
Scaffolding Large Genomes using Integer Linear
Programming

James Lindsay
University of Connecticut

371 Fairfield Road, Unit 2155
Storrs, CT 06269

james.lindsay@engr.uconn.edu

Hamed Salooti
Georgia State University

34 Peachtree Street
Atlanta, GA 30303

hsalooti@cs.gsu.edu

Alex Zelikovsky
Georgia State University

34 Peachtree Street
Atlanta, GA 30303

alexz@cs.gsu.edu

Ion Măndoiu
University of Connecticut

371 Fairfield Road, Unit 2155
Storrs, CT 06269

ion@engr.uconn.edu

ABSTRACT
The rapidly diminishing cost of genome sequencing is driv-
ing renewed interest in large scale genome sequencing pro-
grams such as Genome 10K (G10K). Despite renewed in-
terest the assembly of large genomes from short reads is
still an extremely resource intensive process. This work
presents a scalable algorithms to create scaffolds, or ordered
and oriented sets of assembled contigs, which is one part
of a practical assembly. This is accomplished using integer
linear programming (ILP). In order to process large mam-
malian genomes we employ non-serial dynamic programming
(NSDP) and a hierarchical strategy. Both existing and novel
quantitative metrics are used to compare scaffolding tools
and gain deeper insight into the challenges of scaffolding.
The code is available at: https://bitbucket.org/jrl03001/silp

1. INTRODUCTION
Since the completion of the human genome, rapid advances
in high-throughput sequencing (HTS) technologies have re-
sulted in orders of magnitude higher throughput and lower
cost compared to classic Sanger sequencing [20]. The precip-
itous drop in sequencing costs has generated much enthusi-
asm for very large scale genome sequencing initiatives, such
as the Genome 10K (G10K) project, that calls for sequenc-
ing over 10,000 of the approximately 60,000 extant verte-
brate species. Genome sequencing on such a scale would be
unthinkable using Sanger sequencing, at a cost of tens of mil-
lions of dollars per genome. It would also be prohibitively ex-
pensive using HTS technologies that deliver reads of length
comparable to that of Sanger reads (Roche’s 454 and Pacific
Biosciences’ single molecule real time sequencer), which have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ACM-BCB’12, October 7-10, 2012, Orlando, FL,
USA Copyright c©2012 ACM 978-1-4503-1670-5/12/10... $15.00

sequencing reagent costs of tens to hundreds of dollars per
megabase [6]. In contrast, Illumina’s HiSeq 2000 and Life
Technologies’ SOLiD 5500xl can both deliver 100× sequenc-
ing coverage of a typical vertebrate genome in a single run,
with a total reagent cost of a few tens of thousands of dol-
lars. However, assembling high-quality genome sequences
from the short reads (currently around 100bp) generated
by these technologies represents a formidable computational
challenge that has yet to be met (see [3, 17, 21, 23, 24, 29]
for recent reviews and benchmarking results).

While feasibility of de novo draft assembly entirely from
short HTS reads has been demonstrated for several verte-
brate genomes, including human (using both ABySS [32]
and SOAPdenovo [14]), chicken (using SOAPdenovo [34])
and Panda (using SOAPdenovo [16]), short read assemblies
are much more fragmented compared to high-quality draft
Sanger assemblies. For example, the dog genome assembly
[18], generated from 7.5× coverage by Sanger reads, has an
N50 contig length of 180Kb. In contrast, the ABySS assem-
bly of the human genome in [32] has N50 contig length of
1.5Kb. SOAPdenovo assemblies have somehow longer con-
tigs – but still much shorter than those of Sanger assemblies
– with reported N50 contig lengths of 5.9Kb respectively
7.4Kb for the African and Asian human assemblies in [14],
12Kb for the Illumina-based chicken genome in [34], and
36.7Kb for the Panda genome [16]. By using 100bp Illu-
mina paired-end reads with a mix of tightly controlled insert
lengths and total coverage depth of over 100×, ALLPATHS-
LG [7] obtained assemblies with N50 contig lengths of 24Kb
for human and 16Kb for mouse.

