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published datasets are used for training and evalua-
tion classification accuracy, respectively. Consistent
to its bias towards Caucasians, the rCRS approach
has almost 97% accuracy for this ethnicity but very
much lower accuracy for Asian and African ethnici-
ties (about 31% and 59%, respectively), resulting in
relatively poor overall micro- and macro-accuracies.
The probability approach is still biased towards the
Caucasian ethnicity, although less strongly than the
rCRS approach. The best overall performance is
achieved by the common region approach, which has
micro- and macro-accuracies (as well as ethnicity-
wise accuracies) very close to those observed in the
experiments performed on the trimmed forensic and
published datasets (see Table 2). This suggests that
the common region approach is a good method of
dealing with missing data, at least in conjunction
with the PCA-SVM method for ethnicity inference.

A potential concern with using the common in-
terval approach is that different amounts of training
data are used in classifying different test samples.
This can make it difficult to compare posterior prob-
abilities returned by classification methods such as
SVM, and may partly explain why, as shown in Ad-
ditional file 5, SVM posterior probabilities typically
under-estimate the observed accuracy.

Discussion

Correspondence between Investigator As-
signed Ethnicity and Mitochondrial Hap-
logroup. Human mitochondrial haplogroups have
arisen from mutation and migration during human
evolution. As such, these haplogroups have been ex-
tremely powerful tools in understanding human evo-
lution and particularly in understanding patterns of
geographical migration of human populations. Prior
to modern travel, mitochondrial haplogroups were
largely restricted to the geographic regions of their
origin and subsequent migration. For this reason,
they are often superimposed on maps of the globe
as representative of the human populations derived
from those regions of the planet. Similarly, but more
crudely, the coarsest ethnic groupings of humans are
also reflective of geographic ancestry. Africans, Cau-
casians, and Asians all have clear geographic asso-
ciations, while Hispanic is often regarded as a less
well defined mix of New World and European an-
cestry. Because of the clear associations of both mi-
tochondrial haplogroups and ethnic categories with

geography, one might naively expect a simple cor-
relation between the two classifications. When we
analyze the association between mitochondrial hap-
logroup and investigator assigned ethnicity however,
we find a complex relationship between the two cat-
egories. While, for instance, there is broad corre-
spondence between the L haplogroups and African
ethnicity assignments, African ethnicity assignments
are present to varying degrees in virtually every hap-
logroup analyzed and almost every haplogroup con-
tains members of each of the four ethnicities. This is
not particularly surprising due to the fact that mito-
chondrial DNA represents only a very small segment
of the complex mosaic of a human’s genetic ancestry,
and it suggests that the ability to infer coarse ethnic
identity from mitochondrial sequence would be very
limited. In fact, however, we find that mitochondrial
DNA can be used to infer the probable assignment
of coarse ethnicity with almost 90% accuracy, lev-
els approaching those obtainable with approximately
sixty autosomal loci [11]. This level of accuracy in
predicting investigator assigned ethnicity could be
very useful in forensic investigations.

Information content in HVR1 and HVR2. As
noted above, there is a great deal of variability in
the precise regions of HVR1 and HVR2 genotyped
in practice. Sequence coverage within the mitochon-
drial control region is often laboratory and/or study
dependent. Variability of these boundaries severely
limits the utility of individual datasets in the as-
sembly of large datasets representative of complex
populations. Recently, Tzen et al. [18] sought to re-
define HVR1 on the basis of genetic diversity and
laboratory tractability. They show that the 237-bp
segment from 16126-16362 (the “redefined” HVR1,
or rHVR1) had a global genetic diversity of 0.9905
and the 154-bp segment from 16209-16362 had a
global diversity of 0.9735, where the genetic diver-
sity for a sample with n haplotypes with popula-
tion frequencies xi, i = 1, . . . , n, is computed as
(1 −

∑n
i=1 x

2
i )n/(n − 1). The results of [18] match

very closely with our scans of the inferential power
of windows across the control region; Tzen’s rHVR1
overlaps precisely with the region of greatest dis-
criminative power in HVR1. The correspondence
between these results suggests that HVR2 might be
similarly standardized to a region between 93-310,
where the greatest discriminative power of HVR2
is found. The identification of small regions of
sequence that have maximal discriminative power
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could be quite useful in forensic and anthropological
settings where severe degradation can limit the size
of PCR products recoverable from sample material.
Di Bernardo et al. [19] report that the longest ampli-
fiable DNA fragments extracted from 2000-year-old
remains from Pompeii are between 139 and 360 bp.
Sequences of this size from the most informative re-
gions of HVR1 and HVR2 would allow inference of
coarse ethnic identity with reasonably high accuracy.

SVM as Classifier. Many applications in hu-
man genetics require the discriminative classification
of samples into groups, and a number of methods
for this task have been proposed. Lately, machine
learning approaches have been used to good effect
in a number of biological scenarios including the
classification of Y-haplogroups [20]. In this study
we use support vector machines (SVM) to develop
statistical models capable of predicting the ethnic-
ity of mitochondrial DNA samples. We compare
the performance of SVM under simulations of real-
world scenarios with several other methods previ-
ously proposed for the classification of mitochon-
drial sequences into geographically defined groups,
including QDA and LDA [3–5]. In all tests SVM pro-
vides accuracy greater or equal to that of the other
methods tested. SVM consistently provides the best
accuracy in simulations of degradation form either
end of the mitochondrial hypervariable regions, and
when small subsections of the hypervariable regions
are used. With only 218bp of mtDNA sequence,
the overall accuracy of SVM predictions exceeds
80%. The success of SVM in this classification prob-
lem suggests that it may also be the best method
for related classification problems including inferring
the geographic origin of DNA samples [4, 5], hap-
logroup membership [8], drug response profiles [21],
and other “race based” therapeutics [22].

