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Abstract

Background: Interest in de novo genome assembly has been renewed in the past decade due to rapid advances

in high-throughput sequencing (HTS) technologies which generate relatively short reads resulting in highly

fragmented assemblies consisting of contigs. Additional long-range linkage information is typically used to

orient, order, and link contigs into larger structures referred to as scaffolds. Due to library preparation artifacts

and erroneous mapping of reads originating from repeats, scaffolding remainings a challenging problem. In this

paper, we provide a scalable scaffolding algorithm (SILP2) employing a maximum likelihood model capturing

read mapping uncertainty and/or non-uniformity of contig coverage which is solved using integer linear

programming. A Non-Serial Dynamic Programming (NSDP) paradigm is applied to render our algorithm useful

in the processing of larger mammalian genomes. To compare scaffolding tools, we employ novel quantitative

metrics in addition to the extant metrics in the field. We have also expanded the set of experiments to include

scaffolding of low-complexity metagenomic samples.

Results: SILP2 achieves better scalability throughg a more efficient NSDP algorithm than previous release of

SILP. The results show that SILP2 compares favorably to previous methods OPERA and MIP in both scalability

and accuracy for scaffolding single genomes of up to human size, and significantly outperforms them on

scaffolding low-complexity metagenomic samples.

Conclusions: Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, resulting in the longest

and most accurate scaffolds. The ILP formulation for the maximum likelihood model is shown to be flexible
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enough to handle metagenomic samples.

Introduction

De novo genome assembly is one of the best studied problems in bioinformatics. Interest in the problem

has been renewed in the past decade due to rapid advances in high-throughput sequencing (HTS)

technologies, which have orders of magnitude higher throughput and lower cost compared to classic Sanger

sequencing. Indeed, top-of-the-line instruments from Illumina and Life Technologies are currently able to

generate in a single run billions of reads with an aggregate length of hundreds of gigabases, at a cost of

mere cents per megabase. However, most HTS technologies generate relatively short reads, significantly

increasing the computational difficulty of the assembly problem. Despite much work on improved assembly

algorithms for HTS shotgun reads [1–6], de novo assembly remains challenging, often resulting in highly

fragmented assemblies, see [7–14] for recent reviews and benchmarking results. For example, the recent

Assemblathon 2 community effort to benchmark de novo genome assemblers [7] shows that the

performance of evaluated assemblers is highly variable from dataset to dataset and generally degrades with

the complexity of the sample.

To increase the utility of such fragmented assemblies, additional long-range linkage information is typically

used to orient, order, and link contigs into larger structures referred to as scaffolds. Although long-range

linkage information can be generated using a variety of technologies, including Sanger sequencing of both

ends of cloned DNA fragments of up to hundreds of kilobases, Pacific Biosciences reads of up to tens of

kilobases [15], and optical maps [16], the most common type of data used in scaffolding are HTS read pairs

generated from DNA fragments with length ranging between hundreds of bases to tens of kilobases.

While HTS read pairs are relatively easy to generate, the linkage information they provide is noisy due to

library preparation artifacts and erroneous mapping of reads originating from repeats. The general

scaffolding problem is known to be computationally NP-hard when linkage data contains errors [17].

Moreover, the associated contig orientation and contig ordering problems are intractable as well: the

orientation problem is equivalent to finding a maximum bipartite subgraph, whereas the ordering problem

is similar to the Optimal Linear Arrangement problem, both of which are NP-hard [18]. Due to the

intractability of the problem, greedy heuristics have been employed in practical scaffolding methods such
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as [17,19]. Scaffolding methods such as SOPRA [20] reduce the size of the problem by iteratively removing

inconsistent links and contigs, while MIP [21] heuristically partitions the biconnected components of the

scaffolding graph when they are too large to scaffold optimally by mixed integer programming. In

SLIQ [22], inequalities are derived from the geometry of contigs to predict the orientation and ordering of

adjacent contigs. To find a feasible solution with minimum read pair inconsistency, OPERA [23] provides a

novel dynamic programming algorithm.

Algorithms based on explicit statistical models are currently gaining popularity in the area of genome

assembly [24], with notable advances in the use of maximum likelihood (ML) methods for both contig

assembly [25] and assembly evaluation [26]. In this paper we introduce a highly scalable algorithm based

on likelihood maximization for the scaffolding problem. The key step in our algorithm is the selection of

contig orientations and a set of read pairs consistent with these orientations (and locally consistent with

each other) such that the overall likelihood of selected pairs is maximized. As in previous works [25,26],

the likelihood model we employ assumes independence of the HTS read pairs. The currently implemented

model takes into account read mapping uncertainty due to overlap with annotated contig repeats as well as

variations in contig coverage. The model can be easily extended to incorporate sequencing errors and the

distribution of insert lengths; currently we only use the latter to eliminate read pairs with highly

discordant insert length lower-bounds and to compute ML estimates for the final gap lengths. Likelihood

maximization is formulated as an integer linear program (ILP). Unlike MIP [21], our ILP formulation

selects contig orientations and a set of locally consistent read pairs but neither explicitly orders the contigs

nor fully guarantees global consistency of selected pairs. The latter are achieved by decomposing the set of

selected read pairs into linear paths via bipartite matching.

