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Abstract. Despite much progress over the past decade, current Single
Nucleotide Polymorphism (SNP) genotyping technologies still offer an
insufficient degree of multiplexing when required to handle user-selected
sets of SNPs. In this paper we propose a new genotyping assay architec-
ture combining multiplexed solution-phase single-base extension (SBE)
reactions with sequencing by hybridization (SBH) using universal DNA
arrays such as all k-mer arrays. Our contributions include a study of mul-
tiplexing algorithms for SBE/SBH genotyping assays and preliminary
experimental results showing the achievable multiplexing rates. Simula-
tion results on datasets both randomly generated and extracted from
the NCBI dbSNP database suggest that the SBE/SBH architecture pro-
vides a flexible and cost-effective alternative to genotyping assays cur-
rently used in the industry, enabling genotyping of up to hundreds of
thousands of user-specified SNPs per assay.

1 Introduction

After the completion of the Human Genome Project genomics research is now
focusing on the study of DNA variations that occur between individuals, seeking
to understand how these variations confer susceptibility to common diseases
such as diabetes or cancer. The most common form of genomic variation are the
so called single nucleotide polymorphisms (SNPs), i.e., the presence of different
DNA nucleotides, or alleles, at certain chromosomal locations. Determining the
identity of alleles present in a DNA sample at a given set of SNP loci is called SNP
genotyping. Despite much progress over the past decade, current SNP genotyping
technologies still offer an insufficient degree of multiplexing when required to
handle user-selected sets of SNPs.

In this paper we propose a new genotyping assay architecture combining
multiplexed solution-phase single-base extension (SBE) reactions with sequenc-
ing by hybridization (SBH) using universal DNA arrays such as all k-mer arrays.
SNP genotyping using SBE/SBH assays requires the following steps (see Figure
1): (1) Synthesizing primers complementing the genomic sequence immediately
preceding SNPs of interest; (2) Hybridizing primers with the genomic DNA; (3)
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Fig. 1. SBE/SBH assay: (a) Primers complementing genomic sequence upstream of
each SNP locus are mixed in solution with the genomic DNA sample. (b) Temperature
is lowered allowing primers to hybridize to the genomic DNA. (c) Polymerase enzyme
and dideoxynucleotides labeled with 4 different fluorescent dyes are added to the so-
lution, causing each primer to be extended by a nucleotide complementing the SNP
allele. (d) Extended primers are hybridized to a universal DNA array (an all k-mer
array for k=2 is shown). SNP genotypes are determined by analyzing the resulting
hybridization pattern.

Extending each primer by a single base using polymerase enzyme and dideoxynu-
cleotides labeled with 4 different fluorescent dyes; and finally (4) Hybridizing
extended primers to a universal DNA array and determining the identity of the
bases that extend each primer by hybridization pattern analysis.

Although both SBE and SBH are well-established techniques, their combi-
nation in the context of SNP genotyping has not been explored thus far. The
most closely related genotyping assay is the generic Polymerase Extension Assay
(PEA) recently proposed in [1]. In PEA, short amplicons containing the SNPs
of interest are hybridized to an all k-mers array of primers that are subsequently
extended via single-base extension reactions. Hence, in PEA the SBE reactions
take place on solid support, similar to arrayed primer extension (APEX) assays
which use SNP specific primers spotted on the array [2].

