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1 Introduction

Recent progress in audio, video, and data storage technologies has given rise to a host of high-bandwidth

real-time applications such as video conferencing. These applications require Quality of Service (QoS) guar-

antees from the underlying networks. Thus, multicast routing algorithms which manage network resources

efficiently and satisfy the QoS requirements have come under increased scrutiny in recent years [19]. The

focus on multimedia data transfer capability in networks is expected to further increase as video conferencing

applications gain popularity.

It is becoming apparent that new network mechanisms will be required to provide differentiated quality

guarantees to network users. Of particular importance is the problem of optimal multimedia distribution

from a source to a collection of users with heterogeneous demands. Multimedia distribution is usually done

via multicast trees. There are two main reasons for using trees in multicast routing: (a) the data can be

transmitted concurrently to destinations along the branches of the tree, and (b) only a minimum number
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of copies of the data must be transmitted since information replication is limited to the branshing points of

the tree [22]. The bandwidth savings obtained from the use of multicast trees can be maximized by using

optimal or nearly optimal multicast tree algorithms, and future networks are expected to integrate such

algorithms into their operation [4].

Several versions of the QoS multicast problem have been studied in the literature. These versions seek

routing tree cost minimization subject to (1) end-to-end delay, (2) delay variation, and/or (3) minimum

bandwidth constraints (see, e.g., [4, 17, 13]). This chapter deals with the case of minimum bandwidth

constraints, that is, the problem of finding an optimal multicast tree when each terminal possesses a different

rate of receiving information. This problem is a generalization of the classical Steiner tree problem and

therefore NP-hard [7]. Formally, given a graph G = (V, E), a source s, a set of terminals S, and two

functions: length : E → R+ representing the length of each edge and rate : S → R+ representing the rate of

each terminal, a multicast tree T is a tree in G spanning s and S. The rate of an edge e in a multicast tree

T , denoted by rate(e, T ), is the maximum rate of a downstream terminal, i.e., of a terminal in the connected

component of T − e which does not contain s. The cost of a multicast tree T is defined as

cost(T ) =
∑

e∈T

length(e) · rate(e)

Quality of Service Multicast Tree (QoSMT) Problem: Given a network G = (V, E, length, rate)

with source s ∈ V and set of terminals S ⊆ V , find a minimum cost multicast tree in G.

Without loss of generality, in this paper we further assume that the rates belong to a given discrete set of

possible rates: 0 = r0 < r1 < . . . < rN . The QoSMT problem is equivalent to the Grade of Service Steiner

Tree problem [21], which has a slightly different formulation: in the latter the network has no source node

and rates re must be assigned to edges so that the minimum edge rate on the tree path from a terminal with

rate ri to a terminal with rate rj is at least min(ri, rj), and such that the total tree cost is minimized. A

more general QoSMT with Priorities was considered by Charikar et al. [7]. In this version of the problem the

cost of an edge e is given arbitrarily instead of being equal to the length times the rate. In other words, edge

costs in QoSMT with Priorities are not required to be proportional to edge rates. This generalization seems

more difficult – the best known approximation ratio is logarithmic (which also holds for multiple multicast
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groups) [7].

The QoSMT problem was introduced in the context of multimedia distribution over communication

networks by Maxemchuk [13]. Maxemchuk suggested a low-complexity heuristic that can be used to build

reliable multicast trees in many practical applications. Following Maxemchuk, Charikar et al [7] gave a

useful approximation algorithm that finds a solution within eα of the optimal, where α < 1.550 is the best

approximation ratio of an algorithm for the Steiner tree problem. This is the first known algorithm with a

constant approximation ratio for this problem. Recently, an approximation ratio of 3.802 based on accurate

estimation of Steiner tree length has been achieved in [12].

We note that the problem QoSMT problem was also considered previously (under different names) in the

operations research literature. A number of results for particular instances of the problem were obtained:

Current et al. [9] gave an integer programming formulation for the problem and proposed a heuristic

algorithm for its solution. Some results for the case of few rates were obtained by Balakrishnan et al. in

[1] and [2]. Specifically, [2] (see also [21]) suggested an algorithm for the case of two non-zero rates with

approximation ratio of 4
3α < 2.066. An improved approximation algorithm with a ratio of 1.960 was proposed

in [12]. For the case of three non-zero rates, Mirchandani [14] gave an 1.522-approximation algorithm.

This chapter is organized as follows. First, we describe centralized algorithms for the QoSMT problem,

spending the bulk of the time on the algorithms in [12], which have best approximation factors to date.

Although these algorithms have superior quality, they cannot be easily adjusted for operation in a distributed

environment. Thus, we then describe a more practical primal-dual approach to the QoSMT problem following

[6]. This approach yields algorithms that have natural distributed implementations, and work well even when

the multimedia source does not have exact knowledge of network topology. We conclude with an experimental

comparison showing the advantage of the primal-dual approach over practical heuristics proposed in the

literature.

2 Centralized Approximation Algorithms

Tables 1.1 and 1.2 summarize the approximation ratios of known centralized algorithms for the QoSMT

problem, for the cases of two non-zero rates and unbounded number of non-zero rates, respectively. In this
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table we present the approximation ratios achievable using various Steiner tree approximation algorithms

as a subroutine. Note that along with the best approximation ratios resulting from the use of the loss-

contracting Steiner tree algorithm in [18], we also give approximation ratios resulting from the use of the

more practical Steiner tree algorithms from [16, 3, 20, 24]. In this section we briefly discuss Maxemchuk’s

[13] and Charikar et al. [7] methods, and then give give a detailed description of best-to-date β-convex

approximation algorithms of Karpinski et al [12].