Scalability of our algorithm, referred to as SILP2, is achieved by adopting a non-serial dynamical

programming (NSDP) approach [27]. Rather than solving one large ILP, several smaller ILPs can be solved

seperatly and composed to find the complete and optimal solution. The order in which the smaller ILPs

are solved is determined by the 3-connected components of the underlying scaffolding graph, which can be

efficiently identified in linear time via the SPQR-tree data structure [28,29].

Compared to the preliminary version of the algorithm published in [30], referred to as SILP1, SILP2 is

based on explicit formalization of likelihood maximization as the optimization objective. We present

experiments with several likelihood models capturing read mapping uncertainty and/or non-uniformity of

contig coverage. SILP2 also achieves higher scalability by using a more efficient NSDP algorithm than

SILP1. This greatly reduces the need for heuristics such as the hierarchical scaffolding approach of SILP1,
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whereby scaffolding is performed by progressively decreasing the minimum bound on the size of read pair

bundles. We have also expanded the set of experiments to include scaffolding of low-complexity

metagenomic samples. The results show that SILP2 compares favorably to previous methods OPERA and

MIP in both scalability and accuracy for scaffolding single genomes of up to human size, and significantly

outperforms them on scaffolding low-complexity metagenomic samples.

Methods

Given a set of contigs C and a set of read pairs R, the scaffolding problem asks for the most likely

orientation of the contigs along with a partition of the contigs into ordered sets connected by read pairs of

R. The main steps of the SILP2 algorithm are as follows (see Figure 1 for a high-level flowchart). We first

map the read onto contigs using Bowtie2 [31], disregarding pairing information in the mapping process.

Alignments are processed to extract read pairs for which both reads have unique alignments, and the

alignments are onto distinct contigs. A scaffolding graph is then constructed with nodes corresponding to

contigs and edges corresponding to extracted read pairs. The scaffolding graph is partitioned into

3-connected components using the SPQR tree data structure [28,29] implemented in OGDF [32]. The

maximum-likelihood contig orientation is formulated as an ILP that is efficiently solved by applying

non-serial dynamic programming based the SPQR tree data structure. Next, scaffold chains are extracted

from the ILP solution by using bipartite matching and breaking remaining cycles (see Section S1 in

Additional file 1). Finally, maximum likelihood estimates for the gap lengths are obtained using quadratic

programming (see Section S2 of Additional file 1). Below we detail the key steps of the algorithm,

including scaffolding graph construction, the maximum likelihood models used for contig orientation and

mapped read pair probability estimation, then we briefly overview the orientation, the ILP formulation and

the improved NSDP algorithm for efficiently solving the ILP.

Scaffolding graph. The scaffolding problem is modeled with a scaffolding graph G = (V,E), where each

node i ∈ V represents a contig and each edge (i, j) ∈ E represents all read pairs whose two individual reads

are mapped to the contigs i and j, respectively. Each read in a pair is aligned either to the forward or

reverse strand of corresponding contig sequence, and this results in 4 possible configurations for a read pair

(denoted A, B, C, or D, see Figure S1 in Additional file 1) which can be modeled as a bidirected

edge [23,30,33]. Orientation of contigs and the bidirected orientation of edges should agree (be concordant)

with each other and should not result in any directed cycles for linear genomes (e.g. eukaryotes).

4



Maximum likelihood scaffold graph orientation. As an intermediate step towards solving the

scaffolding problem, we consider the problem of determining an orientation of the scaffolding graph, which

includes choosing one of the two possible orientations for each node (contig) i ∈ V as well as choosing for

each edge (i, j) ∈ E one of the four bidirections that is concordant with the orientations of i and j. A

common way to reduce an inference problem to an optimization problem is to seek a feasible solution with

maximum likelihood. Let each observation, i.e., aligned read pair r ∈ R, have a probability pr of being

correct. Any feasible contig orientation O = O(C) either agrees or disagrees with the read pair r. Let RO

be the set of read pairs agreeing with O. Assuming independence of observations, the likelihood of an

orientation O can be written as∏
r∈RO

pr
∏

r∈R−RO

(1− pr) =
∏
r∈R

(1− pk)
∏

r∈RO

(
pr

1− pr

)
and hence its log-likelihood is

∑
r∈R ln(1− pr) +

∑
r∈RO

ln( pr

1−pr
). Since the first sum does not depend on

the orientation O, maximizing the log-likelihood is equivalent to maximizing∑
r∈RO

ln

(
pr

1− pr

)
(1)

over all contig orientations O.

Mapping probability estimation. If pr’s are assumed to be the same for all read pairs, then the

objective (1) reduces to maximization of the number of read pairs that agree with the contig orientation O.

We consider the following factors that reduce the probability pr that read pair r is aligned correctly:

1. Overlap with repeats. As noted above, only pairs for which both reads map uniquely to the set of

contigs are used for scaffolding. Still, a read that fully or partially overlaps a genomic repeat may be

uniquely mapped to the incorrect location in case repeat copies are collapsed. We preprocess contigs

to annotate repeats from known repeat families and by recording the location of multimapped reads.

An estimate of the repeat-based mapping probability prepr is found by taking the percentage of bases

of r aligned to non-repetitive portions of the contigs.

