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Abstract. Current in vitro methods for deriving pre-somitic mesoderm
have an efficiency of less than 1% indicating an insufficient understanding
of mammalian mesodermal differentiation. Here we present an initial look
at an approach that augments current digital deconvolution algorithms
with single-cell resolution data to derive a better characterization of the
transcriptional profiles of cell-types in the embryonic posterior mid-line.
This will better enable biologists to direct in vitro derivation methods
towards a more developmentally accurate, and therefore more efficient
trajectory.

1 Introduction

The pre-somitic mesoderm is the precursor tissue source for all muscle, bone, and
cartilage of the mammalian embryo. Given the prevalence of human mesodermal
diseases (e.g. muscular dystrophy, osteoporosis, arthritis), generating pre-somitic
mesoderm in vitro has great clinical relevance. Unfortunately, current in vitro
methods for deriving pre-somitic mesoderm have an efficiency of less than 1%
indicating an insufficient understanding of mammalian mesodermal differenti-
ation. Thus far it is known in mouse the pre-somitic mesoderm arises from a
self-renewing pool of progenitor cells localized to the posterior midline of the
embryo, however, the precise identify of this progenitor cell, i.e. its transcrip-
tional profile, remains unknown.

One approach to identify a cell-types transcriptional profile is in-silico deconvo-
lution of heterogeneous mixtures [5,9, 6]. Generally the problem is presented as
Ximxn = SmxkCrxn- Where X is a set of gene expression measurements result-
ing from a linear combination of, S, the cell-type signature matrix and C, the
proportions of each cell-type in a particular mixture. There are n mixtures, k
cell-types and m genes. Some methods try to estimate both the signature (S)
and (C) simultaneously [8,7,1]. This blind approach to deconvolution is a very
difficult task, often only used for separating a small number of cell-types which
are very distinct. This approach has little hope to work when there is a complex
mixture of similar cell-types as is expected in the mesoderm. Another class of
methods assume some information about S is known and try to estimate C' [6,
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9, 3]. The drawback to this approach is the assumption of that the complete, or
partial cell-type profile is known.

The motivation for this paper is to deconvolve population level (i.e. mixtures)
qPCR taken from the posterior mid-line of mouse embryos. This was done at
the 7-8 somite stage and 12 population qPCR samples were taken, along with 97
single-cells. The expression level of 31 genes was characterized with RT-qPCR.
Using the nomenclature described earlier this would give us an expression ma-
trix X31x12. Additionally 97 single-cells from the same embryo section and stage
where characterized with RT-qPRC at the same 31 genes. The expression ma-
trix X is given and our goal is to factor this matrix into S31xx and Cigxio.
Unfortunately since the true S and C' matrix are unknown we have developed a
simulation on which to benchmark our approach before applying our approach
to the real data.

2 Methods

We propose using a two-pronged approach whereby single-cell qPCR observa-
tions are assigned to cell-types using unsupervised clustering in order to create
S, then given X and S we can solve for the concentration of each mixture in, C,
using constrained quadratic programming.

2.1 Constructing Cell-Type Signatures

Noise Reduction Single-cell gPCR data is known to be noisy due to cell cycle
variations, experimental difficulties and due to the fact that the definition of a
cell-type is somewhat nebulous [10]. While the third difficulty is quite challeng-
ing to address, it is possible to use simple filtering to reduce the noise associated
with the first two. In figure 2.2 we used PCA to visualize the variability in the
data, we observed little evidence of clustering in (part a). Next we applied a
common technique where each sample was required to have .95 Pearson correla-
tion with at-least one sample, otherwise it is removed. There is stronger evidence
of clustering (part b).