2.1 Summary of Approximation Factors for the QoSMT Problem

2.2 Maxemchuk’s Algorithm

Maxemchuk [13] introduced the QoSMT problem and proposed the first heuristic to solve this problem. His

algorithm is a modification of the MST heuristic for Steiner Trees [20] (see Figure 1.1).

The extensive experiments given in [13] demonstrate that this method works well in practice. Never-

theless, the following example shows that the method may produce arbitrarily large error (linear in the

number of rates) compared with the optimal tree. Consider the natural generalization of the example in

Figure 1.2 with an arbitrary number k of distinct rates. Its optimal solution has a cost of about 1, whereas

Maxemchuk’s method returns a solution of cost about (k + 1)/2. As there are 2k−1 + 1 nodes, this cost can

also be written as 1 + 1
2 log2(n − 1), where n is the number of nodes in the graph. We conclude that the

approximation ratio of Maxemchuk’s algorithm is no better than linear in the number of rates and no better

than logarithmic in the number of nodes in the graph.

2.3 The Charikar-Naor-Schieber Algorithms

Charikar et al [7] gave the first constant-factor approximation algorithms for the QoS Steiner tree problem.

The simplest version is a binary rounding algorithm. In its first step, all rates are rounded to the closest

power of two to produce the rounded up instance of this problem (clearly, this at most doubles the cost of

an optimal solution). In its second step, Steiner trees are computed separately for each rate (within some

approximation ratio α). The union of these trees is the final solution.

Consider the network obtained by replacing each edge of rate 2i in an optimal solution by i + 1 parallel
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edges of rates 20, 21, . . . , 2i−1, 2i, respectively. In the new network, edges of a specific rate form a Steiner

tree spanning all terminals of the respective rate. Since the optimal cost in this new network is no more

than twice the cost of the rounded up instance, taking the union of all the computed Steiner trees introduces

another factor of two to the approximation ratio. Thus the final approximation factor is 2 · α · 2 = 4α.

Using a randomization technique, Charikar, Naor, and Schieber [7] reduce the approximation ratio to

eα ≈ 4.21, where e ≈ 2.71 is the Euler constant and α ≈ 1.55 is the currently best approximation ratio for

the Steiner Tree problem.

2.4 β-Convex Steiner Tree Approximation Algorithms

In this section we introduce the notion of β-convex Steiner tree approximation algorithms and show tighter

upper bounds on their output when applied to the QoSMT problem.

We begin by reviewing some Steiner tree definitions. A Steiner tree is a minimum-length tree connecting

a subset of the graph’s nodes. The nodes in a subset are usually referred to as terminal nodes. A Steiner tree

is called full if every terminal is a leaf. A Steiner tree can be decomposed into components which are full by

breaking the tree up at the non-leaf terminals. A Steiner tree is called k-restricted if every full component

has at most k terminals. Let us denote the length of the optimum k-restricted Steiner tree as optk and the

length of the optimum unrestricted Steiner tree as opt. Let the k-restricted Steiner ratio ρk be ρk = sup optk

opt
,

where the supremum is taken over all instances of the Steiner tree problem. It has been shown in [5] that

ρk = (r+1)2r+s

r2r+s
, where r and s are obtained from the decomposition k = 2r +s, 0 ≤ s < 2r. A slightly tighter

bound on the length of the optimal k-restricted Steiner tree has been established in [12].

Theorem 1.1 [12] For every Steiner tree T partitioned into edge-disjoint full components T i,

optk ≤
∑

i

(

ρk(l(T i) − D(T i)) + D(T i)
)

,

where l(T i) is the length of the full component T i and D(T i) is the length of the longest path in T i.

β-convexity of Steiner tree approximation has been introduced in [12]. A Steiner tree heuristic A is called

a β-convex α-approximation Steiner tree algorithm if there exist an integer m and non-negative real numbers

λi, i = 2, . . . , m, with β =
∑m

i=2 λi and α =
∑m

i=2 λiρi such that the length of the tree computed by A, l(A),
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is upper bounded by

l(A) ≤

m
∑

i=2

λiopti,

where opti is the length of the optimal i-restricted Steiner tree.

The MST-algorithm [20] is 1-convex 2-approximation since its output is the optimal 2-restricted Steiner

tree of length opt2. Every k-restricted approximation algorithm from [3] is 1-convex – the sum of coefficients

in the approximation ratio always equals to 1, e.g., for k = 3, it is 1-convex 11/6-approximation algorithm

since the output tree is bounded by 1
2opt2 + 1

2opt3. The output tree for PTAS [16] converges to the optimal

3-restricted Steiner tree and has length (1 + ε)opt3, therefore, it is (1 + ε)-convex 5
3 (1 + ε)-approximation

algorithm. The currently best approximation ratio of 1 +
√

3
2 is achieved by heuristic from [18] which is not

known to be β-convex for any value of β.