2. Contig coverage dissimilarity. Although sequencing coverage can have significant departures from

uniformity due to biases introduced in library preparation and sequencing, the average coverage of

adjacent contigs is expected to be similarly affected by such biases (all read alignments, including

randomly allocated non-unique alignments, are used for estimating computing average contig

coverages). If the two reads of r map to contigs i, respectively j, the coverage-based mapping

probability of r, pcovr , is defined as 1− |coveragei − coveragej |/(coveragei + coveragej).
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Note that factors such as repeat content of the sequenced genome and sequencing depth will determine

how informative repeat-based and coverage-based mapping probabilities are. Depending on these factors,

either prepr , pcovr , or their product may provide the most accurate estimate for pr. Mismatches and indels in

read alignments, that can be caused by sequencing errors or polymorphisms in the sequenced sample, can

easily be incorporated in the estimation of mapping probabilities.

Integer linear program. Our integer linear program maximizes the log-likelihood of scaffold orientation

using the following boolean variables:

– a binary variable Si for each contig i, with Si equal to 0 if the contig’s orientation remains the same

and Si = 1 if the contig’s orientation is flipped w.r.t. default orientation in the final scaffold.

– a binary variable Sij for each edge (i, j) ∈ E, which equals 0 if none or both ith and jth contigs are

flipped, and equals 1 if only one of them is flipped.

– binary variables Aij (respectively, Bij , Cij , and Dij) which are set to 1 if and only if an edge in state

A (respectively, B, C, or D) is used to connect contigs i and j (see Figure S1 in Additional file 1).

For any contig pair i and j, at most one of these variables can be one.

Let Ar
ij (respectively, Br

ij , C
r
ij or Dr

ij) denote the set of read pairs supporting state A (respectively, B, C,

or D), between the ith and jth contig. Define the constant Aw
ij by

Aw
ij =

∑
r∈Ar

ij

ln

(
pr

1− pr

)

with Bw
ij , C

w
ij and Dw

ij defined analogously.

We now ready to formulate the ILP for maximizing the log-likelihood of a scaffold orientation:

∑
(i,j)∈E

(Aw
ij ·Aij + Bw

ij ·Bij + Cw
ij · Cij + Dw

ij ·Dij) (2)

where

Sij ≤ Si + Sj Sij ≤ 2− Si − Sj (3)

Sij ≥ Sj − Si Sij ≥ Si − Sj (4)

Aij + Dij ≤ 1− Sij Bij + Cij ≤ Sij (5)

In this ILP, constraints (3-5) enforce agreement between contig orientation variables Si’s and edge

orientation variables Sij ’s, Aij ’s, Bij ’s, Cij ’s, and Dij ’s.
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Since eukaryotic genomes are linear, a valid scaffold orientation should not contain any cycles. The

constraints (5) already forbid 2-cycles. Additionally, 3-cycles are forbidden with the constraints shown in

Figure S2 in Additional file 1. Larger cycles generated in the ILP solution are broken heuristically because

it is infeasible to forbid all of them using explicit constraints.

Non-serial dynamic programming. For large mammalian genomes, the number of variables and

constraints is too large for solving the ILP (2)-(5) via standard solvers (SILP2 uses CPLEX [34] which is

available free of charge for academic institutions). We adopt the non-serial dynamic programming (NSDP)

paradigm to overcome this barrier and to optimally solve the problem. NSDP is based on the interaction

graph with nodes corresponding to ILP variables and edges corresponding to the ILP constraints – two

nodes are adjacent in the interaction graph if their associated variables appear together in the same

constraint. Through the NSDP process, variables are removed in the way that adjacent vertices can be

merged together [27]. The first step in NSDP is identifying weakly connected components of the

interaction graph. We find the 2- and 3-connected components of the interaction graph with efficient

algorithms and then we solve each component independently in such a way that the solutions can be

merged together to find the global solution.

All constraints (3-5) as well 3-cycle constraints connect Si’s following the edges of the scaffolding graph.

Therefore, the Si-nodes of the interaction graph for our ILP will have the same connectivity structure as

the scaffolding graph G = (V,E). As it has been noticed in [23], the scaffolding graph is a bounded-width

graph and should be well decomposable in 2- and 3-connected components. The SPQR-tree data structure

is employed to determine the decomposition order for 3-connected components the scaffolding graph [28].

The solution to each component of the scaffolding graph is found using a bottom up traversal through

which each component is solved 2 times: for similar and opposite orientations of the common nodes. The

objective value of each case is then entered into the objective of the parental component. Having the

solution of all components, top down DFS starting from the same root is performed to apply the chosen

solution for each component.

Below we illustrate the way how the solution is computed in stages through each of which the results of the

previous stage are combined to dynamically solve the problem. Obviously, an isolated connected

component will not influence other components. Moreover, it has been shown in [21] that 2-connected

components can be solved independently. As it can be seen in Figure 2(a), after removing the articulation

point (1-cut) to decompose the graph into 2-connected components, each component is solved with the
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same arbitrary direction assigned to the common node, and then the resulting solutions are collapsed into

the parent solution. The pre-assigned direction will never affect the parent solution since all contigs in the

scaffold can be flipped at the same time.