2.2 Signature Matrix

Clustering gene expression data is a problem that has been widely studied for
over a decade. The problem is an instance of unsupervised learning, where sam-
ples need to be labelled based on their gene expression. Numerous objectives
have been proposed such as minimizing the distance between samples in a clus-
ter, and others focus on grouping functionally related samples. In this devel-
opmental context which we are working the proper clustering objective is not
immediately evident. The embryo will develop into several distinct regions, and
each region will be made up of a mixture of cell-types. Therefore we chose to use
k-means clustering to group the single-cell data because it explicitly allows us
to control the number of theoretical cell-types. The clustering of the single-cell
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Fig. 1. PCA plot of single-cell gPCR data labelled via k-means cluster with k=3. The
population level data is plotted in black. part(a): No filtering was applied. part(b):
Pearson correlation filtering is applied.

data can be seen in figure . The average expression profile of each single-cell
in a cluster is used to create the cell-type signature matrix S,,xx. The cluster
assignments have the following proportions, 0 = 29%, 1 = 27%, 2 = 44%.

2.3 Concentration Matrix

The next task is to solve for the concentration matrix Cy,. We utilize the
same methodology described in [3] to compute the concentration matrix. Each
observation (or column) in the expression matrix X is a linear combination of
each cell-type at a given concentration. Let us denote the vector z as a particular
column in X and the vector ¢ as its corresponding column in C.

minimize [|S¢ — |2
subject to Z c=1
¢ >0Vi=0..m
This least-squares formulation can be solved with any constrained quadratic

programming solver. Once every column in C has been solved the system has
been deconvolved.

3 Experimental Results

3.1 Simulation Design

In order to asses our approaches ability to deconvolve qPCR mixtures we de-
veloped a way to simulate mixtures. As part of the simulation we will assume
that the true signature matrix is known and it is the same as what one would
get from utilizing k-means clustering on the single-cell data as described in the
previous section, k is fixed to 3. We introduce one parameter into the simulation
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e = 5,10, 25,50,100,200 which becomes the noise parameter and it represents
the number of single-cell’s used to create a particular mixture.

For a single mixture & we first simulate the concentration of each cell-type ¢
by choosing k& numbers at random from the uniform distribution, and scaling all
columns by their sum. Then e x ¢; for each cell-type j, gives a count of single-cell
observation to choose uniformly at random from each cell-type. & is then just a
sum of the chosen single-cell. Since our current method is not a global optimiza-
tion, in that each mixture is treated independent of the others we simply chose
to use 10 mixtures per experiment yielding an expression matrix Xs;x10, each
experiment was replicated 10 times.

RMSE vs # single-cell samples

RMSE
o=

25 50 75 100 125 150 175 200
# single-cell

Fig. 2. The average root mean square error (RMSE) for predicted concentrations
against the actual is on the y-axis. The x-axis is the number of single-cell observa-
tions used in each mixture, which is our noise parameter. The error bars represent the
standard deviation across the 10 replicates.

3.2 Evaluation Metrics

One common metric for evaluating the accuracy of the constrained least-squares
method for estimating concentrations is tracking the root mean square error
of each predicted concentration against the truth while varying the number of
single-cell mixtures. In figure we see that the RMSE is higher when fewer single-
cell samples are taken. However the decrease in RMSE levels off at approximately
100 samples, indicating that more resolution does not help.

While the RMSE is a good summary statistic it is not clear how the cell-type
proportions effect the outcome. By plotting the concordance between the ob-
served concentrations and actual for each cell-type we can shed some light. In
figure , part a shows that at a high error rate (i.e. few single-cells) there is much
more variability between observed and actual concentrations. While in part b,
at a low error rate the variability is reduced. However in both parts there is a
systematic over and under estimation of concentrations for all cell-types.
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3.3 Conclusion

This work is just the first step into fully exploring the use of deconvolution and
single-cell resolution qPCR to identify progenitor cell-types in complex mixtures.
In figure it was observed that there is a limit to the number of single-cell ob-
servations necessary to get meaningful deconvolution. Also figure demonstrates
that the least squares approach is capable of deconvolving complex mixtures.
However before this method can be applied to real data it is necessary to char-
acterize the effects of skewed cell-type proportions and very rare cell-types like
the pre-somitic mesoderm.
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Fig. 3. The concordance between observed and actual concentrations per cell-type. The
black line from (0,0) to (1,1) represents perfect concordance. The colored lines is the
line of best for its respective cell-type. A different number of single-cells was sampled

for each sub-figure.
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