Given a β-convex α-approximation algorithm A, it follows from Theorem 1.1 that

l(A) ≤
∑

i

λiopti ≤
∑

i

λiρi(opt − D) + βD = α(opt − D) + βD (2.1)

Let OPT be the optimum cost QoSMT tree T , and let ti be the length of rate ri edges in T . Then,

cost(OPT ) =

N
∑

i=1

riti

Let OPTk be the subtree of the optimal QoS Multicast tree OPT induced by edges of rate ri, i ≥ k. The

tree OPTk spans the source s and all nodes of rate rk and, therefore, an optimal Steiner tree connecting s

and rate-rk nodes cannot be longer than

l(OPTk) =

N
∑

i=k

ti

The main idea of the QoSMT algorithms in [12] is to reuse connections for the higher rate nodes when

connecting lower rate nodes. When connecting nodes of rate rk, we collapse nodes of rate strictly higher

than rk into the source s thus allowing to reuse higher rate connections for free. Let Tk be an approximate

Steiner tree connecting the source s and all nodes of rate rk after collapsing all nodes of rate strictly higher

than rk into the source s and treating all nodes of rate lower than rk as Steiner points. If we apply an

α-approximation Steiner tree algorithm for finding Tk, then the resulted length can be bounded as follows

l(Tk) ≤ αl(OPTk) = αtk + αtk+1 + . . . + αtN
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The following lemma shows that if the tree Tk is obtained using β-convex α-approximation Steiner tree

algorithm, then a tighter upper bound on the length of Tk holds.

Lemma 1.1 [12] Given an instance of the QoSMT problem, the cost of the tree Tk computed by a β-convex

α-approximation Steiner tree algorithm is at most

cost(Tk) ≤ αrktk + β(rktk+1 + rktk+2 + · · · + rktN )

Proof. Let OPTk be the subtree of the optimal QoS Multicast tree OPT induced by edges of rate ri,

i ≥ k. By duplicating nodes and introducing zero length edges, it can be assumed that OPTk+1 is a complete

binary tree with the set of leaves consisting of the source s and all nodes of rate at least rk+1. The edges of

rate rk form subtrees attached to the tree OPTk+1 connecting rate rk nodes to OPTk+1 (see Figure 1.3(a)).

Note that edges of any binary tree T can be partitioned into the edge-disjoint paths connecting internal

nodes with leaves as follows. Each internal node v (including the degree-2 root) is split into two nodes v1

and v2 such that v1 becomes a leaf incident to one of the downstream edges and v2 becomes a degree-2 node

(or a leaf if v is the root) incident to an edge connecting v to its parent (if v is not the root) and another

downstream edge. Since each node is incident to a downstream edge, each resulted connected component

will be a path containing exactly one leaf of T connected to an internal node of T .

The binary tree OPTk+1 broken into edge-disjoint paths described above along with all nodes of rate rk

that attached to them is shown on Figure 1.3(b). A resulted connected component OPT i
k consisting of a

path Di
k = OPT i

k ∩OPTk+1 and attached Steiner trees with edges of rate rk is shown on Figure 1.3(c). Note

that the total length of the paths Di
k is l(OPTk+1) = tk+1 + tk+2 + · · ·+ tN . By Theorem 1.1, decomposing

the tree Tk along these full components OPT i
k results in the following upper bound:

l(Tk) ≤
∑

i

[

α(l(OPT i
k) − Di

k) + βDi
k

]

= αtk + β(tk+1 + tk+2 + · · · + tN )

The lemma follows by multiplying the last inequality by rk.
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2.5 β-Convex Approximation for QoSMT with Two Rates

In practice, it is often the case that only few distinct rates are requested by the terminals. This is why the

QoS problem with two or three rates has a long history [1, 2, 14, 21]. The previously-best results of [14] and

[21] have produced algorithms with approximation factor equal to 2.667 (provided that the MST heuristic

is used to compute Steiner trees).

In this section approximation factors for the QoSMT problem with two non-zero rates are derived for the

balancing algorithm based on β-convex Steiner tree approximation (see Figure 1.4) [12].

Recall that an edge e has rate ri if the largest node rate in the component of T − {e} that does not

contain the source is ri. Let the optimal Steiner tree in G have cost opt = r1t1 + r2t2, with t1 being the total

length of the edges of rate r1 and t2 being the total length of the edges of rate r2. The algorithm in Figure

1.4 uses as subroutines two Steiner tree algorithms: an algorithm A1 with an approximation ratio of α1,

and a β-convex algorithm A2 with an approximation ratio of α2. It outputs the minimum cost Steiner tree

between the tree ST1 obtained by running A1 with a set of terminals containing the source and the nodes

with both high and low non-zero rate, and the tree ST2 obtained by running A1 with a set of terminals

containing the source and all high rate nodes, contracting the resulting tree into the source, and running A2

with a set of terminals containing the contracted source and the low rate nodes.

Theorem 1.2 [12] The algorithm in Figure 1.4 has an approximation ratio of

max

{

α2, max
r

α1
α1 − α2r + βr

α1 − α2r + βr2

}

Proof. The cost of ST1 is bounded by cost(ST1) ≤ α1r2(t1 + t2). To obtain a bound on the cost of ST2

note that cost(T2) ≤ α1r2t2, and that, by Lemma 1.1, cost(T1) ≤ α2r1t1 + βr1t2.