Still, 2-connected components can be very large, so we look for 2-cuts in order to decompose the graph into

significantly smaller 3-connected components. Figure 2(b) shows that splitting the two 2-cut nodes i and j

decomposes the graph into 3-connected components A and B. The ILP for component A is solved twice to

obtain

(1) the ILP solution sol00 in which the 2-cut nodes i and j are constrained to both have default

orientations;

(2) the ILP solution sol01 in which the 2-cut nodes i and j are constrained to have opposite orientations.

The two solutions are combined to solve the ILP for component B. The ILP objective for component B

should be updated by adding the term of sol00+(sol01-sol00) · Sij or, equivalently, the value sol00 should be

added to Aw
ij and Dw

ij and the value sol01 should be added to Bw
ij and Cw

ij . The overall solution is obtained

by identifying the common nodes of the components. In the example on Figure 2(b), the optimal solution

happens when 2-cut nodes have opposite directions. The corresponding solution of ILP for the component

A should be incorporated in the overall solution. When the scaffolding graph has 3-connected components

too large to handle, 3-cuts could also be used for decomposition.

The pseudo-code of the SILP2 NSDP algorithm for processing 3-connected components is given in Figure

3. SILP2 is different from SILP1 in the else clause – instead of solving ILP for each of four possible

combinations of assignments for Si and Sj as in SILP1, ILP is solved only two times for combinations

Si = 0 & Sj = 0 and Si = 0 & Sj = 1.

Thinning Heuristic. Unfortunatly the largest tri-connected component may still induce an ILP too large

for CPLEX to solve in a reasonable amount of time. In order to address this problem a thinning heuristic

is applied to the scaffolding graph. This scenario can be detected by setting a threshold on the maximum

number of contigs allowed in a tri-connected component. When a component exceeds the threshold the

number of read pairs necessary to induce an edge is increased by one and decomposition recomputed until

there is no component above the threshold.
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Results and Discussion

Datasets and Quality Measures

In order to asses the quality and scalability of our scaffolding tool we developed a testing framework which

closely mimics real world scaffolding problems. We utilized the Staphylococcus aureus (staph),

Rhodobacter sphaeroides (rhodo) genomes and chromosome 14 of HapMap individual NA12878 (chr14)

from the GAGE [14] assembly comparison. Finally, in a test case designed to stress scalability, contigs from

a draft assembly of individual NA12878 (NA) created by [35] were scaffolded using short-read data.

In all test cases the read pairs used for scaffolding are aligned against the contigs using bowtie2 [36]. Each

read in a pair was required to be aligned uniquely according to the default scoring scheme, for the pair to

be considered valid. Each scaffolder was given the same set of valid read pairs. Two of the leading external

scaffolding tools MIP [21] and OPERA [37] are used in this comparison. Although many other tools do

exist, these two are widely utilized and actively maintained.

The three small test cases are used to test both correctness and scalability of the scaffolding tool. In order

to test correctness, contigs simulating a draft assembly were created by placing gaps in the genome. The

contig and gap sizes were sampled uniformly at random from the collection of all the assemblies used in the

GAGE comparison. The procedure to generate the contigs was to alternatively sample with replacement

from the set of all contig sizes, and gap sizes. In this way a simulated scaffold can be generated so that the

position and relative orientation of all contigs and all gap sizes are known. The orientation of the simulated

contigs was randomized to prevent biases.

For each genome 10 replicates were created, all subsequent results are the average of the 10 replicates. By

creating simulated contigs with no assembly error, the accuracy of subsequent scaffolds can be evaluated

exactly. Although the contigs were simulated, real read pairs were aligned against them and used as input.

Table S1 in Additional File 1 describes the characteristics of each dataset.

The NA12878 test case was produced by simply using the contigs created in the SGA [35] assembler

publication. The read pairs were obtained from a different lab, however they were generated using the

same biological source material (ERP002490). Although more read pairs were available a random subset of

approximately 2x coverage was used.

Finally a simulated metagenomics test case was created to explore the feasibility of utilizing SILP2 to

scaffold metagenomes. This was created by artificially mixing the staph and rhodo contigs and reads at
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varying proportions.

A natural and common parameter present in all scaffolding algorithms in the bundle size, or the number of

read pairs spanning two contigs. This parameter is a natural control of sensitivity and specificity; requiring

more support increases specificity at the price of sensitivity and vice-versa. It should be noted that every

scaffolding tool tested, including SILP2 does not abide by the set parameter absolutely. Each method

raises it in order to ensure efficient operation. The simulated test cases were evaluated at several bundle

sizes to asses its effect on accuracy and scalability. The NA12878 test case was only evaluated at the

minimum feasible value due to resource constraints.

Accuracy

Calculating the accuracy of de novo assemblies or scaffolds is quite difficult. One of the key challenges is

deciding on the appropriate measure. In this comparison we elect to present several metrics which will

likely have different weight depending on the background and intention of the reader.

For the simulated contigs we treat scaffolding as a binary classification problem where methods attempt to

predict true adjacencies in the test dataset. The accuracy and sensitivity can be directly measured by

computing true positive, and false positive rates. One common summary is MCC, or Mathews Correlation

coefficient. This measure assess sensitivity and specificity simultaneously. In the context of scaffolding, this

measure illustrates how many correctly ordered and oriented scaffolds were created.