Short contig lengths, typically between 2-4Kb, are also the
characteristic of tens of draft genome assemblies generated
from low-coverage (2×) Sanger reads over the past decade,
e.g., as part of the Mammalian Genome Project [1]. To in-
crease the utility of such fragmented assemblies, additional
long-range linkage information is used to orient contigs rel-
ative to one another and order them in larger structures
referred to as scaffolds. For conventional Sanger assemblies,
long-range linkage information is obtained by sequencing
both ends of clones of up to hundreds of kilobases. HTS

platforms can also generate paired reads, albeit with lower
insert length – commonly limited to a few Kb due to the fact
that current library preparation protocols involve a DNA cir-
cularization step whose efficiency decreases for long inserts.
Linkage information provided by HTS pairs is also much less
reliable than that provided by clone-based Sanger protocols
due both to chimeric pairs resulting from library prepara-
tion artifacts and erroneous mapping of reads originating
from repeats. These difficulties, along with the sheer num-
ber of HTS pairs and contigs that must be handled, render
scaffolding methods developed for Sanger pairs such as [10,
25] ineffective on HTS data. While recent algorithmic ad-
vances [2, 5, 27] have led to improved scaffolding accuracy
from such “noisy” HTS paired reads, scaling these methods
to datasets consisting of hundreds of thousands to millions
of contigs and hundreds of millions of read pairs, as expected
for a vertebrate genome, remains a significant challenge.

Since the scaffolding problem is known to be NP-hard prob-
lem [10], most practical methods such as [10, 25] adopt
greedy heuristics. SOPRA [2]and MIP [27] both use a parti-
tioning scheme to reduce the size of the problem. SLIQ [26]
employs inequalities derived from the geometry of contigs on
the line predicting the orientation and ordering of adjacent
contigs. In contrast to these methods, Opera [5] uses a dy-
namic programming algorithm for finding a feasible scaffold
with the minimum number of inconsistent pairs of contigs
for HTS pairs.

In this paper we develop a highly scalable method for ac-
curate scaffolding of large genomes. Our method uses inte-
ger linear programming (ILP) to find orientations and lin-
ear orderings of contigs most consistent with the available
paired reads. However, solving the scaffolding ILP directly
for very large problem instances is often impractical. To
achieve scalability we take advantage of the sparsity of the
underlying scaffolding graph by independently scaffolding
its tri-connected components, generated in linear time using
the SPQR-tree datastructure, and then optimally combin-
ing them using non-serial dynamical programming (NSDP)
[30]. For cases when even tri-connected components are too
large to be handled directly we adopt a hierarchical scaffold-
ing scheme that solves multiple ILPs for increasingly denser
subgraphs of G obtained by filtering low confidence edges.
Experimental results show that our method scales further
than previous methods with similar accuracy.

2. METHODS
This work solves the scaffolding problem by first finding the
best orientation and pairwise ordering of the contigs using
an ILP. Next the scaffolding path is extracted using bipartite
matching. Finally the algorithm is made practical by utiliz-
ing NSDP, and if additional scalability is required a hierar-
chical strategy is employed which uses high confidence infor-
mation first. The flow of the complete scaffolding pipeline
is as follows;

1. map reads to contigs

2. filter mapped pairs

3. find orientation and pairwise order using ILP

4. find scaffold path using bipartite matching

Figure 1: All possible states for a read pair.

2.1 Integer Linear Program
The scaffolding ILP model is best described using the scaf-
folding graph G = (V,E), where vertices represent contigs
and edges are derived from linkage information provided
by paired HTS reads. Paired sequencing libraries are con-
structed such that the order and orientation of the reads rel-
ative to their originating fragment is known. For this work
we will use the mate-pair style of reads where the pairs come
from the same strand and are in the same orientation. In a
pair, each read can be mapped on the 5’ or 3’ strand of each
contig. Therefore, there are 4 possible orientations of two
contigs i, j connected by a paired read. There is another 4
possible states if the first read is mapped to contig j. All
possible combinations are described in Figure1.