Thus, the following two bounds for the costs of ST1 and ST2 follow:

cost(ST1) ≤ α1r2t1 + α1r2t2

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2

Let us distinguish the following two cases:

Case 1: Let βr1 ≤ (α2 − α1)r2. Then

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2
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≤ α1r2t2 + α2r1t1 + (α2 − α1)r2t2

≤ α2(r2t2 + r1t1)

= α2opt

Case 2: Let βr1 > (α2 − α1)r2. Then the following two values are positive

x1 =
r1

α1r2
(βr1 − (α2 − α1)r2)

x2 = r2 − r1

The following linear combination will be bounded

x1cost(ST1) + x2cost(ST2) =
r1(βr1 − (α2 − α1)r2)

α1r2
cost(ST1) + (r2 − r1)cost(ST2)

≤ r1(βr1 − (α2 − α1)r2)(t1 + t2)

+(r2 − r1)(α1r2t2 + α2r1t1 + βr1t2)

= ((β − α2)r
2
1 + r1r2α1)t1 + ((β − α2)r1r2 + r2

2α1)t2

= ((β − α2)r1 + r2α1)(r1t1 + r2t2)

≤ (βr1 + α1r2 − α2r1)opt (2.2)

Let Approx be the cost of the tree produced by the approximation algorithm. The inequality (2.2) implies

that

Approx = min{cost(ST1), cost(ST2)}

=
x1 min{cost(ST1), cost(ST2)}+ x2 min{cost(ST1), cost(ST2)}

x1 + x2

≤
x1cost(ST1) + x2cost(ST2)

x1 + x2

≤
βr1 + α1r2 − α2r1

r1

α1r2
(βr1 − (α2 − α1)r2) + r2 − r1

opt

≤ α1
βr1r2 + α1r

2
2 − α2r1r2

βr2
1 − (α2 − α1)r2r1 + α1r2

2 − α1r1r2
opt

≤ α1
α1 − α2r + βr

α1 − α2r + βr2
opt

where r = r1

r2
.
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Summarizing the two cases we obtain that Approx is at most the maximum of two values – α2opt and

α1
α1−α2r+βr
α1−α2r+βr2 opt – which proves the theorem.

Theorem 1.2 implies numerical bounds on the approximation ratios. Using that α1 = 1 + ln 3/2 + ε for

the algorithm from [18], α2 = 5/3+ ε for the algorithm from [16], α1 = α2 = 11/6 for the algorithm from [3],

and α1 = α2 = 2 for the MST heuristic, and β → 1 for all of the above algorithms (except for the algorithm

from [18]), we maximize the expression in Theorem 1.2 to obtain the following theorem.

Theorem 1.3 [12] If the algorithm from [18] is used as A1 and the algorithm from [16] is used as A2, then

the approximation ratio of the QoSMT algorithm in Figure 3 is 1.960 + ε. If the algorithm from [16] is used

in place of both A1 and A2, then the approximation ratio is 2.059 + ε. If the algorithm from [3] is used in

place of both A1 and A2, then the ratio is 2.237. If the MST heuristic is used in place of both A1 and A2,

then the ratio is 2.414.

2.6 β-Convex Approximation for QoSMT with Unbounded Number of Rates

In this section, we describe and prove the performance ratios of β-convex approximation algorithms for the

case of the QoSMT problem with arbitrarily many non-zero rates r1 < r2 < · · · < rN [12]. The algorithm

(see Figure 1.5) is a modification of the algorithm in [7]. As in [7], node rates are rounded up to the closest

power of some number a starting with ay, where y is picked uniformly at random between 0 and 1. In other

words, the given rates are replaced with numbers from the set {ay, ay+1, ay+2, . . .}. The major difference

is that each approximate Steiner tree, Tk, constructed over nodes of rounded rate ay+k is contracted in

increasing order of k instead of simply taking union of Tk’s according to [7]. This allows contracted edges to

be reused at zero cost by Steiner trees connecting lower rate nodes. The following analysis from [12] of this

improvement shows that it decreases the approximation ratio from 4.211 to 3.802.

Let Topt be the optimal QoS Multicast tree, and let ti be the total length of the edges of Topt with rates

rounded to ay+i. First, we prove the following “randomized doubling” lemma corresponding to Lemma 4

from [7].

Lemma 1.2 [12] Let S be the cost of Topt after rounding node rates as in Figure 1.5, i.e., S =
∑n

i=0 tia
y+i.
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Then,

S ≤
a − 1

ln(a)
cost(Topt)

Proof. First, note that an edge e used at rate r in Topt will be used at the rate ay+m, where m is the

smallest integer i such that ay+i is no less than r. Indeed, e is used at rate r in Topt if and only if the

maximum rate of a node connecting to the source via e is r, and every such node will be rounded to ay+m.