An alternative measure, commonly utilized in genome assembly comparison publications [14,38] is the

notion of corrected N50. Where N50 is the weighted mean scaffold size, the corrected N50 is the same

statistic after errors are removed. This can be computed exactly on simulated data, however an alignment

based approximation must be used on real test cases.

Finally the usefulness of a genome can also be measured by the number of identifiable biological features

captured. Here we capture this measure by recording the percentage of known genes that are found

contiguous in the scaffolds.

MCC

The MCC metric, as seen in Figure 4, indicates that SILP2 is able to correctly join the most contigs,

followed by OPERA and finally MIP. This order holds for all three simulated test cases. Interestingly all

three methods see a decrease in MCC on staph, but some have increases on rhodo and chr14. This trend

illustrates the difficult to define variables such as genome uniqueness, assembly and read error which can
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make smaller genomes more challenging that larger genomes.

While MCC is natural to a computer scientist its useful to a biologist is lacking because the content of the

contigs is ignored. A biologist typically asses a scaffold by the N50, Unfortunately this measure does not

reflect the accuracy of the scaffolds and rewards aggressive merging. Using MCC or its constituent

components as metrics gives greater clarity to the researcher comparing different tools.

N50

The most common metric found in genome assembly and scaffolding is N50. The most recent iteration of

benchmark projects have transformed this descriptive number into an accuracy measure by introducing

alignment based corrections. Here the scaffolds are aligned against a reference and miss-alignments are

interpreted as orientation, or placement errors. We have developed a more efficient implementation of the

correcting method developed by [38]. This enables the tool to be utilized on the NA12878 test case at the

cost of accuracy.

The true N50 value can be determined when using simulated contigs by breaking incorrect scaffolds, this

measure is denoted as TPN50. An analog to the TPN50 measure can be obtained by aligning the scaffolds

against the known reference. Scaffolds (and contigs) are broken at mis-assembled or mis-scaffolded regions.

This post-alignment metrics can be obtained from the assembly evaluation tool called QUAST [38] and it

is denoted as NA50.

Unfortunately the implementation of QUAST required more than 128GB of RAM to evaluate the NA12878

test case, and therefore could not be run. We wrote an alternative implementation of NA50 called ALN50

which is more efficient, but follows a similar framework. Both NA50 and ALN50 are found in Figure 5.

Although NA50 and ALN50 do not agree, they do indicate similar trends between methods. Therefore

ALN50 will be used henceforth. In the staph genome, OPERA is clearly the best performing tool, followed

by SILP2 and then MIP. However on the rhodo genome, SILP2 performs best, followed by OPERA then

MIP.

First the highest ALN50 is always found at bundle size 3 or 5. If the intent of the assembly is to maximize

N50 then clearly no algorithm should be run with bundle size less than 3. However, as it was pointed out

in both GAGE and QUAST [14,38], N50 is a misleading metric and alternative measures may be a better

judge.

Additionally it can be seen that both OPERA and SILP2 have approximately the same TPN50 in the staph

and chr14 test cases, however in rhodo, SILP2 clearly out-performs OPERA and MIP at all bundle sizes. It
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is not clear why SILP2 performs much better on rhodo, and approximately equivalent on the others.

For the complete genome SILP2, OPERA and MIP reported an N50 of 26,235, 39,366, 26,235 respectively.

This is consistent with the observations from the synthetic data sets.

Gene Reconstruction

An alternative measure of the completeness of a scaffold is the number of genes aligned against the

scaffold. For a given percentage of completeness the number of genes found in the corrected scaffold is an

indicator of the usefulness of the genome.

As seen in Table 1, SILP2 almost consistently equals or outperforms both OPERA and MIP at all bundle

sizes and for each genome. The difference between SILP2 and MIP is often quite small.

Runtime

One key advantage of SILP2 over other scaffolding tools is its speed and scalability. Table 2 gives the

runtime of SILP1, SILP2, OPERA and MIP on single-genome testcases. All experiments were conducted

on a Dell PowerEdge R815 server with quad 2.5GHz 16-core AMD Opteron 6380 processors and 256Gb

RAM running under Ubuntu 12.04 LTS. IBM ILOG CPLEX 12.5.0.0 was used as ILP solver through the

CPLEX Python API. Reported runtimes are only for the scaffolding portion of each program. Read

alignment and pre-processing steps are not included, but it was observed that all methods had comparable

pre-processing times.

On the staph, rhodo and chr14 datasets, it was observed that SILP2 was quicker at higher bundle sizes and

no worse than OPERA or MIP at lower bundle sizes. The NA12878 testcase was extremely challenging for

all methods and demonstrated the effect of heuristics on large test cases. It is clear from the reduced

runtimes that all 3 methods activate some sort of heuristic at lower bundle sizes. The difference between

SILP1 and SILP2 is evident at all bundle sizes.

The NA12878 genome was also scaffolded by SILP2 using 20x coverage reads, with a runtime of 18,205

seconds at bundle size 1. Negligable improvement in accuracy over the 2x dataset was observed. From

Table 2 it is clear that runtime increases with the complexity of the genome more so than the number of

read pairs.
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Metagenomics

Metagenomics is the study of genetic material recovered from heterogeneous mixtures often found in

nature. Just like in the de novo assembly of a single genome, the accuracy and size of the scaffolds is

critical to subsequent analysis steps. Our ILP based solution is flexible enough to include new constraints

and objectives to better serve this challenging scenario.

