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The problem of interpreting biological data is often cast into a mathematical

optimization framework where a large body of existing computational theory and

practical techniques can be leveraged. While this strategy has been particularly

successful in the bioinformatics domain, the massive datasets generated by

high-throughput genomic technologies are challenging the scalability of even the

most advanced mathematical optimization algorithms. Indeed, as the cost per base

of of DNA sequencing has dropped precipitously, even outpacing Moore’s law, the

size of many bioinformatics problems has grown beyond the limit of existing

methods, necessitating new algorithms. This effect is felt even more acutely in the

burgeoning field of single cell biology where advances in microfluidics has rapidly

increased the ability of bench biologists to capture and sequence the genomes and

transcriptomes of hundreds of cells per experiment.

This dissertation presents novel computational method for answering three

distinct biological questions: genome scaffolding, biomarker selection, and

computational deconvolution of gene expression data from heterogeneous samples

assisted by single-cell expression data. Each method strives to balance

computational efficiency with the biological relevance of computed solutions.
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Preface

Next-generation sequencing, microarrays and other high-throughput technologies have

generated an enormous amount of biological data. Analysis of these large datasets

poses significant bioinformatics challenges and requires novel algorithms that are ac-

curate and scalable. Further compounding this challenge is the fact that new high-

throughput technologies are often error prone. The following body of work explores

the use of scalable optimization algorithms for three distinct bioinformatics problems.

Genome scaffolding. At the core of modern genetics studies is availability of the

genome sequence. There has been much work in developing scalable genome assem-

bly algorithms that are both accurate and capable of working with high-throughput

sequencing data. However it has been observed that extremely high-coverage, at a

higher cost, is necessary to obtain contigs long enough to be biological useful. One

key component of modern genome assembly pipelines is a scaffolding step whereby

assembled contigs are ordered and oriented relative to each other.

Integer linear programming (ILP) is a powerful combinatorial optimization tech-

nique that allows modeling and computing optimal solutions of complex real-world

problems. One drawback of this approach is that in the worst-case ILP solvers can

take exponential time. This work presents an ILP based solution to the scaffolding

problem that is both accurate and scalable. Scalability is achieved through the use

of Non-serial Dynamic Programming (NSDP), a technique which exploits the natural

sparsity of the problem to compute the optimal solution in stages.

Biomarker selection. Another classic bioinformatics problem made challenging

due to high-throughput data is the task of building predictive classification models.

There can be thousands to millions of potential features, commonly referred to as

biomarkers. Often a small yet maximally informative subset of biomarkers is desired

due to cost, performance issues, and the desire for simplicity. This problem is known

as feature selection.

Given a biological dataset there exists little a priori justification for choosing

a particular feature selection and classification algorithm. Experience or anecdotal



evidence is often used by bioinformatics researchers to choose an approach to apply

to a dataset. A comprehensive comparative study can explores the efficacy of various

feature selection and classification algorithms on diverse genomic datasets.

When there is missing data, and the data is binary with no replicates then the

problem becomes challenging. This scenario occurs when the features are curated

from literature and in-situ experiments (images). An additional practical challenge

is to identify the most informative markers given physical constraints dictated by

the technology used to interrogate the chosen markers such as the number of wells

available on one qPCR chip. We present an ILP feature selection algorithm that has

comparable performance to leading statistical approaches while keeping the ability to

add real-world constraints.

Single-cell assisted deconvolution. Whole transcriptome expression profiles

captured using high-throughput technologies often come from bulk biological samples

consisting of heterogeneous mixtures of cells. However, in many contexts it would

be beneficial to infer the expression profiles and concentrations of each constituent

cell-type. This problem is known as the gene expression deconvolution problem.

Existing deconvolution approaches often perform poorly when constituent cell-

types have highly similar expression profiles, e.g., when attempting to discern between

a progenitor cell and its recent progeny. The development of single-cell resolution

qPCR has allowed for the accurate survey of a small number of genes at the cellular

level. Initial work utilizing a quadratic programming (QP) formulation to exploit

single-cell qPCR data for deconvolution of heterogeneous bulk samples is presented.
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Chapter 1

Genome Scaffolding

Interest in de novo genome assembly has been renewed in the past decade due to

rapid advances in high-throughput sequencing (HTS) technologies which generate

relatively short reads resulting in highly fragmented assemblies consisting of con-

tigs.1 Additional long-range linkage information is typically used to orient, order,

and link contigs into larger structures referred to as scaffolds. Due to library prepa-

ration artifacts and erroneous mapping of reads originating from repeats, scaffolding

remainings a challenging problem. In this paper, we provide a scalable scaffolding

algorithm (SILP2) employing a maximum likelihood model capturing read mapping

uncertainty and/or non-uniformity of contig coverage which is solved using integer

linear programming. A Non-Serial Dynamic Programming (NSDP) paradigm is ap-

plied to render our algorithm useful in the processing of larger mammalian genomes.

To compare scaffolding tools, we employ novel quantitative metrics in addition to the

extant metrics in the field. We have also expanded the set of experiments to include

scaffolding of low-complexity metagenomic samples.

SILP2 achieves better scalability through a more efficient NSDP algorithm than

previous release of SILP. The results show that SILP2 compares favorably to previous

methods OPERA and MIP in both scalability and accuracy for scaffolding single

genomes of up to human size, and significantly outperforms them on scaffolding low-

1The results presented in this chapter are based on joint work with H. Salooti, I. Mandoiu and
A. Zelikovsky published in [62].
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complexity metagenomic samples.

Equipped with NSDP, SILP2 is able to scaffold large mammalian genomes, result-

ing in the longest and most accurate scaffolds. The ILP formulation for the maximum

likelihood model is shown to be flexible enough to handle metagenomic samples.

1.1 Motivation

De novo genome assembly is one of the best studied problems in bioinformatics.

Interest in the problem has been renewed in the past decade due to rapid advances

in high-throughput sequencing (HTS) technologies, which have orders of magnitude

higher throughput and lower cost compared to classic Sanger sequencing. Indeed,

top-of-the-line instruments from Illumina and Life Technologies are currently able to

generate in a single run billions of reads with an aggregate length of hundreds of

gigabases, at a cost of mere cents per megabase. However, most HTS technologies

generate relatively short reads, significantly increasing the computational difficulty

of the assembly problem. Despite much work on improved assembly algorithms for

HTS shotgun reads [104, 17, 32, 19, 57, 111], de novo assembly remains challenging,

often resulting in highly fragmented assemblies, see [4, 25, 61, 76, 80, 82, 96, 93]

for recent reviews and benchmarking results. For example, the recent Assemblathon

2 community effort to benchmark de novo genome assemblers [4] shows that the

performance of evaluated assemblers is highly variable from dataset to dataset and

generally degrades with the complexity of the sample.

To increase the utility of such fragmented assemblies, additional long-range linkage

information is typically used to orient, order, and link contigs into larger structures

referred to as scaffolds. Although long-range linkage information can be generated

using a variety of technologies, including Sanger sequencing of both ends of cloned

DNA fragments of up to hundreds of kilobases, Pacific Biosciences reads of up to

tens of kilobases [66], and optical maps [77], the most common type of data used in

scaffolding are HTS read pairs generated from DNA fragments with length ranging

between hundreds of bases to tens of kilobases.

10



While HTS read pairs are relatively easy to generate, the linkage information they

provide is noisy due to library preparation artifacts and erroneous mapping of reads

originating from repeats. The general scaffolding problem is known to be computa-

tionally NP-hard when linkage data contains errors [46]. Moreover, the associated

contig orientation and contig ordering problems are intractable as well: the orien-

tation problem is equivalent to finding a maximum bipartite subgraph, whereas the

ordering problem is similar to the Optimal Linear Arrangement problem, both of

which are NP-hard [27]. Due to the intractability of the problem, greedy heuris-

tics have been employed in practical scaffolding methods such as[46, 83]. Scaffolding

methods such as SOPRA [21] reduce the size of the problem by iteratively removing

inconsistent links and contigs, while MIP [92] heuristically partitions the biconnected

components of the scaffolding graph when they are too large to scaffold optimally by

mixed integer programming. In SLIQ [89], inequalities are derived from the geometry

of contigs to predict the orientation and ordering of adjacent contigs. To find a fea-

sible solution with minimum read pair inconsistency, OPERA [26] provides a novel

dynamic programming algorithm.

Algorithms based on explicit statistical models are currently gaining popularity

in the area of genome assembly [43], with notable advances in the use of maximum

likelihood (ML) methods for both contig assembly [75] and assembly evaluation [84].

In this paper we introduce a highly scalable algorithm based on likelihood maximiza-

tion for the scaffolding problem. The key step in our algorithm is the selection of

contig orientations and a set of read pairs consistent with these orientations (and

locally consistent with each other) such that the overall likelihood of selected pairs is

maximized. As in previous works [75, 84], the likelihood model we employ assumes

independence of the HTS read pairs. The currently implemented model takes into

account read mapping uncertainty due to overlap with annotated contig repeats as

well as variations in contig coverage. The model can be easily extended to incorpo-

rate sequencing errors and the distribution of insert lengths; currently we only use

the latter to eliminate read pairs with highly discordant insert length lower-bounds

and to compute ML estimates for the final gap lengths. Likelihood maximization is

11



formulated as an integer linear program (ILP). Unlike MIP [92], our ILP formulation

selects contig orientations and a set of locally consistent read pairs but neither explic-

itly orders the contigs nor fully guarantees global consistency of selected pairs. The

latter are achieved by decomposing the set of selected read pairs into linear paths via

bipartite matching.

Scalability of our algorithm, referred to as SILP2, is achieved by adopting a non-

serial dynamical programming (NSDP) approach [100]. Rather than solving one large

ILP, several smaller ILPs can be solved seperatly and composed to find the complete

and optimal solution. The order in which the smaller ILPs are solved is determined

by the 3-connected components of the underlying scaffolding graph, which can be

efficiently identified in linear time via the SPQR-tree data structure [42, 36].

Compared to the preliminary version of the algorithm published in [63], referred

to as SILP1, SILP2 is based on explicit formalization of likelihood maximization as

the optimization objective. We present experiments with several likelihood models

capturing read mapping uncertainty and/or non-uniformity of contig coverage. SILP2

also achieves higher scalability by using a more efficient NSDP algorithm than SILP1.

This greatly reduces the need for heuristics such as the hierarchical scaffolding ap-

proach of SILP1, whereby scaffolding is performed by progressively decreasing the

minimum bound on the size of read pair bundles. We have also expanded the set of

experiments to include scaffolding of low-complexity metagenomic samples. The re-

sults show that SILP2 compares favorably to previous methods OPERA and MIP in

both scalability and accuracy for scaffolding single genomes of up to human size, and

significantly outperforms them on scaffolding low-complexity metagenomic samples.

1.2 Methods

Given a set of contigs 𝐶 and a set of read pairs 𝑅, the scaffolding problem asks for

the most likely orientation of the contigs along with a partition of the contigs into

ordered sets connected by read pairs of 𝑅. The main steps of the SILP2 algorithm

are as follows (see Figure 1-1 for a high-level flowchart). We first map the read onto

12



contigs using Bowtie2 [54], disregarding pairing information in the mapping process.

Alignments are processed to extract read pairs for which both reads have unique

alignments, and the alignments are onto distinct contigs. A scaffolding graph is then

constructed with nodes corresponding to contigs and edges corresponding to extracted

read pairs. The scaffolding graph is partitioned into 3-connected components using

the SPQR tree data structure [42, 36] implemented in OGDF [20]. The maximum-

likelihood contig orientation is formulated as an ILP that is efficiently solved by ap-

plying non-serial dynamic programming based the SPQR tree data structure. Next,

scaffold chains are extracted from the ILP solution by using bipartite matching and

breaking remaining cycles. Finally, maximum likelihood estimates for the gap lengths

are obtained using quadratic programming. Below we detail the key steps of the algo-

rithm, including scaffolding graph construction, the maximum likelihood models used

for contig orientation and mapped read pair probability estimation, then we briefly

overview the orientation, the ILP formulation and the improved NSDP algorithm for

efficiently solving the ILP.

Scaffolding graph. The scaffolding problem is modeled with a scaffolding graph

𝐺 = (𝑉,𝐸), where each node 𝑖 ∈ 𝑉 represents a contig and each edge (𝑖, 𝑗) ∈ 𝐸

represents all read pairs whose two individual reads are mapped to the contigs 𝑖 and

𝑗, respectively. Each read in a pair is aligned either to the forward or reverse strand of

corresponding contig sequence, and this results in 4 possible configurations for a read

pair (denoted A, B, C, or D, see Figure 1-2) which can be modeled as a bidirected

edge [92, 26, 63]. Orientation of contigs and the bidirected orientation of edges should

agree (be concordant) with each other and should not result in any directed cycles

for linear genomes (e.g. eukaryotes).

Maximum likelihood scaffold graph orientation. As an intermediate step

towards solving the scaffolding problem, we consider the problem of determining an

orientation of the scaffolding graph, which includes choosing one of the two possible

orientations for each node (contig) 𝑖 ∈ 𝑉 as well as choosing for each edge (𝑖, 𝑗) ∈ 𝐸

one of the four bidirections that is concordant with the orientations of 𝑖 and 𝑗. A
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Figure 1-1: A flowchart describing the SILP workflow.

common way to reduce an inference problem to an optimization problem is to seek

a feasible solution with maximum likelihood. Let each observation, i.e., aligned read

pair 𝑟 ∈ 𝑅, have a probability 𝑝𝑟 of being correct. Any feasible contig orientation

𝑂 = 𝑂(𝐶) either agrees or disagrees with the read pair 𝑟. Let 𝑅𝑂 be the set of read

pairs agreeing with 𝑂. Assuming independence of observations, the likelihood of an

orientation 𝑂 can be written as

∏︁
𝑟∈𝑅𝑂

𝑝𝑟
∏︁

𝑟∈𝑅−𝑅𝑂

(1 − 𝑝𝑟) =
∏︁
𝑟∈𝑅

(1 − 𝑝𝑘)
∏︁
𝑟∈𝑅𝑂

(︂
𝑝𝑟

1 − 𝑝𝑟

)︂
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Figure 1-2: The four possible orientations of a read mate-pair linking two contigs 𝑖
and 𝑗.

and hence its log-likelihood is
∑︀

𝑟∈𝑅 ln(1 − 𝑝𝑟) +
∑︀

𝑟∈𝑅𝑂
ln( 𝑝𝑟

1−𝑝𝑟
). Since the first sum

does not depend on the orientation 𝑂, maximizing the log-likelihood is equivalent to

maximizing ∑︁
𝑟∈𝑅𝑂

ln

(︂
𝑝𝑟

1 − 𝑝𝑟

)︂
(1.1)

over all contig orientations 𝑂.

Mapping probability estimation. If 𝑝𝑟’s are assumed to be the same for all

read pairs, then the objective (1.1) reduces to maximization of the number of read

pairs that agree with the contig orientation 𝑂. We consider the following factors that

reduce the probability 𝑝𝑟 that read pair 𝑟 is aligned correctly:

1. Overlap with repeats. As noted above, only pairs for which both reads map

uniquely to the set of contigs are used for scaffolding. Still, a read that fully

or partially overlaps a genomic repeat may be uniquely mapped to the incor-

rect location in case repeat copies are collapsed. We preprocess contigs to

annotate repeats from known repeat families and by recording the location of

multimapped reads. An estimate of the repeat-based mapping probability 𝑝𝑟𝑒𝑝𝑟

is found by taking the percentage of bases of 𝑟 aligned to non-repetitive portions

of the contigs.
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2. Contig coverage dissimilarity. Although sequencing coverage can have signif-

icant departures from uniformity due to biases introduced in library prepara-

tion and sequencing, the average coverage of adjacent contigs is expected to

be similarly affected by such biases (all read alignments, including randomly

allocated non-unique alignments, are used for estimating computing average

contig coverages). If the two reads of 𝑟 map to contigs 𝑖, respectively 𝑗, the

coverage-based mapping probability of 𝑟, 𝑝𝑐𝑜𝑣𝑟 , is defined as 1 − |𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 −

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑗|/(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 + 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑗).