Next, let r = ax+m. If x ≤ y, then the rounded up cost is ay−x times the original cost; otherwise, if x > y,

is ay+1−x times the original cost. Hence, the expected factor by which the cost of each edge increases is

∫ x

0

ay+x−1dy +

∫ 1

x

ay−xdy =
a − 1

ln a

By linearity of expectation, the expected cost after rounding of Topt is

S ≤
a − 1

ln a
cost(Topt)

Theorem 1.4 [12] The algorithm given in Figure 1.5 has an approximation ratio of

min
a

(

α
a

ln a
− (α − β)

1

ln a

)

Proof. (Sketch) Let Approx be the cost of the tree returned by the algorithm in Figure 1.5, and Approxk

be the cost of the tree Tk constructed by the algorithm when considering rate rk. Then, by Lemma 1.1,

Approxk ≤ αay+ktk + βay+k+1tk+1 + βay+k+2tk+2 + · · · + βay+ntn

Summing up all the Approxk ’s (we omit the details), we get an upper bound of

(α − β)S + βS

(

1 +
1

a
+

1

a2
+ · · ·

)

≤ (α − β)
a − 1

ln a
cost(Topt) + β

a

ln a
cost(Topt)

=

(

α
a

ln a
− (α − β)

1

ln a

)

cost(Topt)

where the last inequality follows from Lemma 1.2.

Note that the corresponding approximation ratio in [7] is larger and equals α a
ln a

attaining minimum for

a = e. The minimum of the approximation ratio in Theorem 1.4 can be obtained numerically – it is equal to

3.802, 4.059, respectively 4.311, when the β-convex α-approximation Steiner tree algorithm used in Figure

4 is the algorithm in [16], [3], respectively the MST heuristic. Finally, the algorithm in Figure 1.5 can be

derandomized using the same techniques as in [7].
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3 Primal-Dual Approach to the QoSMT Problem

In this section we discuss several primal-dual heuristics for the QoSMT problem due to Calinescu et al. [6].

A simpler integer linear program and two primal-dual algorithms based on it are discussed in Sections 3.1

and 3.2. A tighter integer linear program and an associated 4.311-approximation primal-dual algorithm are

then described in Section 3.3.

3.1 A Simpler ILP Formulation

The QoSMT problem can be formulated as an integer program as follows. Consider a network G =

(V, E, length, rate) with a source node s and a set of terminal nodes. Let r1 < r2 < · · · < rN be all

rate values assigned to the terminals. It simplifies notation to assume that every node has a rate by con-

sidering an extra rate r0 = 0 (assign rate r0 to each non-terminal node). As above the source s has the

highest rate. Construct a new network G′ = (V, E′, cost, rate) by replacing each edge e of G with k edges

(e, r1), (e, r2), . . . , (e, rk) and setting cost((e, ri)) = ri · length(e).

Let x(e,r) be a boolean variable denoting whether edge e is used at rate r in an optimum tree. The QoS

Steiner tree problem can be formulated as

min
∑

(e,r)∈E′

x(e,r) · r · length(e) (3.3)

s.t.
∑

(e,r)∈δ(C)

r≥rC

x(e,r) ≥ 1, ∀C ⊆ V \ {s} (3.4)

x(e,r) ∈ {0, 1} (3.5)

where δ(C) denotes the set of edges with exactly one endpoint in C and rC denotes the maximum rate of a

node in C. Note that (3.3) gives the cost of an optimal solution, while (3.4) guarantees that each terminal

is connected to the source through a collection of edges of rate no less than its rate.

After relaxing the integrality constraints (3.5) the dual linear program can be written as follows. For

each (e, r), C∗(e, r) is defined as {C ∈ V \ {s} : (e, r) ∈ δ(C), r ≥ rC}. In words, C∗(e, r) is the set of

subsets C of V \ {s} such that (e, r) has at least one endpoint in C and r is at least as large as rC . Using
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this definition, the dual is as follows:

max
∑

C

yC

s.t.
∑

C∈C∗(e,r)

yC ≤ r · length(e), ∀(e, r)

yC ≥ 0

3.2 Two Primal-Dual Methods for the Simple ILP Formulation

The primal-dual framework applied to network design problems usually grows uniformly the dual variables

associated to the “active” components of the current forest [11]. This approach fails to take into account

the different rates of different nodes in the QoSMT problem. The Naive Primal-Dual algorithm [6] (see

Figure 1.6) takes in account different rates by varying the speed at which each component grows. While the

simulations in the ensuing sections show that this is a good method in practice, the solution it produces on

some graphs may be very large compared to the optimal solution, as shown by the following example with

two rates.

Consider two nodes of rate 1 connected by an edge of length 1 (see Figure 1.7). There is an arc between

these two nodes, and on this arc there is a chain of nodes of rate ε. Each two consecutive nodes in the chain

are at a distance δ from each other, where δ < 1. Each extreme node in the chain is at a distance δ/2 of its

neighboring rate-1 node.

The Naive Primal-Dual applied to this graph connects the rate-ε nodes first, since δ
2 < 1

2 . So, the

algorithm connects the rate-1 nodes via the rate-ε nodes, and not via the direct edge connecting them.

Thus, the Naive Primal-Dual can make arbitrarily large errors (just take an arbitrarily long chain).

An improved Restarting Primal-Dual algorithm [6] is given in Figure 1.8. One can easily see that this is a

primal-dual algorithm. Indeed, each addition of an edge to the current solution is the result of growing dual

variables. Moreover, since the feasibility requirement for edge a is Σa∈δ(C)yC ≤ r · length(a), this addition

preserves the feasibility of the dual solution. The algorithm maintains forests F ri given by the edges picked

at rate ri, and the connected components of F ri , seen as sets of vertices, are denoted in the algorithm by

Cri
. Such a component is active if rCri

= ri and Cri
is disjoint from components of higher rate.