In order to test this hypothesis a simulated metagenomic dataset was created utilizing the staph and rhodo

genomes from the GAGE dataset. The simulated contigs used previously were mixed, and both sets of

reads were aligned with varying fractions (1.0, 9.5 0.25, 0.0) of staph reads present.

Again all three of the major scaffolding tools were tested, however additional weighting scenarios were

implemented in SILP2.

The runtime, MCC, SCFN50, TPN50 and ALN50 metrics are detailed for each of the compared methods

in Table 3. Also an additional scaffolding tool BAMBUS2 [39] was added to the comparison because it was

previously shown to work well in the metagenomic scaffolding context.

Interestingly all SILP2 variants fare much better than both OPERA, MIP and BAMBUS2 even with no

staph reads present (this differs from results in Figure 5 because the rhodo reads were aligned to both

staph and rhodo contigs). It is unclear is the different methodology used in SILP2 sets it apart, or if an

implementation quirk throws off the other scaffolders. However across all metrics SILP2 variants perform

the best.

In both SILP2 variants and MIP it is observed that the TPN50 decreases as fewer staph reads are utilized.

This is expected since there are fewer opportunities to connect staph contigs and both staph and rhodo

contigs are used in the calculation of N50. There is no major differences between the variants of SILP2.

The coverage based weight seems to improve MCC at the cost of a slightly lowered TPN50 when compared

to no weights.

This highly simplified test scenario is not designed to fully explore metagenomic scaffolding, rather to point

out an opportunity to further external genome scaffolding algorithms.

Conclusions

Scaffolding in an important step in the de novo assembly pipeline. Biologists rely on an accurate scaffold to

perform many types of analysis. The larger the scaffold the more useful it will be to them. Recent

advances in de novo assemblers has made it feasible to create draft assemblies for large mammalian

genomes. We believe the SILP2, coupled with the most recent scalable assemblers will produce the largest
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and most complete assemblies. This is made possible utilizing non-serial dynamic programming approach

to solve our robust ILP. The ILP formulation for the maximum likelihood model is shown to be flexible

enough to handle metagenomic samples.

The future work includes more thorough experimental validation of SILP2 and comparison BAMBUS2 [39]

on metagenomic samples. Also we are going to validate SILP2 using methodology and benchmarks from

recent paper [40].

List of abbreviations

• ILP - Integer Linear Programming

• MCC - Matthew’s correlation coefficient

• MIP - Mixed Integer Programming

• NSDP - Non-serial Dynamic Programming

• OGDF - Open Graph Drawing Framework

• SQPR - a tree data structure used in graph algorithms to represent the 3-connected components of a

graph [29]

Software and data availability

A reference implementation of SILP2 is provided at https://github.com/jim-bo/silp2. This implementation

relies on the CPLEX optimization library. The code used for generating most of the reported results,

including the implementation of the ALN50 metric, is available at https://github.com/jim-bo/scafathon.

The SILP2 source code along with a small test dataset can also be downloaded from

http://dna.engr.uconn.edu/software/SILP2.
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Figure 1: SILP2 Flowchart.
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Figure 2: (a) Graph decomposition into 2-connected components and solving ILP: Red (1-cut) node splits
the graph into two 2-connected components A and B. ILP is solved for each component separately. If the
direction of the cut node in the ILP solution for B is opposite to the one in the solution for A, then the
solution ofr B is inverted. Then ILP solutions for A and B are collapsed into the parent solution. (b)
Graph decomposition into two 3-connected components and solving ILP: Red and yellow (2-cut) nodes split
the graph into two 3-connected components A and B. ILP is solved for component A twice – for the same
and the opposite directions assigned to two 2-cut nodes. Then these two solutions are used in the objective
for the ILP of component B. Finally, ILP solutions for A and B are collapsed into the parent solution.

8

Figure 2: Solving the maximum likelihood ILP via graph decomposition. (a) Graph decomposition into
2-connected components: Red (1-cut) node splits the graph into two 2-connected components A and B. The
ILP is solved for each component separately. If the direction of the cut node in the ILP solution for B is
opposite to the one in the solution for A, then the solution of B is inverted. Then ILP solutions for A and
B are collapsed into the parent solution. (b) Graph decomposition into two 3-connected components: Red
and yellow (2-cut) nodes split the graph into two 3-connected components A and B. The ILP is solved for
component A twice – for the same and the opposite directions assigned to two 2-cut nodes. Then these
two solutions are used in the objective for the ILP of component B. Finally, ILP solutions for A and B are
collapsed into the parent solution.
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stack = [root of SPQR-tree]
visited = empty
while stack is not empty do
p = stack.pop()
for each child q of p do

if p not in visited then
stack.push(p)

end if
end for
if p is root then

solfinal = SOLVE(p.skeleton())
else

(i, j) = getcut(p, parent(p))
sol00 = SOLVE(p.skeleton(), Si = 0, Sj = 0)
sol01 = SOLVE(p.skeleton(), Si = 0, Sj = 1)
in parent(p), increase weights Aw

ij and Dw
ij by sol00,

and weights Bw
ij and Cw

ij by sol01
end if

end while
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Figure 3: SILP2’s NSDP algorithm for processing 3-connected components.