When applied to independent test data our SVM
classifier performs reasonably well despite significant
differences between the training and test sets. In
particular, the absence of a Hispanic classification
in the published dataset, and the inclusion of geo-
graphic regions in the test set that are not repre-
sented in the training set (for instance Kazakhstan
and Kyrgyzstan) is likely to have contributed signif-
icantly to errors in our inferences. Such errors are
likely to recede as larger, more geographically bal-
anced training sets are assembled.

Handling Missing Data. In the last few years
several authors have pointed out the presence of

sequence errors in public and forensic mtDNA
databases [23–27]. Moreover, precise boundaries of
HVR1 and HVR2 are not always consistent across
studies and real-world samples may be severely de-
graded, further contributing to errors or missing
data in samples to be classified. We evaluated sev-
eral statistical approaches to dealing with missing
data and evaluated these approaches for accuracy
under simulated scenarios of data dropout or loss.
We found that despite a small loss of accuracy in-
curred by data dropout, restricting analysis to the
region of intersection between the test sample and
training samples provides the most reliable inference
of the ethnicity of the sample. Attempts to impute
any missing data based on the rCRS or a probabilis-
tic model based of the training set resulted in predic-
tion bias toward Caucasian due to the origin of the
rCRS and the preponderance of Caucasian samples
in the FBI forensic data set. Until very large, ethni-
cally balanced training sets are available, restricting
analysis to the region of intersection between test
and training samples is likely to remain the most
accurate and unbiased approach to inference.

Conclusions

In this study, we compared four classification algo-
rithms for the prediction of probable assignment of
coarse ethnic identity using short DNA sequences
from the hypervariable region of mtDNA. Compre-
hensive empirical studies showed that, regardless of
sequence length, support vector classification is the
most accurate classifier among those compared and
approaches 90% accuracy in predicting the assign-
ment of course ethnic identity. Our experiments also
identified high accuracy segments in HVR, which
agree well with the genetically diverse regions re-
ported in previous work. Finally, our experiments
showed that, in dealing with missing data, it is ad-
visable to use only segments shared by reference se-
quences and the sequence under test.
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Figures
Figure 1 - Effects of incomplete data on accuracy

Comparison of PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on regions obtained
by iteratively deleting groups of 10% polymorphisms starting from HVR1 towards HVR2 (A), respectively
from HVR2 towards HVR1 (B), and on sliding windows spanning 10% of the nucleotides in HVR1+HVR2
(C).

Tables
Table 1 - Comparison of 5-fold CV accuracy measures on the trimmed forensic dataset

# Samples
Classification Algorithm

PCA-QDA PCA-LDA 1NN PCA-SVM

Caucasian 1674 83.15 90.2 93.73 94.62
Asian 761 72.93 74.11 83.31 84.76
African 1305 84.6 88.28 86.59 89.81
Hispanic 686 71.57 68.22 72.01 72.59

Micro-Accuracy 4426 80.03 83.46 86.47 88.10
Macro-Accuracy 4426 78.06 80.20 83.91 85.45

Table 2 - Confusion table of the PCA-SVM test results on the trimmed published dataset

True
# Samples

Predicted Ethnicity
Ethnicity Caucasian Asian African Hispanic

Caucasian 1956 92.59 5.47 1.53 0.41
Asian 450 25.78 67.78 3.11 3.33
African 134 5.22 3.73 87.31 3.73

Micro-Accuracy: 87.91%
Macro-Accuracy: 82.56%

Additional Files
Additional file 1 — Coverage of samples

Percentage of samples covering each position of HVR1 and HVR2 in the forensic (A) and published (B)
datasets.

Additional file 2 — Sample composition of the forensic and published datasets

Ethnicity composition of each haplogroup (A) and haplogroup composition of each ethnic group (B) for the
forensic and published datasets.

Additional file 3 — Accuracy of short segments of HVR

Comparison of PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on 6 selected windows
of 165-271bp spanning the most informative regions of HVR1 and HVR2.
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Additional file 4 — Accuracy of PCA-SVM using different schemes for handling missing data

Additional file 5 — Calibration of PCA-SVM posterior probabilities for the FBI published dataset

The actual accuracy rates are slightly higher than the estimated posterior probabilities.
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Figure 1 - Effects of incomplete data on accuracy

(A)

(B)

(C)

Comparison of PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on regions obtained
by iteratively deleting groups of 10% polymorphisms starting from HVR1 towards HVR2 (A), respectively
from HVR2 towards HVR1 (B), and on sliding windows spanning 10% of the nucleotides in HVR1+HVR2
(C).



Additional file 1 — Coverage of samples
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Percentage of samples covering each position of HVR1 and HVR2 in the forensic (A) and published (B)
datasets.
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Additional file 3 — Accuracy of short segments of HVR

Comparison of PCA-QDA, PCA-LDA, 1NN, and PCA-SVM 5-fold CV micro-accuracy on 6 selected windows
of 165-271bp spanning the most informative regions of HVR1 and HVR2.



Additional file 4 — Accuracy of PCA-SVM using different schemes for handling missing data

Ethnicity # Samples
Missing Data Handling

rCRS Probability Common Region

Caucasian 2807 96.94 96.15 93.94
Asian 915 30.60 50.93 68.85
African 254 59.06 57.48 76.38

Micro-Accuracy 3976 79.25 83.27 87.05
Macro-Accuracy 3976 62.20 68.19 79.72



Additional file 5 — Calibration of PCA-SVM posterior probabilities for the FBI published dataset
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The actual accuracy rates are slightly higher than the estimated posterior probabilities.