As the SBH multiplexing technique of [3], the SBE/SBH assay leads to high
array probe utilization since we hybridize to the array a large number of short
extended primers. However, the main power of the method lies in the fact that
the sequences of the labeled oligonucleotides hybridized to the array are a pri-
ori known (up to the identity of extending nucleotides). While genotyping with
SBE/SBH assays uses similar general principles as the PEA assays proposed in
[1], there are also significant differences. A major advantage of SBE/SBH is the
much shorter length of extended primers compared to that of PCR amplicons
used in PEA. A second advantage is that all probes hybridizing to an extended
primer are informative in SBE/SBH assays, regardless of array probe length; in
contrast, only probes hybridizing with a substring containing the SNP site are
informative in PEA assays. As shown by the experimental results in Section 4
these advantages translate into an increase by orders of magnitude in multiplex-
ing rate compared to the results reported in [1]. We further note that PEA’s
effectiveness crucially depends on the ability to amplify very short genomic frag-
ments spanning the SNP loci of interest. This limits the achievable degree of
multiplexing in PCR amplification, making PCR amplification the main bot-
tleneck for PEA assays. Full flexibility in picking PCR primers is preserved in
SBE/SBH assays.
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The rest of the paper is organized as follows. In Section 2 we formalize
two computational problems that arise in genotyping large sets of SNPs using
SBE/SBH assays: the problem of partitioning a set of SNPs into the minimum
number of “decodable” subsets, i.e., subsets of SNPs that can be unambiguously
genotyped using a single SBE/SBH assay, and that of finding a maximum de-
codable subset of a given set of SNPs. We also establish hardness results for the
latter problem. In Section 3 we propose several efficient heuristics. Finally, in
Section 4 we present experimental results on both randomly generated datasets
and instances extracted from the NCBI dbSNP database. Our results suggest
that the SBE/SBH architecture provides a flexible and cost-effective alternative
to genotyping assays currently used in the industry, enabling genotyping of up
to hundreds of thousands of user-selected SNPs per assay.

2 Problem Formulations and Complexity

A set of SNP loci can be unambiguously genotyped by SBE/SBH if every com-
bination of SNP genotypes yields a different hybridization pattern (defined as
the vector of dye colors observed at each array probe). To formalize the require-
ments of unambiguous genotyping, let us first consider a simplified SBE/SBH
assay consisting of four parallel single-color SBE/SBH reactions, one for each
possible SNP allele. Under this scenario, only one type of dideoxynucleotide is
added to each SBE reaction, corresponding to the Watson-Crick complement
of the tested SNP allele. Therefore, a primer is extended in such a reaction if
the tested allele is present at the SNP locus probed by the primer, and is left
un-extended otherwise.

Let P be the set of primers used in a single-color SBE/SBH reaction involving
dideoxynucleotide e ∈ {A,C,G,T}. From the resulting hybridization pattern we
must be able to infer for every p ∈ P whether or not p was extended by e.
The extension of p by e will result in a fluorescent signal at all array probes
that hybridize with pe. However, some of these probes can give a fluorescent
signal even when p is not extended by e, due to hybridization to other extended
primers. Since in the worst case all other primers are extended, it must be the
case that at least one of the probes that hybridize to pe does not hybridize to
any other extended primer.

Formally, let X ⊂ {A, C, G, T}∗ be the set of array probes. For every string
y ∈ {A, C, G, T}∗, let the spectrum of y in X , denoted SpecX(y), be the set of
probes of X that hybridize with y. Under the assumption of perfect hybridiza-
tion, SpecX(y) consists of those probes of X that are reverse Watson-Crick
complements of substrings of y. Then, a set of primers P is said to be decodable
with respect to extension e if and only if, for every p ∈ P ,

SpecX(pe) \
⋃

p′∈P\{p}

SpecX(p′e) 6= ∅ (1)

Decoding constraints (1) can be directly extended to 4-color SBE/SBH ex-
periments, in which each type of extending base is labeled by a different fluo-
rescent dye. As before, let P be the set of primers, and, for each primer p ∈ P ,
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let Ep ⊆ {A, C, G, T} be the set of possible extensions of p, i.e., Watson-Crick
complements of corresponding SNP alleles. If we assume that any combination
of dyes can be detected at an array probe location, unambiguous decoding is
guaranteed if, for every p ∈ P and every extending nucleotide e ∈ Ep,

SpecX(pe) \
⋃

p′∈P\{p},e∈Ep′

SpecX(p′e) 6= ∅ (2)