Figure 4: MCC of SILP2, OPERA, and MIP across bundle sizes for staph, rhodo, and chr14 datasets. At
bundle size 1 OPERA exceeded the allowed runtime of 2 days for the chr14 dataset.

20



0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

TPN50 NA50 ALN50 TPN50 NA50 ALN50 TPN50 NA50 ALN50

SILP2 OPERA MIP

b
as

e
s

method / metric

1

2

3

5

7

(a) staph

0

10000

20000

30000

40000

50000

60000

TPN50 NA50 ALN50 TPN50 NA50 ALN50 TPN50 NA50 ALN50

SILP2 OPERA MIP

b
as

e
s

method / metric

1

2

3

5

7

(b) rhodo

0

5000

10000

15000

20000

25000

TPN50 NA50 ALN50 TPN50 NA50 ALN50 TPN50 NA50 ALN50

SILP2 OPERA MIP

b
as

e
s

method / metric

1

2

3

5

7

(c) chr14

Figure 1: TPN50, ALN50 and NA50 as a function of bundle size for each simulated genome assembly. TPN50 is
obtained by breaking incorrect scaffolds, ALN50 is the post-alignment metric developed by this group and NA50
is Quast equivalent. OPERA was unable to run on bundle size 1 for chr14 test case and therefore no results are
reported. The colors indicated in the legend correspond to the bundle size 1 through 7.
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Figure 5: TPN50, ALN50 and NA50 as a function of bundle size for single-genome datasets. TPN50 is
obtained by breaking incorrect scaffolds, ALN50 is the post-alignment metric developed by us, and NA50
is the QUAST equivalent. The colors indicated in the legend correspond to the bundle size 1 through 7.
OPERA was unable to complete on bundle size 1 for chr14 dataset.
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genome bundle SILP2 OPERA MIP total

staph

1 1,727.70 1,168.50 1,545.00

2692
2 1,727.70 1,168.50 1,559.50
3 1,727.70 1,210.60 1,575.30
5 1,727.70 1,262.70 1,584.60
7 1,727.40 1,280.40 1,588.50

rhodo

1 2022.7 1618.6 1897.3

3067
2 2022.7 1618.6 1907
3 2022.6 1751.1 1894
5 2022.6 1834.2 1921.3
7 2022.6 1853.3 1933.3

chr14

1 350.9 - 349.6

529
2 352.00 330.10 350.40
3 352.40 336.90 350.40
5 352.40 337.50 351.70
7 352.40 337.60 3.00

NA12878 2x
1 30817 - 30817

34039
2 30850 30809 30849

Table 1: The number of reconstructed genes found in the corrected scaffolds for single-genome datasets. In
order for a gene to be considered reconstructed 90% of its sequence must be found in a contiguous scaffold.
Dashes (-) indicate the method was unable to complete and therefore the gene count could not be computed.

genome bundle SILP1 SILP2 OPERA MIP

staph

1 1237 6.4 2538.1 35.8
2 738 4.5 1456.5 17
3 305 4 878.5 12.834
5 142 3.9 386.9 10.54
7 51 4.3 241 10.115

rhodo

1 1134 10 2297 118.953
2 632 4.1 455.2 25.3
3 486 3.6 5.7 10.995
5 86 3.4 2 8.778
7 75 3 1.6 8.217

chr14

1 - 64.7 - 706.3
2 - 27.6 99.25 189.685
3 629 25.5 11 137.67
5 370 21.5 12 107.85
7 400 19.25 10.75 94.9875

NA12878 2x

1 - 55.2 - 89.3
2 - 1670 76.49 53.28
3 37751 3878 7875 121.61
5 27341 3183 4270 134.6
7 27470 3626 2180 125.66

Table 2: Runtime (in seconds) for scaffolding single-genome datasets. All timing was captured only during
the scaffolding phase of each tool, all read alignment and formatting procedures were excluded from timing.
The number is the average of 10 runs for each genome. A dash (-) indicated the tool was unable to complete
in the allotted time of 2 days for staph,rhodo,chr14 and 3 days for NA12878.
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METHOD FRAC STAPH RUNTIME SCFN50 ALN50 TPN50 MCC
SILP2 0 1.00 14.3 51,775.0 20,647 34,495 67.6
SILP2 0 0.50 13.3 50,450.0 20,103 36,356 69.1
SILP2 0 0.25 12.7 47,731.0 20,761 35,323 69.3
SILP2 0 0.00 11.5 21,753.0 13,948 15,649 39.9
SILP2 1 1.00 14.3 52,557.0 20,655 33,683 67.5
SILP2 1 0.50 13.8 48,701.0 20,337 35,750 69.0
SILP2 1 0.25 13.4 49,766.0 20,752 35,146 69.0
SILP2 1 0.00 11.0 21,925.0 13,847 15,511 39.3
SILP2 2 1.00 14.3 43,144.0 20,631 31,160 66.3
SILP2 2 0.50 13.5 42,244.0 20,198 32,477 67.5
SILP2 2 0.25 13.2 45,137.0 21,161 31,562 67.6
SILP2 2 0.00 10.8 22,190.0 13,813 16,205 41.6
SILP2 3 1.00 14.1 43,646.0 19,998 28,856 65.3
SILP2 3 0.50 13.2 41,893.0 19,790 30,504 66.6
SILP2 3 0.25 13.0 42,188.0 19,945 30,449 66.4
SILP2 3 0.00 11.5 21,820.0 13,781 15,635 40.0
OPERA 1.00 2247.2 15,573.0 13,082 10,386 10.1
OPERA 0.50 1567.6 13,928.0 12,006 10,440 10.7
OPERA 0.25 884.0 14,786.0 12,617 10,507 10.5
OPERA 0.00 544.3 11,121.0 10,720 10,273 4.9