Note that factors such as repeat content of the sequenced genome and sequencing

depth will determine how informative repeat-based and coverage-based mapping prob-

abilities are. Depending on these factors, either 𝑝𝑟𝑒𝑝𝑟 , 𝑝𝑐𝑜𝑣𝑟 , or their product may pro-

vide the most accurate estimate for 𝑝𝑟. Mismatches and indels in read alignments,

that can be caused by sequencing errors or polymorphisms in the sequenced sample,

can easily be incorporated in the estimation of mapping probabilities.

Integer linear program. Our integer linear program maximizes the log-likelihood

of scaffold orientation using the following boolean variables:

– a binary variable 𝑆𝑖 for each contig 𝑖, with 𝑆𝑖 equal to 0 if the contig’s orientation

remains the same and 𝑆𝑖 = 1 if the contig’s orientation is flipped w.r.t. default

orientation in the final scaffold.

– a binary variable 𝑆𝑖𝑗 for each edge (𝑖, 𝑗) ∈ 𝐸, which equals 0 if none or both 𝑖th

and 𝑗th contigs are flipped, and equals 1 if only one of them is flipped.

– binary variables 𝐴𝑖𝑗 (respectively, 𝐵𝑖𝑗, 𝐶𝑖𝑗, and 𝐷𝑖𝑗) which are set to 1 if and

only if an edge in state 𝐴 (respectively, 𝐵, 𝐶, or 𝐷) is used to connect contigs

𝑖 and 𝑗 (see Figure 1-3). For any contig pair 𝑖 and 𝑗, at most one of these

variables can be one.

Let 𝐴𝑟
𝑖𝑗 (respectively, 𝐵𝑟

𝑖𝑗, 𝐶
𝑟
𝑖𝑗 or 𝐷𝑟

𝑖𝑗) denote the set of read pairs supporting state 𝐴

(respectively, 𝐵, 𝐶, or 𝐷), between the 𝑖th and 𝑗th contig. Define the constant 𝐴𝑤
𝑖𝑗
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by

𝐴𝑤
𝑖𝑗 =

∑︁
𝑟∈𝐴𝑟

𝑖𝑗

ln

(︂
𝑝𝑟

1 − 𝑝𝑟

)︂
with 𝐵𝑤

𝑖𝑗 , 𝐶𝑤
𝑖𝑗 and 𝐷𝑤

𝑖𝑗 defined analogously.
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Figure 1-3: ILP constraints forbiding 2-cycles.
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Figure 1-4: ILP constraints forbiding 3-cycles.

We now ready to formulate the ILP for maximizing the log-likelihood of a scaffold

orientation: ∑︁
(𝑖,𝑗)∈𝐸

(𝐴𝑤
𝑖𝑗 · 𝐴𝑖𝑗 + 𝐵𝑤

𝑖𝑗 ·𝐵𝑖𝑗 + 𝐶𝑤
𝑖𝑗 · 𝐶𝑖𝑗 + 𝐷𝑤

𝑖𝑗 ·𝐷𝑖𝑗) (1.2)

where

𝑆𝑖𝑗 ≤ 𝑆𝑖 + 𝑆𝑗 𝑆𝑖𝑗 ≤ 2 − 𝑆𝑖 − 𝑆𝑗 (1.3)

𝑆𝑖𝑗 ≥ 𝑆𝑗 − 𝑆𝑖 𝑆𝑖𝑗 ≥ 𝑆𝑖 − 𝑆𝑗 (1.4)

𝐴𝑖𝑗 + 𝐷𝑖𝑗 ≤ 1 − 𝑆𝑖𝑗 𝐵𝑖𝑗 + 𝐶𝑖𝑗 ≤ 𝑆𝑖𝑗 (1.5)
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In this ILP, constraints (1.3-1.5) enforce agreement between contig orientation

variables 𝑆𝑖’s and edge orientation variables 𝑆𝑖𝑗’s, 𝐴𝑖𝑗’s, 𝐵𝑖𝑗’s, 𝐶𝑖𝑗’s, and 𝐷𝑖𝑗’s.

Since eukaryotic genomes are linear, a valid scaffold orientation should not contain

any cycles. The constraints (1.5) already forbid 2-cycles. Additionally, 3-cycles are

forbidden with the constraints shown in Figure 1-4. Larger cycles generated in the

ILP solution are broken heuristically because it is infeasible to forbid all of them using

explicit constraints.

Non-serial dynamic programming. For large mammalian genomes, the num-

ber of variables and constraints is too large for solving the ILP (1.2)-(1.5) via standard

solvers (SILP2 uses CPLEX[48] which is available free of charge for academic institu-

tions). We adopt the non-serial dynamic programming (NSDP) paradigm to overcome

this barrier and to optimally solve the problem. NSDP is based on the interaction

graph with nodes corresponding to ILP variables and edges corresponding to the ILP

constraints – two nodes are adjacent in the interaction graph if their associated vari-

ables appear together in the same constraint. Through the NSDP process, variables

are removed in the way that adjacent vertices can be merged together [100]. The first

step in NSDP is identifying weakly connected components of the interaction graph.

We find the 2- and 3-connected components of the interaction graph with efficient

algorithms and then we solve each component independently in such a way that the

solutions can be merged together to find the global solution.

All constraints (1.3-1.5) as well 3-cycle constraints connect 𝑆𝑖’s following the edges

of the scaffolding graph. Therefore, the 𝑆𝑖-nodes of the interaction graph for our ILP

will have the same connectivity structure as the scaffolding graph 𝐺 = (𝑉,𝐸). As it

has been noticed in [26], the scaffolding graph is a bounded-width graph and should be

well decomposable in 2- and 3-connected components. The SPQR-tree data structure

is employed to determine the decomposition order for 3-connected components the

scaffolding graph [42]. The solution to each component of the scaffolding graph is

found using a bottom up traversal through which each component is solved 2 times:

for similar and opposite orientations of the common nodes. The objective value of

each case is then entered into the objective of the parental component. Having the
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solution of all components, top down DFS starting from the same root is performed

to apply the chosen solution for each component.

Below we illustrate the way how the solution is computed in stages through each of

which the results of the previous stage are combined to dynamically solve the problem.

Obviously, an isolated connected component will not influence other components.

Moreover, it has been shown in [92] that 2-connected components can be solved

independently. As it can be seen in Figure 1-5(a), after removing the articulation

point (1-cut) to decompose the graph into 2-connected components, each component

is solved with the same arbitrary direction assigned to the common node, and then the

resulting solutions are collapsed into the parent solution. The pre-assigned direction

will never affect the parent solution since all contigs in the scaffold can be flipped at

the same time.

Still, 2-connected components can be very large, so we look for 2-cuts in order

to decompose the graph into significantly smaller 3-connected components. Figure

1-5(b) shows that splitting the two 2-cut nodes 𝑖 and 𝑗 decomposes the graph into

3-connected components A and B. The ILP for component A is solved twice to obtain

(1) the ILP solution 𝑠𝑜𝑙00 in which the 2-cut nodes 𝑖 and 𝑗 are constrained to both

have default orientations;

(2) the ILP solution 𝑠𝑜𝑙01 in which the 2-cut nodes 𝑖 and 𝑗 are constrained to have

opposite orientations.

The two solutions are combined to solve the ILP for component B. The ILP objective

for component B should be updated by adding the term of 𝑠𝑜𝑙00+(𝑠𝑜𝑙01-𝑠𝑜𝑙00) ·𝑆𝑖𝑗 or,

equivalently, the value 𝑠𝑜𝑙00 should be added to 𝐴𝑤
𝑖𝑗 and 𝐷𝑤

𝑖𝑗 and the value 𝑠𝑜𝑙01 should

be added to 𝐵𝑤
𝑖𝑗 and 𝐶𝑤

𝑖𝑗 . The overall solution is obtained by identifying the common

nodes of the components. In the example on Figure 1-5(b), the optimal solution

happens when 2-cut nodes have opposite directions. The corresponding solution of

ILP for the component A should be incorporated in the overall solution. When the

scaffolding graph has 3-connected components too large to handle, 3-cuts could also

be used for decomposition.
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Figure 1-5: (a) Graph decomposition into 2-connected components: Red (1-cut)
node splits the graph into two 2-connected components A and B. The ILP is solved
for each component separately. If the direction of the cut node in the ILP solution
for B is opposite to the one in the solution for A, then the solution of B is inverted.
Then ILP solutions for A and B are collapsed into the parent solution. (b) Graph
decomposition into two 3-connected components: Red and yellow (2-cut) nodes split
the graph into two 3-connected components A and B. The ILP is solved for component
A twice – for the same and the opposite directions assigned to two 2-cut nodes. Then
these two solutions are used in the objective for the ILP of component B. Finally,
ILP solutions for A and B are collapsed into the parent solution.
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The pseudo-code of the SILP2 NSDP algorithm for processing 3-connected com-

ponents is given in Figure 1-5. SILP2 is different from SILP1 in the else clause –

instead of solving ILP for each of four possible combinations of assignments for 𝑆𝑖

and 𝑆𝑗 as in SILP1, ILP is solved only two times for combinations 𝑆𝑖 = 0 & 𝑆𝑗 = 0

and 𝑆𝑖 = 0 & 𝑆𝑗 = 1.

Thinning Heuristic. Unfortunatly the largest tri-connected component may

still induce an ILP too large for CPLEX to solve in a reasonable amount of time.

In order to address this problem a thinning heuristic is applied to the scaffolding

graph. This scenario can be detected by setting a threshold on the maximum number

of contigs allowed in a tri-connected component. When a component exceeds the

threshold the number of read pairs necessary to induce an edge is increased by one

and decomposition recomputed until there is no component above the threshold.

1.3 Results and Discussion

1.3.1 Datasets and Quality Measures

In order to asses the quality and scalability of our scaffolding tool we developed a

testing framework which closely mimics real world scaffolding problems. We utilized

the Staphylococcus aureus (staph), Rhodobacter sphaeroides (rhodo) genomes and

chromosome 14 of HapMap individual NA12878 (chr14) from the GAGE [93] assembly

comparison. Finally, in a test case designed to stress scalability, contigs from a draft

assembly of individual NA12878 (NA) created by [103] were scaffolded using short-

read data.

In all test cases the read pairs used for scaffolding are aligned against the contigs

using bowtie2 [54]. Each read in a pair was required to be aligned uniquely according

to the default scoring scheme, for the pair to be considered valid. Each scaffolder was

given the same set of valid read pairs. Two of the leading external scaffolding tools

MIP [92] and OPERA [26] are used in this comparison. Although many other tools

do exist, these two are widely utilized and actively maintained.
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The three small test cases are used to test both correctness and scalability of

the scaffolding tool. In order to test correctness, contigs simulating a draft assembly

were created by placing gaps in the genome. The contig and gap sizes were sampled

uniformly at random from the collection of all the assemblies used in the GAGE

comparison. The procedure to generate the contigs was to alternatively sample with

replacement from the set of all contig sizes, and gap sizes. In this way a simulated

scaffold can be generated so that the position and relative orientation of all contigs

and all gap sizes are known. The orientation of the simulated contigs was randomized

to prevent biases.

For each genome 10 replicates were created, all subsequent results are the aver-

age of the 10 replicates. By creating simulated contigs with no assembly error, the

accuracy of subsequent scaffolds can be evaluated exactly. Although the contigs were

simulated, real read pairs were aligned against them and used as input. Table S1 in

Additional File 1 describes the characteristics of each dataset.

The NA12878 test case was produced by simply using the contigs created in the

SGA [103] assembler publication. The read pairs were obtained from a different lab,

however they were generated using the same biological source material (ERP002490).

Although more read pairs were available a random subset of approximately 2x cover-

age was used.

Finally a simulated metagenomics test case was created to explore the feasibility

of utilizing SILP2 to scaffold metagenomes. This was created by artificially mixing

the staph and rhodo contigs and reads at varying proportions.

A natural and common parameter present in all scaffolding algorithms in the bun-

dle size, or the number of read pairs spanning two contigs. This parameter is a natural

control of sensitivity and specificity; requiring more support increases specificity at

the price of sensitivity and vice-versa. It should be noted that every scaffolding

tool tested, including SILP2 does not abide by the set parameter absolutely. Each

method raises it in order to ensure efficient operation. The simulated test cases were

evaluated at several bundle sizes to asses its effect on accuracy and scalability. The

NA12878 test case was only evaluated at the minimum feasible value due to resource
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constraints.

1.3.2 Accuracy

Calculating the accuracy of de novo assemblies or scaffolds is quite difficult. One of

the key challenges is deciding on the appropriate measure. In this comparison we

elect to present several metrics which will likely have different weight depending on

the background and intention of the reader.

For the simulated contigs we treat scaffolding as a binary classification problem

where methods attempt to predict true adjacencies in the test dataset. The accuracy

and sensitivity can be directly measured by computing true positive, and false posi-

tive rates. One common summary is MCC, or Mathews Correlation coefficient. This

measure assess sensitivity and specificity simultaneously. In the context of scaffold-

ing, this measure illustrates how many correctly ordered and oriented scaffolds were

created.

An alternative measure, commonly utilized in genome assembly comparison pub-

lications [93, 35] is the notion of corrected N50. Where N50 is the weighted mean

scaffold size, the corrected N50 is the same statistic after errors are removed. This can

be computed exactly on simulated data, however an alignment based approximation

must be used on real test cases.

Finally the usefulness of a genome can also be measured by the number of iden-

tifiable biological features captured. Here we capture this measure by recording the

percentage of known genes that are found contiguous in the scaffolds.

MCC

The MCC metric, as seen in Figure 1-6, indicates that SILP2 is able to correctly join

the most contigs, followed by OPERA and finally MIP. This order holds for all three

simulated test cases. Interestingly all three methods see a decrease in MCC on staph,

but some have increases on rhodo and chr14. This trend illustrates the difficult to

define variables such as genome uniqueness, assembly and read error which can make
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Figure 1-6: MCC for SILP2, OPERA and MIP across bundle sizes and all three
simulated assemblies staph, rhodo, chr14. Note at bundle size 1 for chr14 OPERA
exceeded the allowed runtime of 2 days and did not complete.

smaller genomes more challenging that larger genomes.

While MCC is natural to a computer scientist its useful to a biologist is lacking

because the content of the contigs is ignored. A biologist typically asses a scaffold

by the N50, Unfortunately this measure does not reflect the accuracy of the scaffolds

and rewards aggressive merging. Using MCC or its constituent components as metrics

gives greater clarity to the researcher comparing different tools.

N50

The most common metric found in genome assembly and scaffolding is N50. The most

recent iteration of benchmark projects have transformed this descriptive number into

an accuracy measure by introducing alignment based corrections. Here the scaffolds

are aligned against a reference and miss-alignments are interpreted as orientation, or

placement errors. We have developed a more efficient implementation of the correcting

method developed by [35]. This enables the tool to be utilized on the NA12878 test
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case at the cost of accuracy.

The true N50 value can be determined when using simulated contigs by break-

ing incorrect scaffolds, this measure is denoted as TPN50. An analog to the TPN50

measure can be obtained by aligning the scaffolds against the known reference. Scaf-

folds (and contigs) are broken at mis-assembled or mis-scaffolded regions. This post-

alignment metrics can be obtained from the assembly evaluation tool called QUAST

[35] and it is denoted as NA50.