In the following, we refine (2) to improve practical reliability of SBE/SBH
assays. More precisely, we impose additional constraints on the set of probes con-
sidered to be informative for each SNP allele. First, to enable reliable genotyping
of genomic samples that contain SNP alleles at very different concentrations (as
a result of uneven efficiency in the PCR amplification step or of pooling DNA
from different individuals), we require that a probe that is informative for a
certain SNP locus must not hybridize to primers corresponding to different SNP
loci, regardless of their extension. Second, since recent studies by Naef et al.
[4] suggest that fluorescent dyes can significantly interfere with oligonucleotide
hybridization on solid support, possibly destabilizing hybridization to a com-
plementary probe on the array, in this paper we use a conservative approach
and require that each probe that is informative for a certain SNP allele must
hybridize to a strict substring of the corresponding primer. On the other hand,
informative probes are still required not to hybridize with any other extended
primer, even if such hybridizations involve fluorescently labeled nucleotides. Fi-
nally, we introduce a decoding redundancy parameter r ≥ 1, and require that
each SNP have at least r informative probes. Such a redundancy constraint fa-
cilitates reliable genotype calling in the presence of hybridization errors. Clearly,
the larger the value of r, the more hybridization errors that can be tolerated.
If a simple majority voting scheme is used for making allele calls, the assay can
tolerate up to br/2c hybridization errors involving the r informative probes of
each SNP.

The refined set of constraints is captured by the following definition, where,
for every primer p ∈ {A, C, G, T}∗ and set of extensions E ⊆ {A, C, G, T}, we
let SpecX(p, E) =

⋃

e∈E SpecX(pe).

Definition 1. A set of primers P is said to be strongly r-decodable with respect
to extension sets Ep, p ∈ P, if and only if, for every p ∈ P,
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≥ r (3)

Note that testing whether or not a given set of primers is strongly r-decodable
can be easily accomplished in time linear in the total length of the primers.

For each SNP locus there are typically two different SBE primers that can
be used for genotyping (one from each strand). As shown in [5] for the case of
SNP genotyping using tag arrays, exploiting this degree of freedom significantly
increases achievable multiplexing rates. Therefore, we next extend our Definition
1 to capture this degree of freedom. Let Pi be the pool of primers that can be
used to genotype the SNP at locus i. Similarly to Definition 1, we have:
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Definition 2. A set of primer pools P = {P1, . . . , Pn} is said to be strongly r-
decodable if and only if there is a primer pi in each pool Pi such that {p1, . . . , pn}
is strongly r-decodable with respect to extension sets Epi

, i = 1, . . . , n.

Primers pi in Definition 2 are called the representative primers of the pools in
P , respectively.

Genotyping a large set of SNPs will, in general, require more than one
SBE/SBH assay. This rises the problem of partitioning a given set of SNPs
into the smallest number of subsets that can each be genotyped using a single
SBE/SBH assay, which is formulated as follows:

Minimum Pool Partitioning Problem (MPPP): Given primer pools P =
{P1, . . . , Pn}, associated extension sets Ep, p ∈ ∪n

i=1Pi, probe set X, and re-
dundancy r, find a partitioning of P into the minimum number of strongly r-
decodable subsets.

A natural strategy for solving MPPP, similar to the well-known greedy al-
gorithm for the set cover problem, is to find a maximum strongly r-decodable
subset of pools, remove it from P , and then repeat the procedure until no more
pools are left in P . This greedy strategy for solving MPPP has been shown
to empirically outperform other algorithms for solving the similar partitioning
problem for PEA assays [1]. In the case of SBE/SBH, the optimization involved
in the main step of the greedy strategy is formalized as follows:

Maximum r-Decodable Pool Subset Problem (MDPSP): Given primer
pools P = {P1, . . . , Pn}, associated extension sets Ep, p ∈ ∪n

i=1Pi, probe set X,
and redundancy r, find a strongly r-decodable subset P ′ ⊆ P of maximum size.

Theorem 1. MDPSP is NP-hard, even when restricted to instances with r = 1
and |P | = 1 for every P ∈ P.