MIP 1.00 129.9 20,104.0 12,861 18,672 18.4
MIP 0.50 121.3 19,807.0 12,488 17,613 17.4
MIP 0.25 114.0 18,520.0 12,269 16,680 17.2
MIP 0.00 114.1 12,690.0 10,894 12,434 8.7

BAMBUS2 1.00 1025.89 11,251.0 11,238 - -
BAMBUS2 0.50 1452.75 10,781.0 10,822 - -
BAMBUS2 0.25 1676.75 10,806.0 10,834 - -
BAMBUS2 0.00 2272 11,526.0 11,698 - -

Table 3: Combined runtime and accuracy results for the simulated low-complexity metagenome datasets.
The second column indicates the percentage of total read pairs used from the staph genome testcase, all
of the rhodo pairs were used. SCFN50 is the uncorrected N50 reported by each scaffolding tool. The N50
of the contigs alone is 10,339bp. The integer appended to SILP2 indicates the bundle weight; 0: none, 1:
coverage, 2: repeat, 3:coverage * repeat. All methods were run at bundle size 1, the reported number is the
average of 10 runs except for OPERA where 6 of the test cases exceeded runtime limits. TPN50 and MCC
were unable to be computed for BAMBUS2 because the generated AGP had a non-standard format.
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Supplementary figures, methods, and tables
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Figure S1: The four possible orientations of a read mate-pair linking two contigs i and j.
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S1 Contig ordering via bipartite matching

The solution to the ILP does not yield a scaffold, instead only gives the pairwise order and orientation of

the contigs (see Figure S3(a)). In order to find scaffolding, we need remove edges such that remaining

graph becomes a collection of paths. Naturally, we want to remove the least probable edges, i.e., lightest

edges. This problem can be solved efficiently by finding matching in the following bipartite graph

B = (V 1 ∪ V 2, E) where each vertex in V 1 corresponds to the 3’ end of a contig, each vertex in V 2 to the

5’ end of a contig, and each edge corresponds to an edge from ILP solution connecting the 5’ of its

beginning to the 3’ end of its end (see Figure S3(b)). Each edge in B has the same weight as in the ILP

solution. Obviously, any matching in B corresponds to a collection of paths and simple directed cycles (see

Figure S3(c)). Then from each cycle the lightest is deleted and we output the resulted set of paths.
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Figure S3: (a) Pairwise ordering obtained from ILP output. (b) The corresponding bipartite graph. (c)
The collection of simple paths and cycles in the bipartite matching. (d) The scaffold represented by a
collection of paths obtained by deletion of the lightest edges from simple cycles.

S2 Maximum likelihood gap-length estimation

Having the scaffold chains, gap sizes between consecutive contigs are estimated using the constraints

imposed by the paired-reads. This is the final step of scaffolding towards building finished genomes. As

shown in Figure S4, paired reads might spread over more than one gap in the scaffold path (green and red

edges). The maximum number of gaps spanned by a read highly depends on the read library inset size and

the minimum contig length. On the other hand, a single gap can be jumped over by multiple reads. Each

read indicates a total length for gaps expanded. Since different reads could indicate different lengths for

the same gap, we adopt the maximum likelihood (ML) approach provided in OPERA [1] to compute the

gap sizes.
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CONTIG  i CONTIG  i+1 CONTIG  i+2 CONTIG  i+3 

Figure S4: Paired reads connecting contigs in a scaffold chain: Blue reads span only one gap while the green
and red reads span two and three gaps, respectively.

Table S1: Summary statistics for the single-genome datasets used in the empirical evaluation. Staph, rhodo
and chr14 contigs were simulated by randomly selecting from the finished genome sequence contigs with
length distribution mathcing the length distribution of contigs assembled in [2]. The NA12878 contigs were
generated using the SGA assembler in [3].

Dataset Genome # Pair Read Avg. Read Physical
size contigs count size insert size cov. cov.

staph 2.9 MB 335 1.7 M 37 bp 3500 bp 43 X 2052 X
rhodo 4.6 MB 369 1 M 100 bp 3500 bp 43 X 761 X
chr14 107 MB 10355 11 M 100 bp 2500 bp 21 X 257 X

NA12878 2x 3.0 GB 583982 25 M 100 bp 2500 bp 2 X 21 X
NA12878 20x 3.0 GB 583982 160 M 100 bp 2500 bp 11 X 133 X
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