Unfortunately the implementation of QUAST required more than 128GB of RAM

to evaluate the NA12878 test case, and therefore could not be run. We wrote an

alternative implementation of NA50 called ALN50 which is more efficient, but follows

a similar framework. Both NA50 and ALN50 are found in Figure 1-7. Although

NA50 and ALN50 do not agree, they do indicate similar trends between methods.

Therefore ALN50 will be used henceforth. In the staph genome, OPERA is clearly

the best performing tool, followed by SILP2 and then MIP. However on the rhodo

genome, SILP2 performs best, followed by OPERA then MIP.

First the highest ALN50 is always found at bundle size 3 or 5. If the intent of the

assembly is to maximize N50 then clearly no algorithm should be run with bundle

size less than 3. However, as it was pointed out in both GAGE and QUAST [35, 93],

N50 is a misleading metric and alternative measures may be a better judge.

Additionally it can be seen that both OPERA and SILP2 have approximately the

same TPN50 in the staph and chr14 test cases, however in rhodo, SILP2 clearly out-

performs OPERA and MIP at all bundle sizes. It is not clear why SILP2 performs

much better on rhodo, and approximately equivalent on the others.

For the complete genome SILP2, OPERA and MIP reported an N50 of 26,235,

39,366, 26,235 respectively. This is consistent with the observations from the synthetic

data sets.

Gene Reconstruction

An alternative measure of the completeness of a scaffold is the number of genes

aligned against the scaffold. For a given percentage of completeness the number of
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Figure 1-7: TPN50 is obtained by breaking incorrect scaffolds, ALN50 is the post-
alignment metric developed by us, and NA50 is the QUAST equivalent. The colors
indicated in the legend correspond to the bundle size 1 through 7. OPERA was
unable to complete on bundle size 1 for chr14 dataset.
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Table 1.1: In order for a gene to be considered reconstructed 90% of its sequence
must be found in a contiguous scaffold. Dashes (-) indicate the method was unable
to complete and therefore the gene count could not be computed.

genome bundle SILP2 OPERA MIP total

staph

1 1,727.70 1,168.50 1,545.00

2692
2 1,727.70 1,168.50 1,559.50
3 1,727.70 1,210.60 1,575.30
5 1,727.70 1,262.70 1,584.60
7 1,727.40 1,280.40 1,588.50

rhodo

1 2022.7 1618.6 1897.3

3067
2 2022.7 1618.6 1907
3 2022.6 1751.1 1894
5 2022.6 1834.2 1921.3
7 2022.6 1853.3 1933.3

chr14

1 350.9 - 349.6

529
2 352.00 330.10 350.40
3 352.40 336.90 350.40
5 352.40 337.50 351.70
7 352.40 337.60 3.00

NA12878 2x 1 30817 - 30817 340392 30850 30809 30849

genes found in the corrected scaffold is an indicator of the usefulness of the genome.

As seen in Table 1.1, SILP2 almost consistently equals or outperforms both

OPERA and MIP at all bundle sizes and for each genome. The difference between

SILP2 and MIP is often quite small.

Runtime

One key advantage of SILP2 over other scaffolding tools is its speed and scalability.

Table 1.2 gives the runtime of SILP1, SILP2, OPERA and MIP on single-genome

testcases. All experiments were conducted on a Dell PowerEdge R815 server with

quad 2.5GHz 16-core AMD Opteron 6380 processors and 256Gb RAM running under

Ubuntu 12.04 LTS. IBM ILOG CPLEX 12.5.0.0 was used as ILP solver through

the CPLEX Python API. Reported runtimes are only for the scaffolding portion of

each program. Read alignment and pre-processing steps are not included, but it was

observed that all methods had comparable pre-processing times.
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Table 1.2: All timing was captured only during the scaffolding phase of each tool, all
read alignment and formatting procedures were excluded from timing. The number
is the average of 10 runs for each genome. A dash (-) indicated the tool was unable to
complete in the allotted time of 2 days for staph,rhodo,chr14 and 3 days for NA12878.

genome bundle SILP1 SILP2 OPERA MIP

staph

1 1237 6.4 2538.1 35.8
2 738 4.5 1456.5 17
3 305 4 878.5 12.834
5 142 3.9 386.9 10.54
7 51 4.3 241 10.115

rhodo

1 1134 10 2297 118.953
2 632 4.1 455.2 25.3
3 486 3.6 5.7 10.995
5 86 3.4 2 8.778
7 75 3 1.6 8.217

chr14

1 - 64.7 - 706.3
2 - 27.6 99.25 189.685
3 629 25.5 11 137.67
5 370 21.5 12 107.85
7 400 19.25 10.75 94.9875

NA12878 2x

1 - 55.2 - 89.3
2 - 1670 76.49 53.28
3 37751 3878 7875 121.61
5 27341 3183 4270 134.6
7 27470 3626 2180 125.66

On the staph, rhodo and chr14 datasets, it was observed that SILP2 was quicker

at higher bundle sizes and no worse than OPERA or MIP at lower bundle sizes. The

NA12878 testcase was extremely challenging for all methods and demonstrated the

effect of heuristics on large test cases. It is clear from the reduced runtimes that all 3

methods activate some sort of heuristic at lower bundle sizes. The difference between

SILP1 and SILP2 is evident at all bundle sizes.

The NA12878 genome was also scaffolded by SILP2 using 20x coverage reads, with

a runtime of 18,205 seconds at bundle size 1. Negligable improvement in accuracy

over the 2x dataset was observed. From Table 1.2 it is clear that runtime increases

with the complexity of the genome more so than the number of read pairs.

28



1.3.3 Metagenomics

Metagenomics is the study of genetic material recovered from heterogeneous mixtures

often found in nature. Just like in the de novo assembly of a single genome, the

accuracy and size of the scaffolds is critical to subsequent analysis steps. Our ILP

based solution is flexible enough to include new constraints and objectives to better

serve this challenging scenario.

In order to test this hypothesis a simulated metagenomic dataset was created

utilizing the staph and rhodo genomes from the GAGE dataset. The simulated contigs

used previously were mixed, and both sets of reads were aligned with varying fractions

(1.0, 9.5 0.25, 0.0) of staph reads present.

Again all three of the major scaffolding tools were tested, however additional

weighting scenarios were implemented in SILP2.

The runtime, MCC, SCFN50, TPN50 and ALN50 metrics are detailed for each of

the compared methods in Table 1.3. Also an additional scaffolding tool BAMBUS2

[52] was added to the comparison because it was previously shown to work well in

the metagenomic scaffolding context.

Interestingly all SILP2 variants fare much better than both OPERA, MIP and

BAMBUS2 even with no staph reads present (this differs from results in Figure 1-7

because the rhodo reads were aligned to both staph and rhodo contigs). It is unclear

is the different methodology used in SILP2 sets it apart, or if an implementation quirk

throws off the other scaffolders. However across all metrics SILP2 variants perform

the best.

In both SILP2 variants and MIP it is observed that the TPN50 decreases as

fewer staph reads are utilized. This is expected since there are fewer opportunities to

connect staph contigs and both staph and rhodo contigs are used in the calculation

of N50. There is no major differences between the variants of SILP2. The coverage

based weight seems to improve MCC at the cost of a slightly lowered TPN50 when

compared to no weights.

This highly simplified test scenario is not designed to fully explore metagenomic
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scaffolding, rather to point out an opportunity to further external genome scaffolding

algorithms.

1.4 Conclusions

Scaffolding in an important step in the de novo assembly pipeline. Biologists rely on

an accurate scaffold to perform many types of analysis. The larger the scaffold the

more useful it will be to them. Recent advances in de novo assemblers has made it

feasible to create draft assemblies for large mammalian genomes. We believe that

SILP2, coupled with the most recent scalable assemblers will produce the largest and

most complete assemblies. This is made possible utilizing non-serial dynamic pro-

gramming approach to solve our robust ILP. The ILP formulation for the maximum

likelihood model is shown to be flexible enough to handle metagenomic samples.

The future work includes more thorough experimental validation of SILP2 and

comparison BAMBUS2 [52] on metagenomic samples. Also we are going to validate

SILP2 using the methodology and benchmarks from the recently published compar-

ative study [45].
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Table 1.3: The second column indicates the percentage of total read pairs used from
the staph genome testcase, all of the rhodo pairs were used. SCFN50 is the un-
corrected N50 reported by each scaffolding tool. The N50 of the contigs alone is
10,339bp. The integer appended to SILP2 indicates the bundle weight; 0: none, 1:
coverage, 2: repeat, 3:coverage * repeat. All methods were run at bundle size 1, the
reported number is the average of 10 runs except for OPERA where 6 of the test
cases exceeded runtime limits. TPN50 and MCC were unable to be computed for
BAMBUS2 because the generated AGP had a non-standard format.

METHOD FRAC STAPH RUNTIME SCFN50 ALN50 TPN50 MCC
SILP2_0 1.00 14.3 51,775.0 20,647 34,495 67.6
SILP2_0 0.50 13.3 50,450.0 20,103 36,356 69.1
SILP2_0 0.25 12.7 47,731.0 20,761 35,323 69.3
SILP2_0 0.00 11.5 21,753.0 13,948 15,649 39.9
SILP2_1 1.00 14.3 52,557.0 20,655 33,683 67.5
SILP2_1 0.50 13.8 48,701.0 20,337 35,750 69.0
SILP2_1 0.25 13.4 49,766.0 20,752 35,146 69.0
SILP2_1 0.00 11.0 21,925.0 13,847 15,511 39.3
SILP2_2 1.00 14.3 43,144.0 20,631 31,160 66.3
SILP2_2 0.50 13.5 42,244.0 20,198 32,477 67.5
SILP2_2 0.25 13.2 45,137.0 21,161 31,562 67.6
SILP2_2 0.00 10.8 22,190.0 13,813 16,205 41.6
SILP2_3 1.00 14.1 43,646.0 19,998 28,856 65.3
SILP2_3 0.50 13.2 41,893.0 19,790 30,504 66.6
SILP2_3 0.25 13.0 42,188.0 19,945 30,449 66.4
SILP2_3 0.00 11.5 21,820.0 13,781 15,635 40.0
OPERA 1.00 2247.2 15,573.0 13,082 10,386 10.1
OPERA 0.50 1567.6 13,928.0 12,006 10,440 10.7
OPERA 0.25 884.0 14,786.0 12,617 10,507 10.5
OPERA 0.00 544.3 11,121.0 10,720 10,273 4.9

MIP 1.00 129.9 20,104.0 12,861 18,672 18.4
MIP 0.50 121.3 19,807.0 12,488 17,613 17.4
MIP 0.25 114.0 18,520.0 12,269 16,680 17.2
MIP 0.00 114.1 12,690.0 10,894 12,434 8.7

BAMBUS2 1.00 1025.89 11,251.0 11,238 - -
BAMBUS2 0.50 1452.75 10,781.0 10,822 - -
BAMBUS2 0.25 1676.75 10,806.0 10,834 - -
BAMBUS2 0.00 2272 11,526.0 11,698 - -
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Chapter 2

Biomarker Selection and Predictive

Modeling

There is an ever-expanding range of technologies that generate very large numbers

of biomarkers for research and clinical applications.1 Choosing the most informative

biomarkers from a high-dimensional data set, combined with identifying the most

reliable and accurate classification algorithms to use with that biomarker set, can be

a daunting task. Existing surveys of feature selection and classification algorithms

typically focus on a single data type, such as gene expression micro-arrays, and rarely

explore the model’s performance across multiple biological data types.

This paper presents the results of a large scale empirical study whereby a large

number of popular feature selection and classification algorithms are used to identify

the tissue of origin for the NCI-60 cancer cell lines. A computational pipeline was

implemented to optimally tune and evaluate the performance of each pair of feature

selection and classification methods on five different data types available for the NCI-

60 cell lines in models exploiting both large and small numbers of biomarkers.

As expected, the data type and number of biomarkers have a significant effect on

the performance of the predictive models. Although no model or data type uniformly

outperforms the others across the entire range of tested numbers of markers, several

1The results presented in this chapter are based on joint work with E. Hemphill, C. Lee, I.I.
Mandoiu, and C.E. Nelson published in [40].
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clear trends are visible. At low numbers of biomarkers gene and protein expression

data types are able to differentiate between cancer cell lines significantly better than

the other three data types, namely SNP, array comparative genome hybridization

(aCGH), and microRNA data. Interestingly, as the number of selected biomarkers

increases best performing classifiers based on SNP data match or slightly outperform

those based on gene and protein expression, while those based on aCGH and mi-

croRNA data continue to perform the worst. It is observed that one class of feature

selection and classifier are consistently top performers across data types and number

of markers, suggesting that well performing feature-selection/classifier pairings are

likely to be robust in biological classification problems regardless of the data type

used in the analysis.

2.1 Motivation

Due to the recent rise of big-data in biology, predictive models based on small panels

of biomarkers are becoming increasingly important in clinical, translational and basic

biomedical research. In clinical applications such predictive models are increasingly

being used for diagnosis [1], patient stratification [44], prognosis [79], and treatment

response, among others.

Many types of biological data can be used to identify informative biomarker panels.

Common ones include micro-array based gene expression, microRNA, genomic copy

number, and SNP data, but the rise of new technologies including high-throughput

transcriptome sequencing (RNA-Seq) and mass spectrometry will continue to increase

the diversity of biomarker types readily available for biomarker mining.

Useful predictive models are typically restricted to use a small number of biomark-

ers that can be cost-effectively assayed in the lab [23]. The use of few biomarkers also

reduces the effects of over-fitting, particularly for limited amounts of training data

[72]. Once training data has been collected and appropriate procedures for normaliza-

tion of primary data have been defined, assembling a robust biomarker panel requires

the solution of two main computational problems: feature selection, to identify a short
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list of informative biomarkers, and classification, used to make predictions for new

samples based on patterns extracted from the training data. Both of these steps have

been explored extensively in the statistics and machine learning literature, and many

alternative algorithms are available for each. Due to the sheer number of available

choices and the lack of predictable interactions between feature selection method,

classification algorithm, and data type, assembling the most robust biomarker assay

for a given biomedical application is rarely undertaken systematically. Rather, it is

more often driven by the intuition and a priori preferences of the statistician.

Available feature selection methods can be grouped into three broad categories:

filter, wrapper and embedded. Filtering approaches use an easy to calculate metric

which allows quick ranking of the features, with top ranking features being selected.

Wrapper methods use a classification algorithm to interrogate the effect of various

biomarker subsets. Embedded approaches are classification algorithms which elimi-

nate features as part of the training process. Recent studies [39, 53, 55] investigated

the influence of feature selection algorithms on the performance of predictive mod-

els and provided a framework for thorough comparison of approaches. However the

effect of the number of biomarkers selected and high-dimensional data type was not

explored.

There are hundreds of publications describing classification algorithms and their

applications to genetic research and medicine. Many publications advocating a new

method employ a limited comparison between similar approaches. However non-

uniform validation strategies make it difficult to assess performance of a wide variety

of approaches. A previous study compared both classification and feature selection

approaches in a unified framework [55], however the effect of biological data type was

not explored, but it was observed that the biological question does have an effect on

the best model. Additionally most comparisons typically overlook the effect of model

parametrization even though the choice of parameters can have profound effects on

performance.

This work presents a large scale empirical comparison of the effects of the the in-

teraction between the main components of the predictive model (i.e., feature selection
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and classification algorithms), the number of features utilized, and the underlying data

type on the performance of the overall model. This study also implements exhaustive

parametrization of all models to ensure a fair comparison between models.