We define several boolean variables to assist in creating the
model. First Si = {0, 1} ∀i ∈ N is used to indicate the
orientation of each contig; Si = 0 indicates the contig orien-
tation does not change. Then Sij = {0, 1} ∀(i, j) ∈ E tells if
the contigs have the same orientation (Sij = 0) or if one is
flipped (Sij = 1). Four state variables, Aij , Bij , Cij , Dij =
{0, 1} ∀(i, j) ∈ E represent the 4 possible orders and orienta-
tions of adjacent contigs; they are mutually exclusive. Each
state has an associated weight Aw

ij , B
w
ij , C

w
ij , D

w
ij which are

the sum of the weight of corresponding pairs. The objective
is to maximize the number of concordant edges.

Max
∑

(i,j)∈E

A
w
ij ·Aij +B

w
ij ·Bij + C

w
ij · Cij +D

w
ij ·Dij

The following constraints enforce the behavior of the orien-
tation variables.

Sij ≤ Si + Sj Sij ≤ 2− Si − Sj

Sij ≥ Sj − Si Sij ≥ Si − Sj

Using the ILP framework allows us to explicitly forbid cer-
tain scenarios which are known to be impossible. Since eu-
karyotic genomes are linear, then cycles in the scaffolding
graph should be impossible. Therefore we have chosen to
explicitly forbid all two cycles

Bij + Cij ≤ Sij Aij +Dij ≤ 1− Sij

An additional 8 constraints forbid three cycles in all in-

stances where 3 contigs are connected.

Aij + Ajk +Dki ≤ 2 Aij +Bjk + Cki ≤ 2

Bij +Cjk +Dki ≤ 2 Bij +Djk + Cki ≤ 2

Cij + Ajk +Bki ≤ 2 Cij +Bjk + Aki ≤ 2

Dij + Cjk +Bki ≤ 2 Dij +Djk + Aki ≤ 2

It would be impractical to enumerate all larger cycles, if we
find a cyclic solution then the cycle is broken heuristically.
The solution to this ILP gives the orientation of every contig,
and the pairwise ordering of compatible connected contigs.
It is still necessary to find the linear path that corresponds
to the scaffold.

2.1.1 Weights, Filters and Bundles
Only pairs for which both reads mapped uniquely to the
genome are used for scaffolding. However these unique reads
may map to regions annotated by external tools or multi-
ple mapped reads as repetitive. A large amount of overlap
between a unique mapped read and a repetitive region cor-
responds to a smaller probability pk. The probability that
a single read p1k is correct is 1-(# bases overlap with re-
peat)/(# bases in read). Since each edge in the scaffolding
graph consists of two mapped reads, the probability the pair
is correct is pk = p1k ∗ p2k. Each pair of adjacent contigs can
have support for each of the four possible states and these
weights are denoted as Aw

ij , B
w
ij , C

w
ij , D

w
ij .

Some linkage information can be thrown out before the scaf-
folding process begins because it violates logical constraints
or has very little support. We can place a bound on the
expected distance between two contigs given any state. If a
read pair spans two contigs and the implied minimum dis-
tance of any supported state is larger than the insert size
plus 3 standard deviations then the pair is ignored. Also if
90% of any read in a pair overlaps with a repeat annotated
region then that read pair is ignored because it may be unre-
liable. If there are several paired reads between two contigs
supporting the same state and similar distance between con-
tigs, then these reads are collapsed in a single bundle. We
follow a common practice of filtering out connections be-
tween contigs supported only by bundles of size less than a
threshold B (see e.g., [2, 5]). Finally for any two connected
contigs, if multiple states are supported and the one state is
not weighted at least two times more than the next highest
that pair is ignored.

2.2 Bipartite Matching
The solution to the ILP does not yield a scaffold, which is a
linear graph. The ILP instead only gives the pairwise order
and orientation of the contigs. To find the scaffold path we
use bipartite matching. A bipartite graph B = (V 1∪V 2, E)
is defined where each vertex in V 1 corresponds to the 5’ end
of a contig, and each vertex in V 2 to the 3’ end of a contig.
Edges are defined by the solution to the ILP. Each edge is
weighted according to the weight of the chosen state from
the ILP. Matching in bipartite graphs has been extensively
studied under several objects including maximum cardinal-
ity, maximum weight or a combination of the two [4]. All
three objectives were tested and it was found that maxi-
mum weight yielded the best results. A maximum weight

bipartite matching algorithm from [4] was used to find the
scaffold path.