The Restarting Primal-Dual algorithm avoids the mistake made by the Naive Primal-Dual algorithm on
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the frame example in Figure 1.7(a). Then, at time δ
2 the rate-ε nodes become connected. This means that

δ(1−ε) of each rate-1 edge between the ε-rate nodes is not covered. Meanwhile, the rate-1 nodes are growing

on the respective edges as shown in Figure 1.7(b).

Let us assume that the Restarting Primal-Dual algorithm uses the chain of rate-ε nodes to connect the

two rate-1 nodes instead of the direct edge. This would imply that it takes less time to cover the chain, i.e.,

1
2δ(1−ε)n ≤ 1

2 −
δ
2 , where n is the number of rate-ε nodes. When ε is small, then nδ ≤ 1, so if the Restarting

Primal-Dual algorithm uses the chain then it is correct to do so.

3.3 Primal-Dual 4.311-Approximation Algorithm

A constant-factor primal-dual approximation algorithm is obtained in [6] based on an enhanced integer linear

programming formulation of the QoSMT problem. The enhanced formulation takes into account the fact

that if a set C ⊂ V \ {s} is connected to the source with edges of rate r′ > rC , then there should be at least

two edges of rate r′ with exactly one endpoint in C. The integer program is

min
∑

(e,r)∈E′

x(e,r) · r · length(e)

s.t.
∑

e∈δ(C)
r=rC

x(e,r) +
1

2

∑

e∈δ(C)
r>rC

x(e,r) ≥ 1, ∀C ⊆ V \ {s}

x(e,r) ∈ {0, 1}

The corresponding dual of the LP relaxation is

max
∑

C⊆V \{s}
yC

s.t.
∑

C :e∈δ(C)
rC=r

yC +
1

2

∑

C :e∈δ(C)
rC<r

yC ≤ r · length(e) (3.6)

yC ≥ 0

The core algorithm presented in Figure 1.9 is preprocessed with random bucketing of rates as in Section

2.6 (see also Step 1 in Figure 1.5). Let a be a real (to be picked later) and y be a real picked uniformly at

random from the interval [0 . . 1]. Every node of rate r is replaced by a node of rate aγ+j , where j is the

integer satisfying aγ+j−1 < r ≤ aγ+j .
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The primal-dual part follows the classical framework [11], and works in stages starting from the lower

rate to the highest. During the execution of the algorithm, edges are picked at a certain rate (in other words,

x(e,r) is set to 1) one by one. Before executing step 3 at rate r for the ith time, the set of edges picked at

rate r by the algorithm forms a forest F r
i . (An edge can be picked at several rates, but it is kept in at most

one such rate in the final solution because of the reverse delete step.) A component C of F r
i is called an

r-component if rC = r.

Using Constraint (3.6), it follows by induction on j that, for an edge e and a rate aγ+j , we have

∑

C :e∈δ(C)

rC≤aγ+j

yC ≤ length(e)aγ+j

j
∑

i=0

(

1

2a

)i

≤ length(e)aγ+j 2a

2a − 1
.

For an edge picked by the algorithm at rate r, Constraint (3.6) is tight and therefore

∑

C :e∈δ(C)

rC≤aγ+j

yC ≥ length(e)
2a− 2

2a− 1
aγ+j . (3.7)

Exactly as in [11], the number of edges of rate r in the final solution which cross the active r-components at

some moment (an edge being counted twice if it crosses two r-components) is at most twice the number of

active r-components. Equation (3.7) and exactly the same argument as in Theorem 4.2 of [11] imply that

the cost of the solution of the algorithm is bounded by (2(2a − 1)/(2a − 2))
∑

yC ≤ ((2a − 1)/(a − 1)) opt,

as any feasible solution for the dual linear program has value at most the value of any feasible solution of

the primal.

The same argument as in Section 2.6 shows that the approximation ratio of the algorithm above is

(2a − 1)/ lna. Numerical picking the same best value for a as in Section 2.6 implies

Theorem 1.5 [6] The output cost of the algorithm on Figure 1.9 is at most 4.311 times the optimum cost.

4 Experimental Study

In this section we report experimental results with several QoSMT heuristics: Maxemchuk’s [13], binary

rounding [7], naive primal-dual, and restarting primal-dual algorithms. The heuristics were implemented
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in C++ and compiled using gpp with -O2 optimization, and run on a Sun workstation Ultra-60. The

experiments were run on random testcases generated using GT-ITM generator [10] which is used for mod-

elling internet networks [23]. Table 1.3 gives a comparison of the performance of of the aforementioned

algorithms. The experiments were conducted in the presence of no Steiner nodes, respectively 50% Steiner

nodes. Moreover, both arithmetic and geometric distributions of rates were tested.

Table 1.3 gives the results for instances generated using several sets of parameters. The relative solution

quality of various heuristics is fairly independent on the class of instances. We note that the Naive Primal-

Dual and the Charikar-Naor-Schieber algorithms most often produce comparable results which are slight

improvements over the results produced by Maxemchuk’s algorithm. The Restarting Primal-Dual typically

produces solutions of best quality, typically 0.25 − 6% better than solutions produced by Maxemchuk’s

algorithm; this, however, occurs at the expense of greater CPU time. We also note that the difference between

algorithms increases as the number of rates increases. Figures 1.10 and 1.11 illustrate this observation in a

graphical form.
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Table 1.1: QoSMT problem with 2 rates. Runtime and approximation ratios of previously known algorithms

and of the algorithms given in this paper. In the runtime, n and m denote the number of nodes and

edges in the original graph G = (V, E), respectively. Approximation ratios associated with polynomial-time

approximation schemes are accompanied by a +ε to indicate that they approach the quoted value from above

and do not reach this value in polynomial time.