In order to test the performance of the large number of models tested in this study,

and in order to be able to run direct comparisons of the models on different biological

data types, we took advantage of the publicly available NCI-60 cancer cell line data

set [85]. The NCI-60 cell line collection represents a carefully curated collection of

60 independent cancer cell lines derived from nine types of cancer occurring in 60

individual patients. Each line has been uniformly cultured and DNA fingerprinted

to ensure independence [67]. In addition, the NCI-60 cell lines have been subjected

to extensive molecular characterization including mRNA microarray [99], microRNA

[31], protein lysate arrays [99], SNP arrays [94], and aCGH analysis [109]. For these

reasons, the NCI-60 data set represents a tremendous research tool for exploring and

benchmarking Omics-type approaches to cancer classification and therapeutics.

Cancers are widely believed to derive from a single event in which one cell es-

capes the many surveillance mechanisms in place to prevent uncontrolled prolifera-

tion. Once this has occurred, the cancer often evolves quickly, rapidly acquiring large

numbers of mutations, ranging from small point mutations to very large chromosomal

aberrations and regional amplifications (DNA duplications). The original identity of

the cancer cell (its cell type or tissue type) appears to exert a very strong influence

on the course of evolution of the cancer. For this reason, characteristic mutations will

often be found in cancers derived from the same tissue, even in different patients. In

addition, because identical cell types from different patients will share very similar

gene expression signatures, cancers derived from these tissues will often do the same.

In the present study we take advantage of these two features of cancer to test the abil-

ity of various statistical models to correctly infer the cell type (or “tissue-of-origin”) of

each cancer cell line. The ability to make this inference correctly not only represents

an excellent test of these models on real biological data, it is a good example of the

type of classification ability required for targeted cancer therapeutics.
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2.1.1 Feature selection without replicates

In certain scenarious the biological dataset may contain no replicates, missing obser-

vation and binary information. A new feature selection approach utilizing a robust

ILP that is designed to work with manually curated cell type specific expression data

from the Stem Cell Lineage Database [41]. Also this particular data type has a lineage

or hierarchy defined based on the development of each cell type. Therefore this work

introduces a modified accuracy measure that is better suited for this scenario.

Typical notation for the biomarker selection problem is, given 𝑛 cell types with

associated 𝑝-marker expression profiles, it is desirable to find a subset of markers

that allows us to distinguish one cell type from another. This can be regarded as

a supervised feature selection problem [37], where each cell type forms a class of

one instance and the goal is to find a subset of markers achieving high classification

accuracy. However, due to the sparseness of the expression data in this context,

standard feature selection algorithms are not applicable. Let 𝐸 = (𝐸𝑖𝑗) be the 𝑛× 𝑝

expression matrix where 𝐸𝑖𝑗 ∈ {−1, 0, 1} and -1,0,1 denote that marker 𝑗 is absent,

unknown or present in cell type 𝑖 respectively. We denote by 𝐷𝑗(𝑖1, 𝑖2) the distance

between cell types 𝑖1 and 𝑖2 indexed by marker 𝑗. The distance is 0 if marker 𝑖1 or 𝑖2

is unknown or the expression is the same, 1 otherwise.

This problem is very similar to the classical minimum set covering problem (MSCP)

[78]. In the context of the MSCP, there are 𝑝 sets and set 𝑆𝑗 = {(𝑖1, 𝑖2)|𝑖1 <

𝑖2 and 𝐷𝑗(𝑖1, 𝑖2) = 1}. The goal is to find a smallest collection of sets, 𝐶, such

that
⋃︀

𝑆∈𝐶 𝑆 = {(𝑖1, 𝑖2)|𝑖1 < 𝑖2}. Table 2.1 shows an example 3-marker expression

profiles of 4 cell types. Based on this expression matrix, the 3 sets are listed in table

2.2, where 1 (0) denotes presence (absence) of a pair in a set. Set 𝑆𝑖 contains cell

type pairs that are separable by marker 𝑖. We can see that 𝑆1, 𝑆2 and 𝑆2, 𝑆3 are two

smallest collections of sets covering all the pairs. Although MSCP is known to be

NP-hard [50], it is still feasible to find an exact solution to this problem using ILP

since the number of informative markers will be small.

The size of the chosen subset, denoted by 𝜃, is typically not fixed a priori. However
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Marker
Cell Type 1 2 3

1 1 1 0
2 0 -1 0
3 1 1 0
4 0 0 1

Table 2.1: Example marker profile for 4 cell types and 3 markers. Typically 1 is
present, -1 absent and 0 is unknown.

Set
Cell Type Pair S1 S2 S3

(1, 2) 1 1 0
(1, 3) 0 1 0
(1, 4) 1 1 1
(2, 3) 1 1 0
(2, 4) 0 1 1
(3, 4) 1 0 1

Table 2.2: The sets induced by table 2.1

it is assumed that the size of 𝜃 is directly correlated to the cost of the resulting assay.

Therefore not only should the subset 𝑡ℎ𝑒𝑡𝑎 be maximally informative it should also

have minimal size and therefore cost. Typically the actual number of biomarkers are

fixed to certain sizes dictated by the physical format of the assay.

Finally while many biological questions are binary, or two-class, the prevalence

and relatively low cost of obtaining of high-throughput data has allowed for much

more complex questions to be asked. In the developmental context being explored

here there can be dozens of classes, which actually fall into a hierarchy. Typical

accuracy metrics such as the area under the receiver operator curve (AUROC) do

not utilize the hierarchical structure available. Intuitively miss classifying a sample

as its developmental neighbor should be penalized less than if it were classified in a

completely different lineage. Therefore this work explores a modification of AUROC

that is more appropriate when a cell type lineage is available.
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2.2 Methods

NCI-60 cancer cell-line dataset

In order to test the predictive models in this study we use publicly available data

from the NCI-60 cancer cell lines as provided by CellMiner [85]. For the purpose of

this study, we analyzed cancers with at least 5 representative cell lines derived from

the same tissue-of-origin (5-9 cell lines per tissue-of-origin). These lines represent

cancers emerging from eight tissues: breast, central nervous system, colon, leukemia,

melanoma, non-small cell lung, ovarian, and renal cancers. The data types used in this

study are gene expression (mRNA) and protein lysate (protein) arrays [99], microRNA

[31], SNP arrays [94], and array comparative genome hybridization (aCGH) [109]. All

data has been normalized according to best practices for each assay platform prior

to downloading for this study [85]. The specific cell lines and data files used in this

study can be found in Tables 2.6 and 2.7.

Feature selection methods

The area of feature selection in machine learning has recently been quite robust.

There are numerous specialized feature selection algorithms which identify the most

informative biomarkers from high-dimensional data. This study utilized at least one

approach from each of the three broad categories identified above (filter, wrapper,

and embedded). Every approach utilized allowed for a specific number of features

to be chosen. No requirement was established that induced a relationship between

feature sets from the same algorithm. So the 16 features chosen by one approach are

not required to be a subset of the 32 features chosen by the same. For all algorithms

we used the implementations in the Scikit-learn [81] Python package, please refer to

its associated documentation for specific implementation details.

The fastest and most simplistic selection method is univariate filtering. These

approaches rank features according to some score, and the user selects the best k

features accordingly. Here the F-statistic (Anova), a generalization of the t-test, is
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used as a filter, as suggested in [55] and [39]. There are no parameters for this feature

selection method.

Wrapper approaches typically use some type of greedy strategy to select influen-

tial features using a black box classifier. They are more computationally intensive,

however SVM recursive feature elimination (SVM-RFE) is extensively used in medi-

cal applications [38]. The parameters considered were the penalty parameter and loss

function.

The final class of feature selection algorithms is embedded approaches where the

features are chosen while building the classifier. To represent this class two tree-

based methods were adapted; random forest (RF) [87] and extra-trees (ET) [49]. The

parameter considered was the number of trees used in each approach.

A summary of parameters of all considered feature selection methods along with

the range of values searched for each parameter are given in Table 2.8.

Classification methods

An exhaustive comparison of all classification algorithms would be quite challenging.

Therefore only a small number of approaches was explored, chosen to represent most

common machine learning approaches used in bioinformatics. Identifying the cancer

type from the NCI-60 dataset is inherently a multi-category classification problem.

Therefore each considered approach must accommodate this setting or be adaptable

by one-vs-one [51] or equivalent approaches. The types of algorithms tested fall into

three main categories: linear, tree, and distance based methods. Again we used the

Scikit-learn [81] Python implementations for all compared classification algorithms.

Linear classifiers use a linear function to score classes by taking the dot product

of feature values and feature weights computed during training. One of the most

powerful, flexible and ubiquitous linear classifier is the support vector machine (SVM)

with linear kernel [3]. SVM has been utilized in numerous works describing predictive

models with biological and medical significance. Both the penalty and loss function

parameters were explored. Another powerful linear classifier is logistic regression

(LR) [60]. The specific implementation uses one-vs-all to accommodate the multi-

40



classification setting instead of the one-vs-one approach. The penalty function, and

regularization parameters were explored.

Classification trees are a machine learning tool which has found extensive use in

the biological and medical communities. This is partially due to both their resilience

to over-fitting and ease of interpretation. This work looks at three related approaches;

vanilla decision trees (DT) [5], random forest (RF) [49] and gradient boosting (GB)

[106]. Decision trees represent class labels as leaves in the tree and branches are

combinations of features that lead towards a leaf. Vanilla decision trees can often

over-complicate the explanation necessary to arrive at the appropriate class label,

however their interpretation is very simple. Random forest approach and gradient

boosting are ensemble learning techniques where multiple trees are created and the

final decision is some aggregate. These approaches are less-susceptible to over-fitting

however they are often computationally intensive. The common parameter explored

is the number of trees used and for gradient boosting the number of boosting stages.

Distance based methods surveyed are k-nearest neighbors (KNN), cosine (Cos)

and correlation (Corr). Cosine and correlation are simple classifiers which calculates

the distance to all training samples from the test sample and assigns the label based

on the closest match. KNN is a slightly more advanced version of the same concept

however only 𝑘 neighbors are considered.

A summary of parameters of all considered classification algorithms along with

the range of values searched for each parameter are given in Table 2.9.

Validation strategy

A common validation strategy used in evaluating machine-learning is 𝑘-fold cross-

validation [39, 55]. Here the data is partitioned into 𝑘 equal size subsets with each

set used in turn for testing while the other 𝑘−1 subsets are used as training data. Care

must be taken taken to avoid substantial biases [105] by ensuring feature selection is

performed only on the data reserved for training. Since the approach presented here

is also parameterizing for each distinct model, nested 𝑘-fold cross-validation is used

to tune parameter values. This requires an additional cross-validation experiment
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on each training dataset, where a grid-search over the considered parameter range is

performed. The inner phase identifies the best parameter values which are then used

exclusively in the outer cross-validation. In order to build stronger evidence for the

models performance, the outer cross-validation phase was repeated 100 times, how-

ever the parametrization was only performed in the first iteration. Biases towards

selecting more complex models with more parameters or overly fine grid-steps are

still a possibility, however nested cross-validation should largely mitigate them. More

advanced techniques presented in [18] could be utilized in future iterations. Classifi-

cation methods and embedded An outline of the validation strategy can be seen in

Figure 2-1

The nested 𝑘-fold cross-validation strategy is computationally very intensive. With

4×9 = 36 models (combinations of feature selection and classifier) to evaluate, dozens

of parameter values and different number of selected markers there can be upwards

of 1,000,000 individual classifier runs per data type. The majority of the jobs occur

in the inner cross-validation loop, and fortunately can all be run in parallel on a clus-

ter or multi-core server. Also, a pre-filtering heuristic was applied to speed up the

feature selection process. For all datasets with more than 1,000 features we retained

only the top 1,000 features as ranked by the F-statistic prior to any additional feature

selection.

To further validate the results on external datasets, eight primary tumor cohorts

from The Cancer Genome Atlas (TCGA) were identified to match five NCI-60 tissue-

of-origin cell lines; central nervous system, colon, non-small cell lung, ovarian, and

renal. The mapping of the TCGA cohorts to the NCI-60 cell lines can be found

in Table 2.10. The TCGA derived gene expression micro-array data was obtained

from the Broad Institute’s GDAC Firehose utility [7, 14, 9, 10, 11, 12, 6, 8, 13].

The presented pipeline was used to selection biomarkers, identify and train the most

informative model using NCI-60 data [64]. Then its performance was tested using

the TCGA derived data.
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Metrics

There are numerous metrics used in evaluating the accuracy of a predictive model.

One common metric is AUC, or area under the receiver operating characteristic (ROC)

curve. The ROC curve is a plot of the true positive rate against the false positive

rate. The AUC is then the area under this curve and is used as a single measurement

of classifier performance. This definition is typically for binary classification tasks,

however there are several extensions to multiclass classification problems [24]. Since

the classes are equally represented in the NCI-60 dataset this work utilizes the multi-

class metric, 𝐴𝑈𝐶𝑡𝑜𝑡𝑎𝑙 =
∑︀

𝑐𝑖∈𝐶 𝐴𝑈𝐶(𝑐𝑖) · 𝑝(𝑐𝑖), where 𝐴𝑈𝐶(𝑐𝑖) is the typical binary

classification AUC for class 𝑐𝑖 and 𝑝(𝑐𝑖) is the prevalence in the data of class 𝑐𝑖.

ILP feature selection without replicates

The following ILP is a solution to the feature selection problem in absence of repli-

cates. First an indicator variable 𝑥𝑗 ∈ {0, 1} is defined for all features. When set to 1

this variable indicates that its corresponding feature will be included in the solution

set. Another indicator variable 𝑦𝑖1,𝑖2 ∈ {0, 1} is defined for each 1 ≤ 𝑖1 ≤ 𝑖2 ≤ 𝑛.

This indicates if a particular pair of classes is covered by a given feature.

The ILP is defined as follows:

min
∑︀𝑝

𝑗=1 𝑥𝑗

s.t.
∑︀𝑝

𝑗=1 𝑥𝑗𝐷𝑗(𝑖1, 𝑖2) ≥ 𝑦𝑖1,𝑖2 ∀𝑖1, 𝑖2 = 1, ..., 𝑛, 𝑖1 < 𝑖2∑︀
1≤𝑖1<𝑖2≤𝑛 𝑦𝑖1,𝑖2 = 𝑟

The objective is to simply minimize the number of selected features. The first con-

straint ensures that when a feature is selected the pairwise coverage indicator vari-

able is also selected. The second constraint ensures all classes are covered with some

amount of redundancy when possible. It may occur that two classes are not distin-

guishable. The value of 𝑟 can be calculated using a brute force search of all class

pairs and all variables or by solving the maximum distinct points problem.
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This ILP will be continually re-run until the number of chosen features equals 𝜃 as

described in algorithm 1. After each iteration the chosen features are removed from

𝐷. It should be noted that given there are 𝑛 cell types, then atleast 𝑙𝑜𝑔𝑛 number

of features are necessary to discriminate between all pairs. However typically 𝑛 is

small, and the number of available features is large enough that it is necessary to

come up with a strategy to distribute the discriminating power. The above strategy

will not only choose the minimum number of features but every class will have equal

discriminating power.

After features are selected it is necessary to then create a predictive model to make

classifications of unknown samples. This work utilizes the minimum distance classifier

which assigns an unknown sample the label of the closest known sample according to

some distance metric.