Theorem 1 is proved by reduction from the Maximum Induced Matching
(MIM) problem in bipartite graphs (see [6] for details). Since the reduction pre-
serves the size of the optimal solution, it follows that any hardness of approxi-
mation result for the latter problem also holds for MDPSP. From the hardness
result in [7] we get:

Theorem 2. It is NP-hard to approximate MDPSP within a factor of 6600/6659,
even when restricted to instances with r = 1 and |P | = 1 for every P ∈ P.

3 Algorithms

In this section we describe three heuristic approaches to MDPSP. The first one
is a naive greedy algorithm that sequentially evaluates the primers in arbitrary
order. The algorithm picks a primer p to be the representative of pool P ∈ P
if p together with the representatives already picked satisfy condition (3). The
other two algorithms are inspired by the Min-Greedy algorithm in [7], which
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approximates MIM in d-regular graphs within a factor of d − 1. For the MIM
problem, the Min-Greedy algorithm picks at each step a vertex u of minimum
degree and a vertex v, which is a minimum degree neighbor of u. All the neighbors
of u and v are deleted and the edge (u, v) is added to the induced matching. The
algorithm stops when the graph becomes empty.

Each instance of MDPSP can be represented as a bipartite hybridization
graph G = ((

⋃n

i=1 Pi) ∪ X, E), with the left side containing all primers in the
given pools and the right side containing the array probes, i.e., X . There is an
edge between primer p and probe x ∈ X iff x ∈ SpecX(p, Ep). As discussed in
Section 2, we distinguish between the hybridizations that involve the extending
nucleotides and those that do not. Thus, for every primer p, we let N+(p) =
SpecX(p) and N−(p) = SpecX(p, Ep) \ SpecX(p). Similarly, for each probe x ∈
X , we let N+(x) = {p| x ∈ N+(p)} and N−(x) = {p| x ∈ N−(p)}.

We considered two versions of the Min-Greedy algorithm when run on the
bipartite hybridization graph, depending on the side from which the minimum
degree vertex is picked. In the first version, referred to as MinPrimerGreedy, we
pick first a minimum degree node from the primers side, while in the second ver-
sion, referred to as MinProbeGreedy, we pick first a minimum degree node from
the probes side. Thus, MinPrimerGreedy greedy picks at each step a minimum
degree primer p and pairs it with a minimum degree probe x ∈ N+(p). Min-
ProbeGreedy greedy, selects at each step a minimum degree probe x and pairs
it with a minimum degree primer p in N+(x). In both algorithms, all neighbors
of p and x and their incident edges are removed from G. Also, at each step, the
algorithms remove all vertices u, for which N+(u) = ∅. These deletions ensure
that the primers p selected at each step satisfy condition (3). Both algorithms
stop when the graph becomes empty.

As described so far, the MinPrimerGreedy and MinProbeGreedy algorithms
work when each pool contains only one primer and when the redundancy is 1.
We extended the two variants to handle pools of size greater than 1 by simply
removing from the graph all primers p′ ∈ P \ {p} when picking primer p from
pool P . If the redundancy r is greater than 1, then whenever we pick a primer
p, we also pick it’s r probe neighbors from N+(p) with the smallest degrees
(breaking ties arbitrarily). The primer neighbors of all these r probes will then
be deleted from the graph. Moreover, the algorithm maintains the invariant
that |N+(p)| ≥ r for every primer p and |N+(x)| ≥ 1 for every probe x by
removing primers/probes for which the degree decreases below these bounds.
Full pseudocode and efficient implementation details for proposed algorithms
are available in [6].

4 Experimental Results

We performed experiments with two types of array probe sets. First, we used
probe sets containing all k-mers, for k between 8 and 10. All k-mer arrays are
well studied in the context of sequencing by hybridization. However, a major
drawback of all k-mer arrays is that the k-mers have a wide range of melting
temperatures, making it difficult to ensure reliable hybridization results. For
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Table 1. Number of SBE/SBH assays needed to cover 90−95% of extracted reference
SNPs using SBE primers of length 20.