2.3 Non-serial Dynamic Programming
It is impractical to solve a scaffold ILP for a large mam-
malian genome as the number of variables and constraints
is simply too large. To overcome this hurdle and solve the
problem optimally we adopted the non-serial dynamic pro-
gramming (NSDP) paradigm. This optimization technique
exploits the sparsity of the scaffolding graph, which should
be a bounded-width graph [5]. The solution is computed
in stages, each stage using the results of a previous one to
efficiently solve the problem. Please note that a completely
independent component will have no influence on other com-
ponents. Furthermore it was pointed out in [27] that bicon-
nected components can be solved independently since the
orientation of a component can be completely flipped if the
orientation of the articulation contig is not the same in ad-
jacent biconnected components. Therefore we assume that
the scaffolding graph is biconnected.

A key concept in NSDP is the notion of a dependency graph
which models the relationship between variables and con-
straints. An dependency graph contains a vertex for each
variable and an edge is added between vertices if they ap-
pear in the same constraint or component of the objective
function. NSDP is a process which eliminates variables in
such a way that adjacent variables can be merged together
[30]. The first step in applying NSDP is identifying weakly
connected components of interaction graph. Specifically we
wish to identify tri-connected components, each component
will interact with another component with exactly two vari-
ables. We use efficient algorithms to find the tri-connected
components of our dependency graph. Then an elimina-
tion order must be found so that each component can be
solved independently in such a way that the solutions can
be merged to find the global solution. The decomposition
order for tri-connected components is given by the SPQR-
tree [9] data structure.

The solution to each component of the interaction graph
is found using a bottom up traversal. In general during
the traversal the ILP for each component is solved 4 times.
Once for each possible orientation of the common nodes.
The objective value of each case is encoded in the objective
of the components parent. After solving all components, top
down DFS starting from the same root is performed to apply
the chosen solution for each component. This concept has
been previously applied in the area of layout decomposition
in [19]. A sketch of the bottom up procedure for the tri-
connected components is detailed in algorithm 1. In this
algorithm the skeleton() function returns the set of nodes
corresponding to that particular tri-connected component.
The weights of each solution sol00, sol10, sol01, sol11 are used
to modify the objective of the parent component by adding
the following,

sol00 +
sol11 + sol10 − sol01 − sol00

2
Si +

sol11 − sol10 + sol01 − sol00

2
· Sj +

−sol11 + sol10 + sol01 − sol00

2
· Sij

Algorithm 1 tri-component NSDP

stack = [root of SPQR-tree]
visited = empty
while stack is not empty do

p = stack.pop()
for each child q of p do

if p not in visited then
stack.push(p)

end if
end for
if p is root then

solfinal = SOLVE(p.skeleton())
else

(s, t) = getcut(p, parent(p))
sol00 = SOLVE(p.skeleton(), s = 0, t = 0)
sol01 = SOLVE(p.skeleton(), s = 0, t = 1)
sol10 = SOLVE(p.skeleton(), s = 1, t = 0)
sol11 = SOLVE(p.skeleton(), s = 1, t = 1)
weight (s, t) in parent(p) appropriately

end if
end while

2.4 Hierarchical Approach
It was observed that the number of paired edges p, that span
contigs has a large effect on accuracy and scalability of the
scaffolding program. In our work we attempted to solve the
scaffolding problem without setting this parameter explicitly
but in complex genomes it was observed that occasionally
the ILP would be too large even after the complete decom-
position procedure. In order to address this, we developed
the following hierarchical approach to solving the scaffolding
problem.