Algorithm 1 ILP Feature Selection
given 𝐷, distance matrix derived from 𝐸
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = {𝑒𝑚𝑝𝑡𝑦}
while |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠| ≠ 𝜃 do
𝑟 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑟(𝐷)
𝑓𝑒𝑎𝑡𝑠 = 𝐼𝐿𝑃 (𝐷)
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠+ = 𝑓𝑒𝑎𝑡𝑠
𝐷 = 𝐷 − 𝑓𝑒𝑎𝑡𝑠

end while

2.3 Results and Discussion

This study is evaluating the effect of three parameters simultaneously: the model, the

data type and the number of markers. Therefore conclusions about the best predictive

model are presented from the perspective of each parameter individually. In Figure

2-2 an overview of the AUC for each model, in each data type at each number of

markers is presented as a heatmap. The hotter entries represent higher AUC.
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Model effects

The accuracy of the predictive models varies greatly, with the various combinations

of feature selection and classification algorithms. If the feature selection and classifi-

cation algorithms are grouped by class, a high-level ranking becomes much clearer. In

Figure 2-3 the relative ranking of each model is indicated by color for each data type

at each number of features. The RFE-Linear combination which uses SVM-RFE for

feature selection and logistic regression or SVM for classification is the best perform-

ing model in almost all instances. Close behind is Ensembl-Linear, where in Table

2.4 it is clear that it performs only slightly worse than RFE-Linear.

If the data type and number of features are fixed the effects of the models can

be explored further. As seen in Figure 2-4 the mRNA and protein data types consis-

tently afford the best classification accuracy at both high and low number of markers.

Although classifiers have relatively poor performance on SNP data for 8 markers, as

the number of selected biomarkers increases best performing classifiers based on SNP

data match or slightly outperform those based on gene and protein expression. The

accuracy of all models is generally highest at a high number of markers. Therefore

mRNA and SNP at 16 (Figure 2-5) and 64 (Figure 2-6) markers were chosen to

demonstrate model effects. Surprisingly, the effect of classifier choice is small as seen

in Figure 2-3. The models are grouped by feature selection algorithm. For RFE there

is very little difference between all the classifiers except decision trees and gradient

boosting which are consistently poor performers. The major differences appear be-

tween feature selection groups, where SVM-RFE is the best, random forest and extra

trees have equivalent performance, and Anova is the worst.

This conclusion is contrary to that of [39], where it was found that the t-test

univariate filter (of which Anova is considered a multiclass generalization) often per-

formed the best for feature selection. This could be due to the differences in the un-

derlying complexity of the question; namely in [39] the goal was to predict metastatic

relapse, which is a binary question, using gene expression micro-arrays. In addition,

no parameter tuning using nested CV or similar approach was performed in [39].
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Although this study cannot prove that a particular feature selection or classification

algorithm is best in a certain scenario, it does indicate that a thorough model selection

step is advised.

The relatively small effect of classifier choice is interesting and unexpected. This

indicates that much more care should be given to choosing the right features, as this

has the biggest effect on model performance.

Data type effects

The rich selection of data types available for these cell lines provides the opportunity

to compare the ability of many types of biological data to classify the tissue of origin

of a tumor cell line. Some of these data types fundamentally reflect gene expression

levels: mRNA, protein and microRNA. While the other two: CNV and SNP, are

generally assumed to reflect genomic changes at large (CNV) and small (SNP) scales.

Comparisons of data type effects at all marker sizes are best seen in Figure 2-4.

The transition from normal tissue to cancerous tissue is generally associated with

changes at the level of both gene expression and the genome. Frequent mutations,

genomic rearrangements and large scale changes in gene expression are all character-

istic of oncogenic transformation. However, cancer cells also retain many, if not most,

of the essential hallmarks of the tissue of origin of the cancer. In this study, we use

the tissue of origin as the ground truth and measure the ability of each data type to

correctly infer the tissue of origin of a sample based upon each data type.

A priori, we expect some of these data types to be better at this task than others.

For instance, mRNA profiles are highly distinct between different tissue types. For

this reason, even after oncogenic transformation, an mRNA transcriptional profile

characteristic of the tissue of origin is expected to resemble that of the normal tissue,

more than it would the transcriptional profile of tumors derived from other tissues.

For this reason, we expect (and find) that mRNA transcriptional profiles reliably and

accurately infer the tissue of origin of tumor cell lines. Similarly, protein expression

profiles are also very reliable indicators of the tissue of origin of a tumor. microRNA

profiles are less powerful than either mRNA or protein expression profiles, but still
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fairly powerful indicators of tissue of origin. The relative weakness of microRNA

profiles compared to mRNA and protein expression profiles may in part result from

lower tissue specificity of microRNA expression relative to mRNA and protein.

The ability of genomic data to infer the tissue of origin of the tumor is subject to

a very different set of biological constraints than expression data. While expression

data is expected to be approximately identical across tissues regardless of patient

identity, and thus similar between tumors derived from the same tissue but from

different individuals; genomic data is identical across normal tissues in an individ-

ual, and differs between individuals. Thus, at first glance, genomic data would be

expected to track with the individual, and be a very poor predictor of the tissue of

origin of a cancer. However, dramatic genomic alterations are a hallmark of cancer

progression, and distinct genomic alterations are often found in distinct cancer types.

Accordingly, we find that copy number variation is about as powerful as microRNA

profiles at inferring the tissue of origin of a cancer cell. This is likely due to the

preferential occurrence of specific DNA rearrangements in cancers derived from spe-

cific cell types [88]. The SNP arrays however, which measure the presence of specific

alleles in a sample, show unexpectedly strong ability to infer the tissue of origin of

these cancer cell lines. Indeed, their performance is similar to that of the mRNA and

protein expression profiles (perhaps even better at high numbers of markers). This

was unexpected as SNPs should be roughly identical across all tissues in an individ-

ual, and by and large, reflect an individual’s ancestry. However, this phenomenon has

been previously observed in the NCI-60 data, and was found to result from the fact

that intensity of signal on the SNP array was actually reflecting SNP copy number

at duplicated loci, and thus indirectly measuring likely gene expression levels, rather

than homogenization of genotypic diversity [28]. This effect was strongest for linked

SNPs, and appears to be the result of local gene copy number amplification, which in

turn enables increased gene expression. Thus, the ability of SNP arrays to accurately

infer tissue of origin of cancer cell lines appears to result from increased gene expres-

sion driven by local duplication and increase in copy number. As the CGH arrays

used to profile the NCI-60 lines provide much lower genomic resolution than the SNP
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arrays, they are less powerful at detecting and exploiting this effect. This unexpected

behavior of the SNP arrays used to characterize the NCI-60 lines could be addressed

by utilizing newer SNP arrays that control for copy number such as the Affymetrix

SNP6 platform.

Number of marker effects

As one uses more biomarkers to classify samples, one expects increased performance,

the possibility of over fitting, and the appearance of a plateau beyond which additional

markers do not increase the power of classification. However, the rate at which these

changes occur as more markers are used to classify a sample can be very different for

various types of data.

Our analysis shows that mRNA, protein, and SNP data all plateau at about the

same AUC (∼0.97). However, each of these data types reaches the plateau at a

different number of markers: mRNA plateaus between 16 and 32 markers, while pro-

tein plateaus at around 32 markers, and SNP does not reach the same AUC until

64 markers are used. This may be result from the fact that each of these markers

appear to measuring aspects of gene expression, with decreasing directness (SNP) or

coverage (protein), and thus power of discrimination. The mRNA arrays used to char-

acterize the NCI-60 cell lines provide direct assessment of the activity of thousands

of protein-coding genes, while the protein arrays measure only somewhat more than

300 proteins. With thousands of potential markers to choose from, the mRNA-based

models can select informative markers from a larger marker pool, and thus maximize

the performance of a gene expression-based model more quickly than the protein ar-

rays, which are restricted to a small subset of the protein coding genes represented on

the mRNA arrays. The more direct nature of the protein measurement (i.e. closer to

the active biological component) does not appear to outweigh the disadvantage of the

lower coverage in the starting set of protein markers. As discussed in the preceding

section, the SNP array appears to be measuring, in part, gene expression levels result-

ing from the amplification of specific regions of the genome in specific cancer types.

However, there is likely to be a complex and possibly heterogeneous and non-linear
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relationship between signal intensity on the SNP array, and gene expression levels.

Thus, despite the very large number of markers to choose from on the SNP array,

highly informative markers are not as abundant in this data as they appear to be in

the mRNA data. As a result, many more SNP markers are required to achieve the

same level of performance as mRNA-based markers. It is hard to predict how the

power of SNPs to infer cancer type might change when newer arrays, that control for

copy number changes, are used to characterize these cell lines.

Similarly, CNV and microRNA markers approach the same level of performance

as one another, but do so at different rates. While microRNA markers plateau quickly

(at about 16 markers) CNV markers require 64-96 markers to reach the same level

of performance. The quick plateau of microRNA-based markers is likely due to the

highly tissue-specific expression of a minority of microRNAs, and the more global

expression of the remaining majority. Once the few highly informative microRNAs

have been selected and used, adding more provides little additional classification

power. In the case of CNVs, like SNPs these markers reflect changes in the cancer

cells genome that can lead to changes in gene expression that are distinctive features

of cancer subtypes. However, not only do the CNV markers suffer from the indirect

relationship between the marker and gene expression expected for SNPs, they are

also a much lower resolution marker than SNPs (megabases vs single bases), and

far fewer CNVs were measured on the arrays, thus limiting the likelihood that the

most informative CNVâĂŹs were available for selection. Thus, the power of the CNV

biomarker panel climbs slowly.

Taken together, these observations suggest that the absolute performance of a

given biomarker data type to classify a cancer can be understood in the context of:

the number of available markers for the model to choose from, the power of the most

informative markers in the set, and the directness with which the data type reflects

an informative aspect of the sample biology. Data types with a large number of

markers to choose from, that are closely related to the biology of the sample, are

most likely to yield highly effective small biomarker panels. While data types with

lower saturation (fewer markers measured), and/or a less direct relationship to the
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biological differences between samples, will require more markers to reach maximal

performance.

Combined model, data type, and number of marker effects

Ultimately all parameters should be considered simultaneously when attempting to

build the best targeted predictive model. In order to do this it is necessary to build

a validation framework to explores all parameters fairly and efficiently. Although it

is a difficult task it is not impractical and interesting nuances can be extracted.

In this study it was observed that at the lowest number of markers (8) mRNA

and protein were the best data types for cancer identification. For mRNA, SNP and

protein the SVM-RFE was the best feature selection choice and ET was the best

classifier. For CNV and microRNA the best classifier was LR and ET respectively.

Interestingly for all data types at 8 markers except CNV a tree based classifier per-

formed the best as seen in Table 2.4. It is possible that if only a few biomarkers

are considered the tree based approaches explicit enumeration of decisions may be

better suited, however it should be noted that the linear classifiers are typically only

marginally worse.

At the highest number of markers tests (96) both RFE and ET perform strongly

on all data types, however LR is the best classifier for all types expect SNP where

KNN is the best. Both of these classification tools are technically simple, yet they

perform this best which lends credence to the Occam’s razor principle which when

applied to machine learning places preference on simpler explanations.

External validation

The amount of over-fitting when building a predictive model is always a concern.

This effect was measured in an external validation experiment utilizing analogous

gene expression micro-array data obtained from several studies which are part of the

TCGA project [7, 14, 9, 10, 11, 12, 6, 8, 13]. The results of this comparison indicated

that biomarker and model selection using AUC as the ranking criteria is robust and
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performs well across studies. In Table 2.5 it can be seen that colon (CO), CNS and

renal (RE) cancer types were distinguishable with a high degree of accuracy using

between 8 and 96 markers. The CNS type was more challenging to differentiate after

32 markers, while ovarian (OV) and lung cancers (LC) were extremely difficult to

differentiate at any marker size.

The NCI-60 data is derived from decades old cell lines, while the TCGA was

derived from recently sampled from primary solid tumor. Additionally the matched

cancer types did not have comparable histological classification. Finally there three

additional cancer types (ME, LE, BR) which were present in NCI-60 but not included

in the external validation set. These classes were included in the training. Despite

these differences the presented method was able to perform biomarker selection and

build accurate predictive models for this challenging external validation experiment.

A complete breakdown of the per-class prediction rate by cancer marker set size is

provided in Table 2.11.

No replicates

Typically some type of k-fold cross-validation is used to evaluate the performance of a

predictive model. However in this scenario leave-out-out cross-validation (LOO CV)

on the 𝑛 cell types is utilized. Assume that a lineage of the 𝑛 cell types is available.

At each iteration, a cell type is left out as the test cell type and the other 𝑛1 cell

types are used to select a panel of q markers. This test cell type is then searched

against the 𝑛1 cell types using the chosen marker panel.

Since a single cell type is left out, it cannot be matched against itself. The best

case scenario is to map it to an adjacent cell type in the lineage. Hence, the score of

a candidate is found by 2𝑑1, where 𝑑 is the distance between the candidate and the

true cell type in the given lineage. This way, a candidate cell type gets a score of 1

if it is adjacent to the true cell type. After 𝑛 iterations, AUC can be calculated. To

determine the size of a marker panel, a search of the number markers 𝑞 in a range,

e.g. {6, 7, , 96}.
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RFE/digi RFE/expr Greedy ILP
SVM 97.84 97.91 97.78 97.87

Cosine 95.76 95.37 94.29 93.83
Correlation 96.97 96.84 96.42 96.23
Hamming 49.95 49.95 49.95 49.95

Table 2.3: AUC of evaluated methods

SCLD Data

In this experiment, we considered only markers in our curated data set of 28 cell types.

Among these markers, 361 of them were found in the reference database. Therefore,

the reference database can be viewed as a 28 x 361 expression matrix. Results can

be seen in table 2.3.

2.4 Conclusion

The initial hypothesis motivating this research was that certain predictive models

will perform better on different data types at different dimensionality. While this

hypothesis holds, the difference in accuracy between models is often small and allows

for several generalizations. Namely that RFE is clearly the best feature selection

algorithm and both SVM and LR are the best classifiers as seen in Figures 2-2 and

2-3. Both mRNA and protein expression are the overall best performing data types

for the cancer classification question. However to maximize predictive accuracy all

models at all parameters should be parameterized and vetted fairly before conclusions

are made.

The performance of the ILP on no-replicate data as seen in Table 2.3 indicates that

it performs no worse, but no better than the recursive feature elimination approach

given the right paired classifier. Interestingly there was little difference between the

ILP and the greedy approach. However the flexibility of the ILP enables it to be

easily adapted to other scenarios, such as the introduction of covariances, or class

specific weights.
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Table 2.4: Table of AUC for top performing models for each data type and grouped
by marker set size.