Steiner Tree Algorithm LCA [18] LCA +RNS[16] BR [24, 3] MST [20]

Runtime polynomial polynomial O(n3) [25] O(n log n + m) [15]

Approximation ratio 4
3

1+ln 3
2 + ε 20

9 + ε 22
9

8
3

in [2, 21] < 2.066 + ε < 2.223 + ε < 2.445 < 2.667

Improved ratio [12] – 1.960+ε 2.237 2.414

Table 1.2: Approximation ratios for QoSMT problem with an arbitrary number of rates.

Steiner Tree Algorithm LCA [18] RNS[16] BR [24, 3] MST [20]

Approximation e 1+ln 3
2 + ε e 5

3 + ε e 11
6 2e

ratio in [16] < 4.212 + ε < 4.531 + ε < 4.984 < 5.44

Improved ratio [12] – 3.802 + ε 4.059 4.311
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Table 1.3: Cost improvement over Maxemchuck’s algorithm (%) and CPU seconds for binary rounding and

two primal-dual algorithms (averages over 10 testcases).

50% steiner nodes, geometric progression rates

R N Maxemchuk’s binary rounding Naive-PD Restart-PD

CPU %G CPU %G CPU %G CPU

1 200 0.017 0.00 0.017 -0.01 0.544 -0.01 0.325

1 300 0.050 0.00 0.052 0.04 1.372 0.04 0.946

2 200 0.027 0.00 0.026 0.43 1.271 1.03 1.125

2 300 0.070 0.00 0.072 0.93 4.573 2.17 3.747

5 200 0.044 0.00 0.044 -2.13 1.490 1.30 5.321

5 300 0.123 0.00 0.120 -0.91 5.221 1.10 16.798

10 200 0.065 0.00 0.068 -2.53 1.636 0.66 17.848

10 300 0.180 0.00 0.176 -2.61 6.582 0.24 107.125

50% steiner nodes, arithmetic progression rates

1 200 0.016 0.00 0.017 -0.01 0.541 -0.01 0.327

1 300 0.052 0.00 0.051 0.04 1.370 0.04 0.946

2 200 0.027 0.00 0.023 -0.69 1.373 -0.00 1.136

2 300 0.071 0.00 0.070 -0.32 4.491 0.24 3.773

5 200 0.043 -0.01 0.040 1.70 1.564 2.66 5.256

5 300 0.123 -0.10 0.107 1.92 5.392 4.19 17.271

10 200 0.067 1.79 0.043 4.25 1.556 6.11 16.856

10 300 0.181 2.36 0.126 3.38 5.444 5.73 92.575

0% steiner nodes, geometric progression rates

1 100 0.002 0.00 0.002 0.00 0.052 0.00 0.077

1 200 0.028 0.00 0.028 0.00 0.251 0.00 0.465

2 100 0.007 0.00 0.007 1.21 0.088 1.69 0.185

2 200 0.038 0.00 0.033 2.14 0.698 2.31 1.517

5 100 0.012 0.00 0.013 1.24 0.120 2.82 0.665

5 200 0.059 0.00 0.056 -0.25 1.296 1.70 6.314

10 100 0.019 0.00 0.018 -0.68 0.133 1.63 1.953

10 200 0.090 0.00 0.091 -1.97 1.466 0.73 20.525

0% steiner nodes, arithmetic progression rates

1 100 0.005 0.00 0.005 0.00 0.054 0.00 0.078

1 200 0.026 0.00 0.026 0.00 0.247 0.00 0.457

2 100 0.005 0.00 0.006 -0.11 0.111 -0.04 0.187

2 200 0.036 0.00 0.034 -0.02 1.078 0.30 1.570

5 100 0.011 -0.17 0.011 3.70 0.114 4.60 0.656

5 200 0.059 -0.15 0.052 3.13 1.235 3.85 5.952

10 100 0.019 2.62 0.012 6.65 0.113 7.12 1.922

10 200 0.091 2.67 0.058 5.83 1.203 6.38 17.689
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Input: A graph G = (V, E, length, rate) with a source s in V and a collection of terminals S ⊆ V .

Output: A QoSMT spanning the source and the terminals.

1. Initialize the current tree to {s}.

2. Find a non-reached terminal t of highest rate with the shortest distance to the current tree.

3. Add t to the current tree along with a shortest path connecting it to the current tree.

4. Repeat until all terminals are spanned.

1−2ε1−3ε 1−3ε 1−ε 1−3ε 1−2ε 1−3ε

1/8 1/8

1/4

1/2

1

1/4

1/8 1/8

11
S

Figure 1.1: Maxemchuk’s Algorithm for the QoSMT problem.

1−2ε1−3ε 1−3ε 1−ε 1−3ε 1−2ε 1−3ε
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1/4

1/8 1/8
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S

Figure 1.2: A bad example for Maxemchuk’s algorithm, with k = 4 rates. In the figure, ε = 1/22k−1.