The problem is first solved with edges corresponding to higher
bundle size B+1, then the resulted scaffold chains are fixed,
i.e., replaced with pseudo-contigs, and the modified prob-
lem is solved for lower bundle size B (see Figure 2). After
each iteration, utilized pairs are removed from consideration,
and any edge in the scaffolding graph that is not compati-
ble with a previous stage scaffold is removed. If any added
pair has both ends on the scaffold and satisfies the orien-
tation constraints of the sub-contigs, it is merged into the
pseudo-contig, otherwise, is removed. If the added edge has
just one end on the pseudo-contig and satisfies the insert size
constraints, it is applied into the pseudo-contig, otherwise, is
removed. Obviously using pseudo-contigs for smaller bundle
sizes greatly reduces the size of the scaffolding problem.

There is another important advantage of the hierarchical
approach. Note that edges and scaffolds with higher bun-
dle size are much more likely to be correct than with the
smaller size. Indeed, from table 3 we can see that decrease
in bundle size reduces positive predicted value (PPV). On

the other hand, higher bundle sizes disregard more infor-
mation resulting in reduction of sensitivity. Therefore, the
hierarchical approach gradually improves sensitivity by trad-
ing PPV and does not lose correct edges found with higher
bundle sizes.

3. RESULTS
In order to asses the quality of our scaffolding tool we devel-
oped a testing framework which closely mimics a real world
scaffolding problem. We utilized the Staphylococcus aureus
and Rhodobacter sphaeroides genomes from the GAGE [28]
assembly comparison to test the accuracy of ours and other
leading scaffolding tools. These two genomes were assem-
bled from 90x coverage, 50-100 bp reads from the Illumina
platform. Each genome was assembled by the following de
novo assembly tools: Velvet [35], Allpaths-LG [8], SOAPde-
novo [15], MSR-CA, Bambus2 [11], SGA [31], ABySS [33],
ABySS2. We also created a larger test case which was de-
rived from a de novo draft assembly of an individual human
[12]. The set of Sanger style reads used to create this fin-
ished version of the draft genome were sub sampled to 4x
base coverage. A total of 11200000 reads were placed into
the Celera 6.1 [22] assembler and assembled using the rec-
ommended parameters for large mammalian genomes. The
assembler generated 422837 contigs with an N50 of 7704bp.
In both the GAGE and human test sets, the contigs were
mapped against the finished reference version of the genome
using BWA-SW [13], only uniquely aligned, non-overlapping
contigs with 90% identity were utilized. From this alignment
a reference scaffold was created to serve as the test cases.

The accuracy and scalability of our ILP based methods (SILP,
SILP-H) are compared against three of the leading exter-
nal scaffolding tools, MIP [27], OPERA [5], and BAMBUS2
[11]. Unfortunately BAMBUS2 was not run on the Ven-
ter genome due to time constraints. Additionally OPERA
was run at a bundle size of 7 in the GAGE datasets after
it failed to complete on several datasets after an hour. The
other methods were run with bundle size 2. A scaffolded
genome can be thought as a linear directed graph and the
act of scaffolding is the attempt to predict directed edges
between adjacent contigs. We treat scaffolding as a binary
classification test where methods attempt to predict true
adjacencies in the test dataset. The accuracy and sensitiv-
ity can be directly measured according to table 1. While
these measures are natural to a computer scientist they are
not as useful to a biologist because the content of the con-
tigs is ignored. A biologist typically asses a scaffold by the
N50, or weighted median statistic such that 50% of the en-
tire assembly is contained in scaffolds equal to or larger than
this value. Unfortunately this measure does not reflect the
accuracy of the scaffolds and rewards aggressive merging.
Therefore we utilize the true positive N50, which we call
TP50, where scaffolds are broken when an adjacency was
falsely predicted, a similar measure was used in [28]. Addi-
tionally we also present the percentage of genome contained
within correct scaffolds, excluding gaps.

3.1 Accuracy
The results of the comparison experiment are detailed in
tables 2, 3. It was observed in the Staphylococcus and Ven-
ter genomes that SILP incorporates a larger percentage of
the genome into the corrected scaffolds. SILP also has a

Figure 2: The scaffold obtained from solving problem with bundle size B+1 and the corresponding collapsed
pseudo-contig for the problem with bundle size B : Paired reads with both ends in the scaffold (in red) are
dropped . Paired reads with a single end in the scaffold are removed if the insert size constraints are not
satisfied (green), otherwise paired reads are kept for bundle size B (blue).