# SNP mRNA CNV microRNA Protein

8 RFE ET 0.8598 RFE ET 0.9585 RFE LR 0.7198 RFE RF 0.8352 RFE ET 0.9426

RFE RF 0.8591 RFE RF 0.9554 ET LR 0.7115 RFE SVM 0.8352 ET ET 0.9394

RFE SVM 0.8321 RFE SVM 0.9521 RF LR 0.71 RFE KNN 0.8295 RFE RF 0.9382

ET ET 0.8295 RFE LR 0.951 RFE ET 0.691 RFE ET 0.8275 RF ET 0.9376

RFE KNN 0.9467 RFE RF 0.6802 Anova SVM 0.8089 ET RF 0.9312

Anova LR 0.8051 RF RF 0.9272

RF ET 0.8028

RF RF 0.8027

RFE LR 0.8021

RF LR 0.802

16 RFE ET 0.922 RFE ET 0.972 ET LR 0.7616 RFE SVM 0.8758 RFE ET 0.9666

RFE RF 0.9162 RFE LR 0.9709 RFE LR 0.7607 RFE KNN 0.8704 ET ET 0.9582

RFE SVM 0.9111 RFE RF 0.9681 RF LR 0.7468 RFE RF 0.8671 RFE RF 0.9565

RFE KNN 0.9033 RFE SVM 0.968 RFE ET 0.8597

ET ET 0.8997 RFE Cos 0.9663 RFE LR 0.8535

RFE LR 0.897 Anova SVM 0.8496

RF ET 0.896

ET RF 0.8914

32 RFE LR 0.9685 RFE LR 0.9759 RFE LR 0.8194 RFE KNN 0.8806 RFE ET 0.9792

RFE SVM 0.9674 RFE ET 0.9757 RFE RF 0.8801

RFE KNN 0.966 RF LR 0.9747 RFE ET 0.8717

RFE ET 0.9646 RFE Cos 0.9736 RFE SVM 0.8679

RFE RF 0.9577 RFE RF 0.9734 RFE LR 0.866

RFE SVM 0.9734

64 RFE KNN 0.9911 RF LR 0.9789 RFE LR 0.8379 RFE KNN 0.8746 RFE ET 0.979

RFE LR 0.9892 RFE LR 0.9777 RFE LR 0.8688 RFE LR 0.9782

RF LR 0.9862 RFE Cos 0.977 RFE RF 0.8682 RF LR 0.9731

RFE SVM 0.9843 RFE ET 0.976 RF LR 0.8595 RFE KNN 0.9727

ET LR 0.9837 RFE RF 0.9757 RF Corr 0.8585

RF RF 0.9755 RFE ET 0.8578

ET LR 0.9741 RF KNN 0.8574

RF ET 0.9737 RFE SVM 0.8568

RFE SVM 0.9733 Anova KNN 0.8564

ET RF 0.9728 Anova LR 0.8557

RFE Corr 0.9709 ET LR 0.8539

RFE Corr 0.8537

ET Corr 0.8536

Continued on next page
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– Continued from previous page

# SNP mRNA CNV microRNA Protein

ET KNN 0.852

RFE Cos 0.8492

96 RFE KNN 0.9933 RF LR 0.9808 RFE LR 0.847 RFE LR 0.8697 RF LR 0.979

RF LR 0.9918 RFE LR 0.9787 ET LR 0.8292 RF KNN 0.8657 RFE LR 0.9779

RFE LR 0.9916 RF RF 0.9774 RF LR 0.8643 ET LR 0.9768

ET LR 0.9909 RFE Cos 0.977 ET LR 0.8634 RFE ET 0.9765

RFE RF 0.9762 RFE RF 0.8633 ET ET 0.9734

ET LR 0.9761 RF Corr 0.863 RF ET 0.973

ET RF 0.9758 ET Corr 0.8629

RF ET 0.9746 RFE KNN 0.8628

RFE ET 0.9744 ET KNN 0.8613

Anova KNN 0.8596

Anova LR 0.8573

RFE SVM 0.853

ET RF 0.8483

RFE Corr 0.8477

RF SVM 0.8474

Table 2.5: Accuracy of the top performing model for each cancer type and grouped
by marker set size.

Marker Set Size CO OV CNS LC RE
8 0.1673 0 1 0.3656 0.0138
16 0.9856 0.037 0.8246 0.686 0.7403
32 1 0.1111 0.9123 0.2384 0.8571
64 1 0.0741 0.5965 0.1163 0.8961
96 1 0.2593 0.5351 0.0116 1

Table 2.6: Data files and normalization strategy used for each data set.

Data Type CellMiner Data Type Norm. CellMiner File Name

SNP DNA: Affy 500K SNP CRLMM nci60_DNA__Affy_500K_SNP_CRLMM.txt.zip

mRNA RNA: Affy HuEx 1.0 GCRMA nci60_RNA__Affy_HuEx_1.0_GCRMA.txt.zip

CNV DNA: aCGH Agilent 44K AgelentFE nci60_DNA__aCGH_Agilent_44K_AgilentFE.txt.zip

microRNA RNA: microRNA OSU V3 chip log2 nci60_RNA__microRNA_OSU_V3_chip_log2.txt.zip

Protein Protein: Lysate Array log2 nci60_Protein__Lysate_Array_log2.txt.zip

54



55



Repeat k times

Repeat k times

In
n
e
r 

C
ro

s
s
 V

a
li
d
a
ti

o
n Parameterization

Feature Selection

Classi�cation

Rank by AUC

Feature Selection

Classi�cation

Rank by AUC

Feature 

Selection

Algorithms

Classi�cation

Algorithms

O
u
te

r 
C

ro
s
s
 V

a
li
d
a
ti

o
n

Figure 2-1: Flow chart of the validation strategy. First all combinations of feature
selection and classification algorithms (4x9) are parameterized in the inner k-fold
cross-validation loop based on the training folds of the outer k-fold cross-validation.
The best parameters are found by maximizing AUC. Once the parameters are fix the
outer k-fold cross-validation loop is run and the average AUC (or similar metric) is
recorded.
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Figure 2-2: This heatmap contains the average AUC for each model (grouped by
feature selection) for each data type at each number of markers. The darker the
block, the more accurate the predictive model is.
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Figure 2-3: This heatmap contains the relative rank based on AUC of each model
across all data types. The darker spots indicate higher AUC and rank.
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Figure 2-4: This figure contains box plots of the best model, for each data type and
number of markers. The whiskers represent the 95% confidence interval, while the
green dots represent another model with performance within the confidence interval.
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Figure 2-5: This figure contains box plots describing the AUC of each model, grouped
by the feature selection component for SNP and mRNA data type at 16 markers.
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Figure 2-6: This figure contains box plots describing the AUC of each model, grouped
by the feature selection component for SNP and mRNA data type at 64 markers.
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Table 2.8: The tested parameters for each feature selection algorithm.

FS Method Parameter Description Values

Anova NA No parameters

RFE Estimator The supervised learning esti-

mator

Support Vector Classification

(SVC) with a linear kernal for

the decision functions

Estimator Parameter - C The penalty parameter of the

error term

0.25, 1, 4, 16, 64, 256

Random Forest Max Features Function to determine the

number of features to consider

when looking for best split

sqrt and log2

N Estimators The number of trees to be used

in the forest

10, 50, 100, 250

Extra Trees Max Features Function to determine the

number of features to consider

when looking for best split

sqrt and log2

N Estimators The number of trees to be used

in the forest

10, 50, 100, 250
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Table 2.9: Classification Parameters

CL Method Parameter Description Values

Support Vector Ma-

chine

Kernel Function to use as a decision

function

RBF and Linear

RBF Gamma Kernel coefficient for RBF 0.03125, 0.125, 0.5, 2, 8, 32,

128, and 512

RBF C Penalty Parameter of the error

term

0.03125, 0.125, 0.5, 2, 8, 32,

128, and 512

Linear C Penalty Parameter of the error

term

0.03125, 0.125, 0.5, 2, 8, 32,

128, and 512

Logistic Regression Penalty Norm used in the penalization l2

C Inverse of regularization

strength; smaller values

specify stronger regularization

0.25, 1, 4, 16, 64, and 256

Decision Trees Max Features Function to determine the

number of features to consider

when looking for best split

sqrt and log2

Random Forest Max Features Function to determine the

number of features to consider

when looking for best split

sqrt and log2

N Estimators Number of trees to be used in

the forest

10, 50, 100, 250

Extra Trees Max Features Function to determine the

number of features to consider

when looking for best split

sqrt and log2

N Estimators Number of trees to be used in

the forest

10, 50, 100, 250

Gradient Boosting N Boosting

Stages

Number of boosting stages to

perform

100, 250, and 500

Max Depth Maximum depth of the individ-

ual regression estimators

3, 5, 7

K-nearest Neighbors Compute Near-

est Neighbor

Algorithm used to compute the

nearest neighbors

BallTree and KDtree

Distance Func-

tion

Function used to calculate the

distance

Euclidean and Manhattan

Continued on next page
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– Continued from previous page

CL Method Parameter Description Values

Weight Func-

tion

A function to apply weights to

the points

Uniform and Inverse weighting

based on the distance to their

neighbors; the closer the dis-

tance the better the score.

Cosine NA No parameters

Correlation NA No parameters

Table 2.10: External Validation: NCI-60 to TCGA mapping

NCI-60 Cell Line TCGA Cell lines
Central Nervous System Glioblastoma multiforme (GBM)

Brain Lower Grade Glioma (LGG)
Lung Lung adenocarcinoma (LUAD)

Lung squamous cell carcinoma (LUSC)
Colon Colon adenocarcinoma (COAD)

Rectum adenocarcinoma (READ)
Ovarian Serous Cystadenocarcinoma (OV)
Renal Kidney renal clear cell carcinoma (KIRC)

Kidney renal papillary cell carcinoma (KIRP)

Table 2.11: Accuracy per Cancer Type Grouped by Marker Set Size.

TCGA # NCI-60 Cell Lines

Samples Markers ME LE CO CNS RE BR OV LC

CNS 8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

CO 8 0.0144 0.0048 0.1779 0.0769 0.0048 0.0192 0.4135 0.2885

LC 8 0.0291 0.0058 0.0058 0.3081 0.1977 0.0174 0.0 0.436

OV 8 0.4074 0.1852 0.0 0.0 0.0 0.0 0.0 0.4074

RE 8 0.0 0.0 0.0649 0.7013 0.0 0.0 0.1039 0.1299

CNS 16 0.0 0.0 0.0 0.8246 0.1754 0.0 0.0 0.0

CO 16 0.0 0.0 0.9856 0.0 0.0144 0.0 0.0 0.0

LC 16 0.0 0.0058 0.064 0.0523 0.1512 0.0407 0.0 0.686

OV 16 0.0 0.2222 0.037 0.0 0.0 0.0 0.037 0.7037

RE 16 0.013 0.026 0.0649 0.0519 0.7403 0.013 0.0649 0.026

Continued on next page
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TCGA # NCI-60 Cell Lines

Samples Markers ME LE CO CNS RE BR OV LC

CNS 32 0.0 0.0877 0.0 0.9123 0.0 0.0 0.0 0.0

CO 32 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

LC 32 0.0 0.0581 0.2151 0.1279 0.2791 0.0814 0.0 0.2384

OV 32 0.0 0.7037 0.1481 0.0 0.0 0.037 0.1111 0.0

RE 32 0.0 0.0779 0.0 0.013 0.8571 0.0 0.039 0.013

CNS 64 0.0 0.386 0.0 0.5965 0.0175 0.0 0.0 0.0

CO 64 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

LC 64 0.0 0.0872 0.064 0.0058 0.7035 0.0233 0.0 0.1163

OV 64 0.0 0.4074 0.1481 0.0 0.1111 0.0741 0.0741 0.1852

RE 64 0.013 0.0909 0.0 0.0 0.8961 0.0 0.0 0.0

CNS 96 0.0 0.4386 0.0 0.5351 0.0263 0.0 0.0 0.0

CO 96 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

LC 96 0.0 0.1802 0.2209 0.0174 0.5233 0.0465 0.0 0.0116

OV 96 0.0 0.4074 0.2222 0.0741 0.037 0.0 0.2593 0.0

RE 96 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

68



Chapter 3

Single-cell Assisted Deconvolution

Separation of component signals from biological data has been an open challenge

for a number of years. This problem is found in many other domains and is often

referred to as signal separation problem. Recent advances in single cell genomics have

enabled researchers to sample gene expression signatures of single cells and they are

now able to accurately measure the canonical gene expression profiles of given cell

types. Using this additional data type the following work will demonstrate how a

simple existing deconvolution approach can be enhanced to yield greater accuracy

than methods which do not take advantage of single cell data.

3.1 Motivation

Cell or tissue type heterogeneity is present in data collected from numerous biological

sources. It is typically too difficult or impossible to physically separate cell types

in any given mixture. Computational gene expression deconvolution is the process

by which this separation is done in silico [68]. One application of deconvolution is

assisting stem cell biologists in obtaining whole-transcriptome expression profiles of

closely related cell types. Here we present an approach that utilizes single-cell qPCR

probing of a small number of genes to aid in the deconvolution of whole-transcriptome

profiles of mixed samples.

The expression profiles of 𝑚 genes measured in 𝑛 mixtures of 𝑘 cell types are
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modeled as 𝑋 = 𝑆𝐶, where 𝑋 is a 𝑚 × 𝑛 matrix whose columns are the expression

profiles of individual mixtures, 𝑆 is 𝑚 × 𝑘 signature matrix whose columns are ex-

pression profiles of individual cell types, and 𝐶 is a 𝑘×𝑛 concentration matrix whose

columns represent the proportions of each cell type in individual mixtures. There

are a variety of approaches used to solve the deconvolution problem and they can be

classified based on the expected input and output.

One formulation used by [102] propose the problem as estimating 𝑆 when the mix-

tures 𝑋 and concentrations 𝐶 are known. Typically the concentrations are measured

by some external technique such as FACS or FISH. Another formulation [33, 86, 2]

is to assume 𝑋 and 𝑆 are known, and the goal is to estimate 𝐶. This formulation

is often found when studying extensively studied cell types such as the blood lineage

and is often referred to as supervised deconvolution. Unsupervised deconvolution is

the simultaneous estimation of both 𝑆 and 𝐶 given 𝑋. This scenario is much more

challenging, however several approaches have yielded promising results [97, 58, 112].

Finally the semi-supervised formulation assumes that existing information such as

unique marker genes are available to describe each cell type [29].

This work proposes a novel variation on these previously proposed themes where

in addition to the bulk mixture data, single-cell expression profiles denoted as 𝑍 =

𝑧1, 𝑧2, ...𝑧𝑞 where 𝑞 is the number of single cells available. Typically this comes from

a microfluidic device that performs qPCR or RNA-Seq reactions on each single-cell.

This additional data can be pre-processed into the canonical cell type signatures

where typical supervised deconvolution approaches are applicable.

One common application of single cell genetics is the detection of rare cell types.

These rare cells can be progenitor stem cells which will only ever be present at an

extremely low abundance, or potentially the cell type is rare because it is a subtle

response to changes in environmental conditions. The likelihood that these rare cells

are sample in the single cell experiments is proportional to its frequency. This makes

experimentally measuring extremely rare cells quite difficult. This work will present

first steps towards computationally inferring the canonical signature of rare cell types

which cannot be directly measured.
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3.2 Problem Definition

The motivation of this work is to deconvolve population level (i.e. mixtures) given a

small number of single-cell resolution measurements from the same sample. We will

denote by 𝑚 the number of genes, by 𝑘 the number of cell types, and by 𝑛 the number

of samples.

The gene expression level measured by qPCR for a gene 𝑖 is typically given as

the threshold cycle 𝐶𝑖
𝑇 . This measurement varies logarithmically with the abundance

level.

The 𝐶𝑖
𝑇 values are often normalized using a constantly expressed housekeeping

gene (or the geometric average of several housekeeping genes) in order to account

for variances in starting material which would effect detection threshold. Thus the

normalized values are reported as

∆𝐶𝑖
𝑇 = 𝐶𝑖

𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝑖
𝑇 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔𝑒𝑛𝑒

The ∆𝐶𝑖
𝑇 values can be converted to a linear scale by using

2−Δ𝐶𝑖
𝑇

as expression level.

A mixture is a heterogeneous collection of cells where the expression levels of 𝑚

selected genes are measured using qPCR. A single measurement is denoted by the

vector 𝑥, where |𝑥| = 𝑚. A set of 𝑛 mixtures is denoted as the mixture matrix 𝑋

with dimensions 𝑚× 𝑛.

The signature for a given cell type is denoted as a vector 𝑠, where |𝑠| = 𝑚, and

each element in the vector is the mean expression value of each gene in cells of this

type. The complete set of signatures for all cell types is denoted as 𝑆 where 𝑆 is an

𝑚× 𝑘 matrix.

Each mixture is assumed to be a linear combination of cell-type signatures. For

one mixture the concentration of each cell type is denoted by a vector 𝑐, where
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|𝑐| = 𝑘. A set of 𝑛 concentration vectors is denoted as the concentration matrix 𝐶

with dimensions 𝑘 × 𝑛.