The rate of each node is given above the node. The edge lengths are given on the thin curved arcs, while

on the solid horizontal line each segment has length 1/2k−1 + ε. The optimum, of total cost 1 + 2k−1ε =

1+2k−1(1/22k−1) = 1+1/2k, uses the solid horizontal line at rate 1. Maxemchuk’s algorithm picks the thin

curved arcs at a cost of 1 + (1/2)(1 − ε) + 2(1/4)(1− 2ε) + 4(1/8)(1− 3ε) ≥ ((k + 1)/2)(1− 1/2k).
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(c)(a) (b)

Figure 1.3: (a) The subtree OPTk of the optimal QoS Multicast tree OPT induced by edges of rate ri, i ≥ k.

Edges of rate greater than rk (shown as solid lines) form a Steiner tree for s ∪ Sk+1 ∪ . . . SN (filled circles);

attached triangles represent edges of rate rk. (b) Partition of OPTk into edge-disjoint connected components

OPT i
k each containing a single terminal of rate ri, i > k. (c) A connected component OPT i

k which consists

of a path Di
k containing all edges of rate ri, i > k, and attached Steiner trees containing edges of rate rk.

Input: Graph G = (V, E, l) with two nonzero rates r1 < r2, source s, terminal sets S1 of rate r1 and S2 of

rate r2, Steiner tree α1-approximation algorithm A1 and a β-convex α2-approximation algorithm A2

Output: Low cost QoSMT spanning all terminals

1. Compute an approximate Steiner tree ST1 for s
⋃

S1

⋃
S2 using algorithm A1

2. Compute an approximate Steiner tree T2 for s
⋃

S2 (treating all other points as Steiner points) using

algorithm A1. Next, contract T2 into the source s and compute the approximate Steiner tree T1 for s and

remaining rate r1 points using algorithm A2. Let ST2 be T1

⋃
T2

3. Output the minimum cost tree among ST1 and ST2

Figure 1.4: QoSMT approximation algorithm for two non-zero rates
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Input: Graph G = (V, E, l), source s, sets Si of terminals with rate ri, positive number a, and

α-approximation β-convex Steiner tree algorithm

Output: Low cost QoSMT spanning all terminals

1. Pick y uniformly at random between 0 and 1. Round up each rate to the closest power of some number a

starting with ay, i.e., round up to numbers in the set {ay, ay+1, ay+2, . . .}. Form new terminal sets S′

i which

are unions of terminal sets with rates rounded to the same number r′i

2. T ← ∅

3. For each non-zero rounded rate r′i, in decreasing order, do:

Find an α-approximate Steiner tree Ti spanning s
⋃

S′

i

T ← T ∪ Ti

Contract Ti into source s

4. Output T

Figure 1.5: Approximation algorithm for multirate QoSMT
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Input: A graph G = (V, E, length, rate) with a source s in V and a collection of terminals S ⊆ V .

Output: A QoSMT spanning the source and the terminals.

1. Start from the spanning forest of G with no edges.

2. Grow y
C

with speed rC for each “active” component C of the current forest. (A component C is inactive if

it contains s and all vertices of rate rC .)

3. Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two distinct

components of the forest.

4. Add e to the forest, collapsing the two components.

5. Terminate when there is no active component left.

6. Keep an edge of the resulting tree at the minimum needed rate.

(a) (b)

Figure 1.6: The Naive Primal-Dual algorithm for the QoSMT problem.

(a) (b)

Figure 1.7: The Restarting Primal-Dual avoids the mistake of the Naive Primal-Dual. Part (a) shows

duplication of the edges. Part (b) shows the components growing along the respective edges.
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Input: A Graph G′ = (V, E, cost, rate) with source s, and a collection of terminals S.

Output: A QoSMT spanning the source and the terminal.

1. Grow each active Cri
with speed ri along incident edges (e, rj), j ≤ i, picking edges which become tight.

2. Continue this process until there is no active component of rate rk.

3. Remove all edges which are not necessary for maintaining connectivity of nodes of rate rk.

4. Accept (keep in the solution) and contract all edges of Crk
(i.e., set their length/cost to 0)

5. Restart the algorithm with the new graph

Figure 1.8: The Restarting Primal-Dual algorithm for the QoSMT problem.

Input: A graph G = (V, E, length, rate) with source s in V and a collection of terminals S ⊆ V .

Output: A QoSMT spanning the source and the terminal.

1. For each r = r1, r2, . . . , rk, execute steps 2-6.

2. Start from the spanning forest F r of G with no edges.

3. Grow y
C

uniformly for each r-component C of the current forest F r.

4. Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two distinct

components of F r.

5. Add (e, r) to F r, collapsing two of its components.

6. Terminate when there is no r-component of F r left.

7. Traversing the list of picked edges in reverse order, remove an edge (e, r) from F r if after (e, r)’s removal

the set of edges picked form a feasible tree.
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Figure 1.9: The 4.311-approximation algorithm for QoSMT problem.
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Figure 1.10: The gain of several algorithms versus Maxemchuk’s algorithm, 50% Steiner nodes.
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Figure 1.11: The gain of several algorithms versus Maxemchuk’s algorithm, 0% Steiner nodes.