Table 1: Scaffolding Contingency Table
true adjacent false adjacent

predicted adjacent TP FP
predicted non-adjacent FN TN

higher TP50 than the other methods except for BAMBUS2
on the Rhodobacter dataset. SILP has the highest sensitiv-
ity and the second highest PPV of all the methods. OPERA
has a higher PPV in all 3 genomes, however because of its
lower sensitivity it does not translate into a higher TP50 or
percentage of genome. This could be due to the fact that
OPERA have a active read filtering step that does not rely
on thresholds to identify incorrect paired reads.
Interestingly there is a large difference in the PPV and sen-
sitivity between the GAGE and the Venter assemblies. In
the Venter genome we see a much higher degree of accuracy
when compared to the GAGE genomes. This difference is re-
flected in all the methods tested. The GAGE genomes were
assembled using short, high coverage, ultra high-throughput
platforms while the Venter genome was assembled using low
coverage, long, Sanger style sequencing.

3.2 Scalability
The main objective of this work is to produce a scaffolding
tool that is capable of accurately scaffolding large mam-
malian genomes. In the end we were able to produce a
method SILP-H that was able to scaffold the draft assem-
bly of the human genome with no bundle size filter. Both
OPERA and MIP failed to produce any results for small
bundles sizes given 120 hours. We chose 120 hours, or 5 days
as our threshold because we believe it is sufficient amount
of time for each tool. Longer times would represent an un-
reasonable amount of time to wait for an scaffold given that
the assembly took approximately 5 days. Even though the
accuracy measures indicate that SILP-H was no more ac-
curate than OPERA, the scalability of our method should
prove valuable to biologists.

The runtime of SILP(-h) on the smaller GAGE genomes
indicate that it is competitive with all of the methods tested

on small genomes. We speculate that SILP(-H) runtime
suffers on the large genomes due to the greater reliance on
the decomposition code which has not yet been optimized for
performance. Also, it should be noted that the scalability of
OPERA is dependent on the presence border contigs which
are longer than the insert size of the paired read libraries
used. In the Venter genome test case OPERA runs very
quickly because the contigs are larger than the insert size.
However on the more fragmented assemblies in the GAGE
genomes that is not the case.
The bundle size parameter is universal to all three methods.
It was observed to has a large effect on the sensitivity of each
method, as seen in table 3. Reducing the minimum accepted
bundle size will increase the size of the problem but allow for
larger correct scaffolds. Since SILP-H was able to scaffold
the test dataset using no threshold on the bundle size we
feel it represents to most scalable and accurate scaffolding
solution currently available.

4. CONCLUSIONS
Scaffolding in an important step in the de novo assembly
pipeline. Biologists rely on an accurate scaffold to perform
many types of analysis. The larger the scaffold the more
useful it will be to them. Recent advances in de novo as-
semblers has made it feasible to create draft assemblies for
large mammalian genomes. We believe the SILP, coupled
with the most recent scalable assemblers will produce the
largest and most complete assemblies. This is made possible
utilizing our robust ILP, Non-Serial Dynamic Programming
and our hierarchical heuristic.

5. ACKNOWLEDGMENTS
This work has been partially supported by Agriculture and
Food Research Initiative Competitive Grant no. 201167016-
30331 from the USDA National Institute of Food and Agri-
culture and NSF awards IIS-0916401 and IIS-0916948.

6. REFERENCES
[1] Mammalian Genome Project,

http://www.broadinstitute.org/

Table 2: GAGE Results Table
genome method runtime (s) sensitivity (%) PPV (%) N50 (bp) TP50 (bp) % genome
staph SILP 0.37 51.76 61.30 156,297 103,784 69.96
staph BAMBUS2 0.49 45.35 53.53 145,928 66,455 42.94
staph OPERA 39.86 32.34 65.90 49,982 51,163 40.42
staph MIP 58.49 7.51 50.42 45,663 44,002 11.18
rhodo SILP 1.32 33.94 58.46 65,898 57,438 42.53
rhodo BAMBUS2 1.35 38.47 48.96 114,032 57,775 46.55
rhodo OPERA 84.21 27.10 66.58 44,480 42,761 39.36
rhodo MIP 18.71 4.91 50.75 40,213 39,431 10.12