Thus, expression data of a set of mixtures is modeled as

𝑋 = 𝑆𝐶

where each heterogeneous mixture is a linear combination of cell type signatures with

concentrations specified by the columns of 𝐶.

3.3 Method

We use a two step approach whereby single cells are first clustered into representative

cell types and the signature matrix is computed. Next the mixing proportions matrix

𝐶 is estimated using quadratic programming.

3.3.1 Signature generation

One of the core challenges of single cell genetics is the meaningful classification or

grouping of cells. For the purposes of this work the term cell type will be broadly

defined as a cell phenotype that is statistically separable based on gene expression

data. The signature matrix 𝑆𝑚×𝑘 is built by clustering the single-cell qPCR data

𝑧1, 𝑧2, ...𝑧𝑞 into 𝑘 clusters. This problem is an instance of unsupervised learning,

where samples need to be labeled based on their gene expression vectors. Numerous

objectives have been proposed such as minimizing the distance between samples in a

cluster, and others focus on grouping functionally related samples. K-means clustering

was chosen to group the single-cell data because it explicitly allows us to control the

number of theoretical cell-types. The average expression profile of each single-cell in

a cluster is used to create the cell-type signature matrix 𝑆𝑚×𝑘.
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3.3.2 Concentration matrix

The next task is to solve for the concentration matrix 𝐶𝑘×𝑛. This is done utilizing

the same methodology described in [33]. Each column of 𝑋 corresponds to genes

measured by qPCR, and is a linear combination of single cell expression profiles

with unknown concentrations. Let us denote a particular column in 𝑋 as 𝑥 and

its corresponding column in 𝐶 by 𝑐. Inferring 𝑐 can be formulated as the following

quadratic program:
minimize ||𝑆𝑐− 𝑥||2

subject to
∑︁

𝑐 = 1

𝑐𝑖 ≥ 0 ∀𝑖 = 0...𝑚

This least-squares formulation can be solved with any constrained quadratic program-

ming solver.

3.3.3 Missing cell type

Solving for a missing cell type is an extension of the above computational deconvolu-

tion framework. The signature matrix including the missing cell type will be denoted

as 𝑆𝑚×(𝑘+1), and the concentration matrix will be denoted 𝐶(𝑘+1)×𝑛. The goal is to si-

multaneously calculate the missing 𝑘th column of signature matrix and the complete

concentration matrix. The quadratic formulation is the following:

minimize ||𝑆𝐶 −𝑋||2

subject to
∑︁

𝑐 = 1

𝑐𝑖 ≥ 0 ∀𝑖 = 0...𝑚

𝑠𝑘 ≥ 0

This is a non-linear non-negative least squares optimization problem. While prob-

lems of this nature can be quite challenging there is quite a large body of work dedi-

cated towards efficiently solving these types of optimization problems. The technique

known as damped least-squares (DLS) [56, 71] is used here. The missing cell type sig-
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nature is initialized as the average of all the known cell types and the concentrations

are set uniformly.

One additional challenge is determining if there is a missing cell type present in the

mixtures. This is addressed by comparing the residual value of the system with and

without the missing cell type, 𝑟 = |𝑋 − 𝑆𝐶|, respectively 𝑟 = |𝑋 − 𝑆𝐶|. If 𝑟 > 𝑟 + 𝛾

where 𝛾 is some small constant then our approach will report that a missing cell

type is likely present. The small constant is in place in order to require a non-trivial

difference between the two scenarios.

3.3.4 Simulation

This work relies on two types of data, single cell and bulk data from the same source

measured with the same technology. The combination of these data types is not avail-

able in any public data sources. Therefore it is necessary to simulate such datasets.

The single cell data used as the basis for the simulations comes from a publication

which assessed different methods for measuring single cell gene expression [34]. Here

101 cells from 5 cell types (hematopoietic, intestinal, mammary gland, prostate and

neural stem cells) were obtained and measured using the Fluidigm C1 and Biomark

HD platforms. The 280 genes were chosen using a literature guided approach for

known stem cell and lineage specific marker genes. The qPCR data was processed

using Fluidigm software but no normalization to housekeeping genes was performed.

In order to properly asses the accuracy of the deconvolution and missing cell-

type prediction a semi-continuous model for simulating both single cell and mixture

data sets has been adopted. The main motivation behind this model is the bi-modal

nature of gene expression observed in single cell experiments [73, 98, 34]. This previ-

ously noted property finds that genes are both absent and highly expressed in similar

cells. The presented model therefore has two components; the probability of a gene

being expressed in a cell, along with the the expression value of that gene when it

is expressed. The presented model most closely mirrors the semi-continuous model

presented in [73].
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Active Transcription

Non-zero 𝐶𝑖
𝑇 value measurements of a gene 𝑖 for a particular cell type 𝑙 are assumed

to follow a normal distribution, 𝑁(𝜇, 𝜎2). In our experiments the parameters of

this normal distribution have been estimated from the training single cell data. The

random variable is denoted as 𝑞𝑖𝑙 .

Expression Probability

The probability that a particular gene is expressed and detected can be estimated

directly by counting the number of non-zero expression values for a given gene 𝑖 and

cell type 𝑙. The random variable is denoted as 𝑝𝑖𝑙.

Combined Model

These two components can be combined in a variety of ways to create a model for

simulating single-cell observations. For a given gene 𝑖 and cell type 𝑙:

1. 𝑊 𝑖
𝑙 = 𝑝𝑖𝑙 · 𝑞𝑖𝑙 . Under this model each gene has a certain probably of being ex-

pressed, and when it is, the expression level is taken from the normal distribution

fitted from the training data available for that gene and that cell type.

2. 𝑊 𝑖
𝑙 = 𝑞𝑖𝑙 . This is a special case of the previous model under which genes are

assumed to always be expressed.

3. 𝑊 𝑖
𝑙 =

1 + 𝑝𝑖𝑙
2

· 𝑞𝑖𝑙 . In this scenario only the fraction of the expression probability

stemming from technical error is represented.

This bi-modal property can be observed by viewing the gene expression distri-

bution of a random gene taken from the starting dataset. The true and simulated

distributions are seen side-by-side in figure 3-1.

The procedure for creating simulated single cell for cell type 𝑖 is:

1. for all 𝑗 = 1..𝑚 estimate 𝑝𝑖𝑗.
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2. for all 𝑗 = 1..𝑚 estimate the parameters of the normal distribution and sample

to obtain 𝑞𝑖𝑗

3. for all 𝑗 = 1..𝑚 multiply 𝑝𝑖𝑗 by 𝑞𝑖𝑗

Two different scenarios were explored for simulating the concentration matrix 𝐶.

The first is simply a uniform concentration of all cells. This implies a concentration

of
1

5
for this study. The second type was sampling uniformly at random from 0

to 1 exclusive for every cell type, then normalizing by the sum. This ensures the

concentration of each cell type in a mixture sums to 1 and there are both high and

low concentration cell types.

The mixtures were created by repeatedly sampling single cells according to the

proportions dictated by 𝐶. The per gene expression levels were added together to

create a single mixture. In this simulation, no appropriate housekeeping gene was

available for normalization, so the gene expression levels for the mixtures were simply

divided by the total number of cells. Normalizing single cell qPCR data is still an

open concern [65, 74].

An error term is used in the simulations, 𝑒 = 5, 10, 25, 50, 100, 200 which becomes

which acts as the noise parameter and it represents the number of single-cell’s used

to create a particular mixture. The fewer single cells used, the more different that

mixture will be than the sum of cell type signatures.

Unless otherwise stated each experiment was run 10 times and the presented

results are the average of the 10 replicates.

3.4 Results and Discussion

3.4.1 Existing tools

There are several published tools [102, 33, 86, 2, 97, 58] for solving both the supervised

and unsupervised gene expression deconvolution problem. The formulation presented

here sits between these two versions of the problem. The completely supervised

approaches are not able to adequately deconvolve the systems studied here because
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Figure 3-1: A violin plot of the true and simulated gene expression distribution of the
KIT gene for each of the known cell types. The suffix s and t denotes the simulated
and true distributions. The plot demonstrates that the simulated distributions closely
resemble the true distributions.

77



the canonical cell type signature is required as input. Therefore only the unsupervised

methods DSA [112], Deconf [86] and the semi-supervised NMF based methods SSKL,

FROB [30, 29] are compared against our single cell quadratic programming based

method denoted UCQP. The semi-supervised methods are given the opportunity to

mine the single cell data to build the descriptive signatures necessary using tools built

into the CellMix toolkit [30].

3.4.2 Experimental parameters

This work will compare the effect of several experimental parameters across the dif-

ferent deconvolution methods. One of the primary parameters explored is the number

of mixtures measured in order to determine the effect of this parameter on accuracy.

The error parameter is also varied to compare methods at varying degrees of difficulty,

finally the number of genes used in the deconvolution is varied.

3.4.3 Mixture effects

One important dimension to this single cell aided deconvolution formulation is the

number of mixtures necessary to properly deconvolve the system. Since both single

cell and bulk qPCR data is necessary it is important that the number of mixtures

required be kept small to contain costs. To this end several simulations were carried

out where the number of mixtures is varied in the set 5, 10, 15, 20, 25, 30.

Under the “ideal” scenario seen in figure 3-2a, the number of genes is fixed to

32, the error is set to 40 samples per cell, and the concentration is uniform across

all mixtures. There is no absolute pattern or correlation between accuracy as the

number of mixtures varies for any of the methods. The UCQP method outperforms

both the semi and unsupervised methods.

In figure 3-2b the error and gene count is at 40 and 32 respectively, however the

concentrations are random. There is again an absence of any connection between

rmse as the number of mixture varies. The absolute rmse for DECONF, SSKL suffers

slightly, UCQP remains the same and interestingly DSA, the unsupervised method,
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improves dramatically.

The final comparison in figure 3-2c fixes the error at 40 and the concentrations

are uniform. Here the number of genes is halved from 32 to 16. The absolute rmse

for all methods seems to suffer little, with a possible anti correlation between mixture

count and accuracy observed for DECONF.

The number of mixtures used in deconvolution is a critical parameter as it influ-

ences the cost and feasibility of collecting the appropriate amount of data. Finding an

algorithm which works well with a minimum number of mixtures necessary makes in-

silico deconvolution more attractive. The UCQP approach presented here performs

deconvolution one mixture at a time and therefore no constraints on the number

of mixtures exist. It follows that the accuracy of UCQP should be independent of

the number of mixtures. This was observed in 3-2. It should also be the case that

DECONF, SSKL and DSA all have some dependency on the number of mixtures.

However, only a minimal dependency is observed in figure 3-2.

3.4.4 Error effects

It is important to quantify the ability of the deconvolution algorithm as the level of

error changes. In the following simulation experiment the error parameter was varied

between 5,20,40 and 100.

The ideal scenario has the number genes is fixed to 30, there are 10 mixtures and

equal concentrations set across cell types. In figure 3-3a the accuracy of UCQP has a

direct correlation with the error parameter. At 5 samples per mixture the algorithm

performs worst and at 100 it has significantly lower error. The DECONF and DSA

algorithms do not seem to have a clear relationship between error and accuracy and

SSKL is not effected at all.

In figure 3-3b the number of mixtures is 10, gene count is 32 and the concentration

is random. Both the UCQP and DSA algorithms have a direct correlation with the

error parameter and rmse. The absolute rmse for UCQP is best for all scenarios.

In the last comparison in figure 3-3c the number of mixtures and gene count are

10 and 16, respectively, while the concentration is uniform. The results are almost
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(a) Mixture Effect: Ideal Scenario

(b) Mixture Effect: Random Concentration

(c) Mixture Effect: 16 Genes

Figure 3-2: In this figure the accuracy of the 5 deconvolution methods in estimating
the concentration matrix is compared using rmse metric. Each method is evaluated
given a different number of mixtures between 5 and 25. In general no method has a
strong correlation to the number of mixtures.
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exactly the same as the ideal scenario in figure 3-3a.

The proposed error model is quite simplistic and conflates both technical and bi-

ological noise. However without a stronger understanding of both the technical and

biological sources a more advanced model may be premature. Adjusting the number

of sampled single-cells to create each mixture enables the simulation to create easy

scenarios, where each cell type is sampled sufficiently to get close to the canonical

average, and more difficult instances where each cell type is far from the average.

Additionally since this approach relies on sampling, it will inherently reflect the bi-

ological diversity of the supplied single-cells. If each cell population is quite diverse,

more sampling will be required to find the average and therefore accurate deconvolu-

tion will be more difficult.

The error effects are most dramatic in 3-3b where the mixtures consist of random

concentrations of each cell type. Intuitively this scenario seems the most challenging

with respect to inferring cell type concentration and it seems natural that increased

error makes the problem more challenging. Both UCQP and DCA improve as the

sampling rate is increased, while the NMF methods do not respond as clearly. No

explanation for these effect is immediately apparent. One advantage of the simpler

quadratic programming based method is that understanding effects becomes easier.

3.4.5 Gene effects

The number of genes necessary to measure is an important parameter for this ap-

proach. Therefore a wide range of gene counts were surveyed in order to asses the

effect across a variety of methods for qPCR. Values of 8, 16, 32, 64, 128 and 256

were tested. The genes were not selected at random, but rather were ranked using

ANOVA test, excluding the lower scoring genes first.

In the ideal scenario depicted in figure 3-4a the error parameter is 40, concentra-

tions are uniform and the number of mixtures is fixed at 5. Here UCQP outperforms

all methods in terms of mean absolute error. There is a clear inverse relationship

between the number of genes used and error in UCQP. No other method has this

clear relationship.
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(a) Error Effect: Ideal Scenario

(b) Error Effect: Random Concentration

(c) Error Effect: 16 Genes

Figure 3-3: In this figure the accuracy of the 5 deconvolution methods in estimating
the concentration matrix is compared using rmse metric. Each method is evaluated
given a different error level between mixtures between 5 and 100.
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Figure 3-4b has the error fixed at 40, mixtures 5 and the concentrations are

random. For UCQP this more challenging scenario has no noticeable effect on mean

absolute error. There is still a clear inverse relationship between gene count and error

for UCQP and no relationship for other methods.

The final scenario in figure 3-4c fixes the number of mixtures to 5, the concentra-

tions are uniform but the error parameter is set to 5. Here the high error rate clearly

changes the absolute error of UCQP, however the inverse relationship between gene

count and error rate still exists.

When considering just the UCQP method in figure 3-4 the effect of number of

genes is quite clear. There exists a saturation point where the accuracy of the esti-

mates no longer improves when adding more genes. This behavior is not observed in

any of the other approaches. It should be noted that this simulation does not start

with a random subset of genes, in fact all genes used in the data behind the simulation

were chosen by domain experts. Also it is interesting to note that a high degree of

accuracy can be obtained by using as few as 16 genes.

3.4.6 Missing Cell Type

Simultaneously estimating the canonical gene expression signature for a missing cell

type and the concentrations of all cells is a difficult challenge. In order to test the

proposed non-linear optimization approach a basic leave-one-out scenario was utilized.

In this testing setup, each cell type was left out and its signature was estimated using

the presented approach (UCQPM) compared against DECONF which can be told to

estimate all cell types. As before, this scenario was repeated 10 times and the following

results are the average of the 10 replicates. A second study our basic model used to

detect if a cell type is missing or not. This was presented as a binary classification

problem and assessed accordingly.

In general the UCQPM method outperforms unsupervised deconvolution on all of

these missing cell type experiments. The results for these experiments are detailed in

figures 3-5 and 3-6. This holds for all tested conditions.

