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Abstract—Obtaining whole-transcriptome expression profiles
of closely related cell types is a daunting task faced by stem-
cell biologists. Here we present an approach that utilizes single-
cell qPCR probing of a small number of genes to aid in the
deconvolution of whole-transcriptome profiles of mixed samples.

I. INTRODUCTION

The expression profiles of m genes measured in n mixtures
of k cell types are modelled as X = SC, where X is a
m X n matrix whose columns are the expression profiles of
individual mixtures, S is m x k “signature” matrix whose
columns are expression profiles of individual cell types, and
C'is a k x n “concentration” matrix whose columns represent
the proportions of each cell type in individual mixtures. In
this abstract we will assume that individual cell types as well
as a reduced signature matrix S can be reliably inferred from
single-cell gPCR data generated for a small subset of genes.

II. METHODS
A. Constructing Reduced Cell-Type Signatures

1) Noise Reduction: Due to large biological and technical
noise in single-cell qPCR data we applied a common technique
where each sample was required to have .95 Pearson correla-
tion with at-least one other sample, otherwise it is removed.

2) K-means Clustering: We chose to use k-means clus-
tering to group the gene expression data from single-cell
data because it explicitly allows us to control the number of
theoretical cell-types. The average expression profile of each
single-cell in a cluster is used to create the reduced cell-type
signature matrix S.

B. Estimate Mixing Proportions

The next task is to solve for the concentration matrix C. We
utilize the same methodology described in [?] to compute the
concentration matrix describing the mixtures. Each column of
X, and hence also columns of the reduced expression matrix
X obtained by retaining only rows of X corresponding to
genes measured by qPCR, is a linear combination of single
cell expression profiles with unknown concentrations. Let us
denote a particular column in X as z and its corresponding
column in C' by c. Inferring ¢ can be formulated as the
following quadratic program that can be solved using standard
constrained quadratic programming solvers:
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Missing Gene: log2(predicted/actual) - # mixtures:100

log2(predicted/actual)

Fig. 1. On the left y-axis is the log2 ratio between predicted and actual
gene expression signatures per cell-type. On the right y-axis is the average
expression signature for each gene and cell-type. Each cell-type is a particular
color.

minimize
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C. Estimate Full Expression Signatures

It is still necessary to estimate the signatures of the full gene
profile. Using the concentration matrix C' inferred in previous
step, the gene signature s of a gene not measured by qPCR
can be inferred from the mixed gene expression data x using
a similar least squares quadratic program:

minimize ||sC — x||2
5, >0Vi=0...k
ITI. PRELIMINARY EXPERIMENTAL RESULTS

The above method was applied on qPCR expression data
generated from mouse embryos at the 7-8 somite stage.
Expression levels of 31 genes were characterized by RT-qPCR
for 97 single cells and 12 mixed samples. In order to test
the methods ability to estimate the concentration matrix and
complete gene signature we ran a leave-one-out experiment
on each gene. Figure 1 demonstrates that the method is able
to accurately deconvolve expression levels of most genes,
however particular genes seem to pose a challenge.