Table 3: Venter Results Table
method bundle size runtime (s) sensitivity (%) PPV (%) N50 (bp) TP50 (bp) % genome
SILP 5 51,538 76.27 97.96 24,780 24,370 94.41
SILP 4 59,553 77.64 97.79 25,562 25,060 95.35
SILP 3 18,657 79.2 97.51 26,515 25,982 96.38

SILP-H 3 18,657 79.2 97.51 26,515 25,982 81.39
SILP-H 2 26,663 79.41 97.1 26,636 26,019 81.46
SILP-H 1 31,266 79.49 93.68 27,216 26,028 81.48
OPERA 5 625 76.21 98.99 24,532 24,342 85.62
OPERA 4 671 77.57 98.85 25,288 25,044 86.53
OPERA 3 618 79.03 98.47 26,275 25,902 87.50
MIP 5 2020 60.04 98.37 19,375 19,186 83.35

scientific-community/science/projects/

mammals-models/mammalian-genome-project.

[2] A. Dayarian, T. Michael, and A. Sengupta. SOPRA:
Scaffolding algorithm for paired reads via statistical
optimization. BMC Bioinformatics, 11(1):345+, 2010.

[3] P. Flicek and E. Birney. Sense from sequence reads:
methods for alignment and assembly. Nature Methods,
6(11s):S6–S12, 2009.

[4] Z. Galil. Efficient algorithms for finding maximum
matching in graphs. ACM Comput. Surv., 18(1):23–38,
Mar. 1986.

[5] S. Gao, N. Nagarajan, and W.-K. Sung. Opera:
reconstructing optimal genomic scaffolds with
high-throughput paired-end sequences. In Proc. 15th
Annual international conference on Research in
computational molecular biology, pages 437–451, 2011.

[6] T. C. Glenn. Field guide to next-generation DNA
sequencers. Molecular Ecology Resources, 2011.

[7] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro,
J. N. Burton, B. J. Walker, T. Sharpe, G. Hall, T. P.
Shea, S. Sykes, A. M. Berlin, D. Aird, M. Costello,
R. Daza, L. Williams, R. Nicol, A. Gnirke,
C. Nusbaum, E. S. Lander, and D. B. Jaffe.
High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of
the National Academy of Sciences, 108(4):1513–1518,
2011.

[8] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro,
J. N. Burton, B. J. Walker, T. Sharpe, G. Hall, T. P.
Shea, S. Sykes, A. M. Berlin, D. Aird, M. Costello,
R. Daza, L. Williams, R. Nicol, A. Gnirke,
C. Nusbaum, E. S. Lander, and D. B. Jaffe.
High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of
the National Academy of Sciences, 108(4):1513–1518,
2011.

[9] J. E. Hopcroft and R. E. Tarjan. Dividing a graph
into triconnected components. SIAM Journal on
Computing, 2(3):135–158, 1973.

[10] D. H. Huson, K. Reinert, and E. W. Myers. The
greedy path-merging algorithm for contig scaffolding.
J. ACM, 49(5):603–615, 2002.

[11] S. Koren, T. J. Treangen, and M. Pop. Bambus 2:
Scaffolding metagenomes. Bioinformatics, 2011.

[12] S. Levy et al. The diploid genome sequence of an
individual human. PLoS Biology, 5(10):e254+, 2007.

[13] H. Li and R. Durbin. Fast and accurate long-read

alignment with burrowsâĂŞwheeler transform.
Bioinformatics, 26(5):589–595, 2010.

[14] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi,
Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li, H. Yang,
J. Wang, and J. Wang. De novo assembly of human
genomes with massively parallel short read
sequencing. Genome Research, 20(2):265–272, 2009.

[15] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi,
Y. Li, S. Li, G. Shan, K. Kristiansen, S. Li, H. Yang,
J. Wang, and J. Wang. De novo assembly of human
genomes with massively parallel short read
sequencing. Genome Research, 20(2):265–272, 2010.