In figure 3-5 the mixture effect is measured. There is a an inverse relationship
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(a) Gene Effect: Ideal Scenario

(b) Gene Effect: Random Concentration

(c) Gene Effect: High Error

Figure 3-4: In this figure the accuracy of the 4 deconvolution methods in estimating
the concentration matrix is compared using rmse metric. Each method is evaluated
given a different gene count between 8 and 256.
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Figure 3-5: This graph has two y-axis, the left describes the mean absolute error of the
signature estimate (solid line), while the right indicates the rmse of the concentration
estimate (dotted line). The number of mixtures is fixed to 5, the error parameter is
100 and the concentrations are random. The x-axis varies the number of mixtures.

between both the concentration and signature estimates and error for UCQMP. This

is consistent with results observed in the non-missing scenario. For DECONF no such

consistent relationship is observed.

Figure 3-6 details the effect of noise on missing cell type estimates. The number

of mixtures is fixed to 20, the concentration is random, and 64 genes are used. For

UCQPM there is a clear inverse relationship between error and accuracy. At a high

error rate (5 cells per type), both the signatures and concentrations are estimated

poorly. As the error parameter increases the mean absolute error and rmse decreases

which is also reflected in the non-missing scenario.

The final test evaluates our basic predictor of a missing cell type. The algorithm

applies both missing and non-missing approaches to a given deconvolution problem,

then applies the basic test 𝑟 > 𝑟 + 𝛾 where 𝛾 is some small constant. Where 𝑟

is the residual calculated assuming a missing cell type, 𝑟 is without a missing cell

type. This scenario was tested by creating 10 mixtures with a missing cell type and

10 without. Both UCQPM and UCQP were run on each dataset and the test was

applied predicting if it contained a missing cell type. This whole scenario was repeated
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Figure 3-6: This graph has two y-axis, the left describes the mean absolute error of the
signature estimate (solid line), while the right indicates the rmse of the concentration
estimate (dotted line). The number of mixtures is fixed to 20, the gene count is 64,
concentrations are random. The x-axis varies the error parameter.

10 times with the average results displayed in table 3.1.

error accuracy AUC
70 0.77 0.89
80 0.72 0.86
90 0.72 0.84
100 0.77 0.81

Table 3.1: This table records the binary classification problem attempting to predict
the presence of a missing cell type from single cell and bulk qPCR data. There
error column indicates the error parameter used in the simulation (higher being lower
noise). The accuracy column is the typical notion of accuracy, and AUC is the area-
under-curve.

In general this leave-one-out experiments indicates that UCQPM provides a more

robust estimate of the missing cell type signature and concentrations than the un-

supervised approach. This results is expected because the UCQPM utilizes more

information about the system and is estimating a smaller number of variables . The

quadratic programming formulation allows the method to be tailored to any number

of unique situations, maximizing the use of available information.

However the ability of our simple threshold method to detect a missing cell type
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leaves much room for improvement. The best accuracy observed in this ideal ex-

periment is 0.89 AUC as seen in table 3.1. Clearly this simplistic model will not be

scalable to more complex scenarios where more than 1 cell type is missing. Alternative

approaches will need to be explored.

3.5 Conclusions

This work presented an in silico gene expression deconvolution and missing cell type

detection algorithm which is based on quadratic programming. This supervised ap-

proach relies on single cell resolution data to estimate cell type signatures, then uses a

well defined non-negative least squares objective to estimate cell type concentrations.

This approach was compared against leading semi-supervised and unsupervised NMF

based methods and was shown to perform well. Estimating a missing cell type signa-

ture is also possible using a basic quadratic programming formulation. The signature

and concentration estimation accuracy is much better than completely unsupervised

NMF based methods. A basic approach to detecting a missing cell type was presented,

however it is likely to be insufficient in more complex scenarios.
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Chapter 4

Conclusions

The common theme in this work has been to find an elegant way of adopting com-

putationally intensive optimization algorithms to solve problems unique to high-

throughput genomics research. This final chapter summarizes the presented problems

and strategies used to solve them. For each problem the current state of the art is

discussed and potential future work proposed. Although only three problems and

three strategies are discussed, the presented themes may aide others searching to find

that edge necessary to solve their particular challenge.

4.1 Genome scaffolding

While genome assembly and scaffolding has always been a challenging task, this

challenge has been exacerbated by the proliferation of sequencing technologies and

the ensuing reduction in cost of whole genome sequencing. One part of a practical

genome assembly is imparting order and orientation on contigs, a process known as

scaffolding. The presented solution leverages the fixed-width nature of the scaffolding

graph in conjunction with the ILP scaling technique NSDP in order to efficiently

compute the best scaffolding with few compromises.
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Assumptions and limitations

The scaffolding problem itself has only recently re-emerged as a relevant problem. As

the human genome project neared completion scaffolding was formalized by Huson et.

al. [47] in response the practical need of having to orient and organize the disparate

contigs comprising the human genome. In this earlier context the technology available,

Sanger sequencing, produced reads exceeding 1000 bases in length, forming large

contigs. The paired reads were also fewer in number and due to their length aligned

with less ambiguity. However the trend towards shorter contigs assembled from short

reads has made the problem more difficult.

Figure 4-1: This plot indicates the expected upperbound on the scaffolding graph
bandwidth for various minimum contig sizes and paired end library insert sizes. The
x-axis indicates minimum contig size, up to 20k bases, and the y-axis is the graph
bandwidth upperbound computed by 𝑤 ≤ 𝑡

𝑙𝑚𝑖𝑛

where 𝑤 is the graph bandwidth, 𝑡 is

the insert size and 𝑙𝑚𝑖𝑛 is the minimum contig size. There are four series representing
different minimum contig sizes.

Work in [26] made the observation that the scaffolding graph should have some

special properties. Namely that the number of contigs which can be adjacent to any

given contig is bounded by the maximum insert size of the paired end library. The
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cited formula 𝑤 ≤ 𝑡

𝑙𝑚𝑖𝑛

from [95] indicates that in the ideal scenario the number of

contigs is quite small. A graph representing a reasonable range of values can be see

in Figure 4-1. This assumption, along with the presence of large fence [26] contigs

bolsters the argument that the scaffolding graph can be decomposed into sufficiently

small components solvable using NSDP.

While very promising, this assumption that the scaffolding graph has a fixed

bandwidth fails in practice due to errors in the read alignment. The high repeat

content of genomes causes increased assembly and read alignment errors. These

errors significantly increase the number of possible adjacent contigs and thus make

decomposition difficult.

State of the art and community work

The process of scaffolding fragments of a draft genome does not always rely solely

on paired-end sequencing data. Recent work in [16, 91] explored the use of Hi-C or

optical restriction maps to provide chromosome scale linkage information. These new

techniques combine both paired-end sequencing containing short range information

with the long range information to give a much more comprehensive scaffold. The

combination of these two data types is often done in a hierarchical manner, first

scaffolding on small or large scale then increasing or decreasing the resolution similar

to [52].

Future work

Genome scaffolding will always be part of de novo genome assembly although the

difficult of the problem may diminish as technology improves. Read lengths on NGS

sequencers are again approaching several hundred base pairs, which improves both

the contig assembly accuracy and the reliability of paired-read alignments. A re-

cent publication [108] demonstrated the use of a basic k-mer counting algorithm for

scaffolding using 1000 bp plus strobed reads from the Oxford Nanopore sequencer.

Additionally the sheer volume of reads produced from traditional NGS sequencers,
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combined with more scalable and accurate genome assembly algorithms will again

enable basic bundle size filtering [47].

An interesting application of de novo sequencing, and by extension scaffolding is

the detection of structural variation (SV) [59]. The idea behind this work is that read

alignment based approaches are inherently biased towards pre-programmed structural

variations. Existing work performs complete de novo assembly, performs traditional

SV detection, and uses an alignment based comparison of the assembled genome

versus a reference for further evidence. While feasible, the cost of acquiring high

coverage sequencing for de novo assembly still remains quite expensive. There may

be an opportunity to utilize an ILP formulation similar to that used in SILP2 to

detect certain structural variations. The high-level approach would be:

∙ align paired reads from subject as singletons against reference genome

∙ randomly fragment reference genome into pseudo-contigs

∙ construct scaffolding graph from paired end linkage information

∙ solve optimal orientation of pseudo-contigs

In this approach inversions would be detected when a pseudo-contig is flipped, since

the contigs are known to originate from state A. Additional structural variation events

could be detected by augmenting the ILP formulation.

4.2 Biomarker selection and predictive modeling

The process of biomarker selection is an extremely important step in translating

genetic discovery to actionable medicine. It is also an active area of research, with

many techniques being published. The work presented here provides an easy-to-

use approach to survey all biomarker selection and classification algorithms to build

the most accurate predictive model. The approach utilizes standard nested cross-

validation techniques but has implemented them in a scalable cloud based architecture

which relies on distributed task queues.
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Assumptions and limitations

The main premise utilized in our pipeline is utilize extensive parametrization and

large scale surveys to find optimal feature selection algorithm and build the best

predictive models. Although somewhat simplistic in theory this strategy was proven

to be quite effective in practice. However there are several areas where simplifying

assumptions were made to make the strategy practical:

∙ normalization and scaling

∙ ignoring co-variance

∙ aggregate features

The notion of normalization and scaling is critical to building predictive models.

Correction for technical and measurement noise can greatly improve performance and

every algorithm is tuned to work in a specific numerical range. The presented work

does not address normalization strategies which can be quite diverse, although the

paradigm can be easily extended to accommodate them. Another simplification made

was to ignore the co-variance between features when computing the optimal biomarker

set. For some application, markers with strong co-variance may not be desirable.

Finally recent advances in deep-learning and knowledge based feature selection have

demonstrated the power of aggregate features, or feature sets. Here two or more

genes are considered simultaneously or mathematically convolved into a single pseudo

feature which can be more powerful.

State of the art and community work

Advances in predictive modeling and feature selection have been occurring at break-

neck speed. Driving much of the cutting edge research are the fields of computer-

vision and so called deep-learning. These techniques are making their way into the

bioinformatics domain [110] with amazing results.
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Future work

The modular nature of the parametrization and model selection pipeline enables easy

integration of new approaches as they are published. Furthermore, the paradigm

introduced in this work to solve the biomarker selection problem can be generalized

to solve a variety of other problems. One such problem is dimension reduction and

visualization of gene expression data.

There are numerous methodologies for clustering single cell gene expression pro-

files into cell types. One strategy is to enumerate each of the leading techniques

and evaluate them using a variety of criteria as seen in Figure 4-2. This procedure

enables the biologist to compare criteria and make an informed decision around the

appropriate clustering procedure. This approach is an extension of existing ensemble

and survey methodologies [22] made possible by a highly engineered cloud computing

environment.

For dimension reduction we will test manifold learning methods (spectral embed-

ding, t-SNE, linear embedding), PCA, sparsePCA, factor analysis and NMF. Several

common clustering algorithms including affinity propagation, mean shift, spectral

clustering, db scan and k-mean clustering as well as metrics such as silhouette score,

gap statistic, Davies-Boulden, homogeneity index, separation index or some combi-

nation of these will also be tested. Often only intuition or experience is used to

inform the method selection and parametrization. Rather than rely on intuition, our

approach is to test each model against the others using several objective functions,

allowing the most appropriate model for a particular dataset to be automatically

selected. After global normalization of mean expression profiles, matching clustered

single cell expression profiles to known cell type expression profiles will be done based

on similarity measures selected via cross-validation experiments among both standard

measures such as Pearson correlation and pathway-based similarity measures such as

attract [69].
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4.3 Single-cell assisted deconvolution

Single cell gene expression profiling is becoming widely accessible thanks to the pro-

liferation of advanced sample preparation microfluidic equipment and protocols. Pre-

liminary work has shown expression profiles at this resolution is quite different than

bulk level gene expression. In order to bridge this gap we have proposed a novel us-

age of gene expression deconvolution using quadratic programming techniques. The

effort presented here is still very much work in progress. The framework is still under

development and requires extensive validation on biological datasets.

Assumptions and limitations

The primary assumption made in this work is that the researcher has the ability

to cluster individual single cell expression profiles into meaningful clusters which

accurately represent the constituent cell types. This assumption may necessitate

sampling a very large number of single-cell data points. Cell-cycle effects may further

result in a broad range of gene expression values for cells sampled from a single

phenotypic cell type.

State of the art and community work

There have been many pioneering efforts to build solutions and techniques for deal-

ing with the unique challenges found in single-cell analysis. For example a recent

study explored techniques [15] for removing cell cycle effects when studying single-

cells across multiple conditions. This can allow for better biomarkers selection and

potentially yield better automated clustering.

Many groups are also investigating advanced dimension reduction and clustering

[90, 101] which are more appropriate for the single-cell domain. Others are exploring

lineage inference techniques [107, 70] where gene expression profiles are compared and

ordered according to various objectives, or they are physically collected at different

time points. The developmental lineage can then be computationally inferred using

a variety of approaches.

95



Future work

While a universally agreed upon definition of what constitutes a cell type is still lack-

ing, curating and organizing single cell, cell line, and bulk tissue expression data into

a database of canonical cell type expression profiles can greatly simplify future gene

expression studies. Establishing such a database would not only serve as a repository

for single cell data, but, by accepting cell line and bulk mixtures (coupled with de-

convolution), would allow it to become a unified source to cell type definitions. Below

we describe a customizable and modular strategy for establishing such a database,

called Cell Type DB. The database is composed of 3 distinct layers as illustrated in

Figure 5: the raw expression layer, an organization layer, and finally an aggregation

to cell type layer.

The raw gene expression layer accepts 3 types of data, single cell gene expression,

cell line gene expression and finally bulk (heterogeneous mixtures) gene expression.

Data which is pre-processed by an external party will be required to be normal-

ized according to best practices and to account for batch effects. Datasets which

are deposited directly, such as new bulk or single cell data can be pre-processed di-

rectly. This layer will likely be implemented using Apache HBase which provides

excellent real-time /read/write access to data tables consisting of millions of columns

(genes/isoforms) by billions of rows (gene expression profiles).

The organization layer’s primary purpose is to stratify each individual gene ex-

pression profile into clusters corresponding to cell type, and then convert each cluster

into a canonical expression profile. The procedure for this is different for each data

type; single cell will be processed using the typical clustering methodologies, cell

line data is highly homogeneous and require minimal preprocessing, while bulk data

will be computationally deconvolved into its constituent cell types. This layer will

be implemented in MongoDB, a NoSQL DB which excels at storing semi-structured

data.

The final aggregation layer will consist of the computed cell type expression pro-

files. A query will consist of two components; the raw expression profiles to start
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with, the organization strategy. This module access layer enables the database to

support multiple, well defined strategies for defining a cell type.

4.4 Closing

The cat-and-mouse game between bioinformatics and problem size driven by the

state-of-the art biotechnology platforms will continue. Fortunately, as the cost of

data acquisition drops, so too does the cost of computing resources. Although re-

searchers will always be looking to improve the theoretical approaches to solving

large scale optimization problems, there is still substantial opportunity to implement

practical solutions. The common themes in these solutions will be leveraging powerful

distributed computing resources and alternative problem formulations which better

approximate the underlying biological systems.
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Figure 4-2: This algorithm tests all combinations of dimension reduction and cluster-
ing algorithms to find the approach which provides the optimal results.
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Figure 4-3: Cell Type DB provides a dynamic mechanism for storing and accessing
canonical cell type expression profiles. Like a in a traditional database the first
layer stores the raw single cell gene expression data. The middle layer is the cell
annotation where one or more of the single cells are annotated according to the
clustering methodologies or external mechanisms, the final layer applies a procedure
to aggregate the single cell clusters into the canonical cell type expression profile.
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