[16] R. Li et al. The sequence and de novo assembly of the
giant panda genome. Nature, 463(7279):311–317, 2010.

[17] Y. Lin, J. Li, H. Shen, L. Zhang, C. J. Papasian, and
H.-W. Deng. Comparative Studies of de novo
Assembly Tools for Next-generation Sequencing
Technologies. Bioinformatics, 2011.

[18] K. Lindblad-Toh et al. Genome sequence, comparative
analysis and haplotype structure of the domestic dog.
Nature, 438(7069):803–819, 2005.

[19] W.-S. Luk and H. Huang. Fast and lossless graph
division method for layout decomposition using
spqr-tree. In Computer-Aided Design (ICCAD), 2010

IEEE/ACM International Conference on, pages 112
–115, nov. 2010.

[20] M. L. Metzker. Sequencing technologies - the next
generation. Nature reviews. Genetics, 11(1):31–46,
2010.

[21] J. R. Miller, S. Koren, and G. Sutton. Assembly
algorithms for next-generation sequencing data.
Genomics, 95(6):315–327, 2010.

[22] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew,
D. P. Fasulo, M. J. Flanigan, S. A. Kravitz, C. M.
Mobarry, K. H. Reinert, K. A. Remington, E. L.
Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan,
A. L. Halpern, S. Lonardi, E. M. Beasley, R. C.
Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R.
Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M.
Rubin, M. D. Adams, and J. C. Venter. A
whole-genome assembly of Drosophila. Science (New
York, N.Y.), 287(5461):2196–2204, Mar. 2000.

[23] K. H. Paszkiewicz and D. J. Studholme. De novo
assembly of short sequence reads. Briefings in
Bioinformatics, 11(5):457–472, 2010.

[24] M. Pop. Genome assembly reborn: recent
computational challenges. Briefings in Bioinformatics,
10(4):354–366, 2009.

[25] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical
scaffolding with Bambus. Genome research,
14(1):149–159, 2004.

[26] R. S. Roy, K. C. Chen, A. M. Segupta, and A. Schliep.
Sliq: Simple linear inequalities for efficient contig
scaffolding. arXiv:1111.1426v2[q-bio.GN], Nov. 2011.

[27] L. Salmela, V. Mäkinen, N. Välimäki, J. Ylinen, and
E. Ukkonen. Fast scaffolding with small independent
mixed integer programs. Bioinformatics,
27(23):3259–3265, Dec. 2011.

[28] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu,
T. Magoc, S. Koren, T. J. Treangen, M. C. Schatz,
A. L. Delcher, M. Roberts, G. MarÃğais, M. Pop, and
J. A. Yorke. Gage: A critical evaluation of genome
assemblies and assembly algorithms. Genome
Research, 22(3):557–567, 2012.

[29] M. C. Schatz, A. L. Delcher, and S. L. Salzberg.
Assembly of large genomes using second-generation
sequencing. Genome Research, 20(9):1165–1173, 2010.

[30] O. Shcherbina. Nonserial dynamic programming and
tree decomposition in discrete optimization. In OR,
pages 155–160, 2006.

[31] J. T. Simpson and R. Durbin. Efficient de novo
assembly of large genomes using compressed data
structures. Genome Research, 22(3):549–556, 2012.

[32] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein,
S. J. Jones, and I. Birol. ABySS: a parallel assembler
for short read sequence data. Genome research,
19(6):1117–1123, 2009.

[33] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein,
S. J. Jones, and Ä. Birol. Abyss: A parallel assembler
for short read sequence data. Genome Research,
19(6):1117–1123, 2009.

[34] L. Ye, L. Hillier, P. Minx, N. Thane, D. Locke,
J. Martin, L. Chen, M. Mitreva, J. Miller, K. Haub,
D. Dooling, E. Mardis, R. Wilson, G. Weinstock, and
W. Warren. A vertebrate case study of the quality of
assemblies derived from next-generation sequences.

Genome Biology, 12(3):R31, 2011.

[35] D. R. Zerbino and E. Birney. Velvet: algorithms for de
novo short read assembly using de Bruijn graphs.
Genome Res., 18(5):821–9, 2008.