Chr # # # 10-mer arrays # 13-token arrays
ID Ref. Extracted r=1 r=2 r=5 r=1 r=2 r=5

SNPs Pools 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

1 786058 736850 5 7 8 11 15 24 10 14 17 23 39 56
2 758368 704415 5 6 7 9 14 18 9 12 14 18 32 42
3 647918 587531 5 6 7 8 13 16 8 10 12 15 26 35
4 690063 646534 5 6 7 9 14 17 8 10 12 15 26 34
5 590891 550794 5 6 6 8 12 16 7 10 12 15 26 34
6 791255 742894 10 20 14 29 30 54 15 29 23 38 49 73
7 666932 629089 6 9 8 12 16 25 10 15 16 22 36 48
8 488654 456856 4 5 5 7 10 12 7 8 10 13 22 29
9 465325 441627 4 6 6 8 11 17 7 10 11 16 26 36
10 512165 480614 4 6 6 8 11 16 8 10 12 16 27 38
11 505641 476379 4 6 6 8 11 15 8 10 12 15 26 35
12 474310 443988 4 6 6 8 11 18 7 10 11 15 25 36
13 371187 347921 3 4 5 6 9 11 5 7 8 10 16 22
14 292173 271130 3 4 4 5 7 10 5 7 8 10 16 23
15 277543 258094 3 4 4 5 7 11 5 7 8 10 17 24
16 306530 288652 4 6 5 9 9 18 7 10 11 15 25 35
17 269887 249563 3 5 4 8 9 18 7 10 11 15 25 37
18 268582 250594 3 3 4 5 7 9 4 6 6 8 14 18
19 212057 199221 4 6 5 9 11 21 8 11 12 17 29 43
20 292248 262567 3 4 4 5 7 11 6 8 9 12 20 27
21 148798 138825 2 3 3 3 5 6 3 4 5 6 10 13
22 175939 164632 3 4 3 6 6 13 6 8 9 12 21 29
X 380246 362778 4 6 6 8 10 15 6 9 9 13 19 26
Y 50725 49372 2 2 2 2 3 3 2 2 2 3 4 5

short oligonucleotides, a good approximation of the melting temperature is ob-
tained using the simple 2-4 rule of Wallace [8], according to which the melting
temperature of a probe is approximately twice the number of A and T bases,
plus four times the number of C and G bases. As in [9], we define the weight of
a DNA string to be the number of A and T bases plus twice the number of C
and G bases. For a given integer c, a DNA string is called a c-token if it has a
weight c or more and all its proper suffixes have weight strictly less than c. Since
the weight of a c-token is either c or c + 1, it follows that the 2-4 rule computed
melting temperature of c-tokens varies in a range of 4◦C.

The results of a comprehensive set of experiments comparing the three pro-
posed MDPSP algorithms on both synthetic and genomic datasets are reported
in [6]. In Table 1 we report the number of SBE/SBH assays required to cover
90%, respectively 95%, of a total of over 9 million 2-primer pools extracted from
the NCBI dbSNP database build 125. We disregarded reference SNPs for which
two non-degenerate SBE primers of length 20 could not be determined from
the genomic sequence. The results are obtained with a simple MPPP algorithm
which iteratively finds maximum r-decodable pool subsets using the sequential
greedy algorithm.

Further improvements in the multiplexing rate can be achieved by optimizing
the length of SBE primers (see Figure 2). Notice that constraints (3) imply a
minimum length for SBE primers. Increasing the primer length beyond this min-
imum primer length is at first beneficial, since this increases the number of array
probes that hybridize with the primer. However, if primer length increases too
much, a larger number of array probes become non-specific, and the multiplexing
rate starts to decline.
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Fig. 2. Size of the strongly r-decodable pool subset computed by the three MDPSP
algorithms as a function of primer length, for random instances with n = 100 − 200k

pools of 2 primers and all 10-mer arrays (averages over 10 test cases).

References

1. Sharan, R., Gramm, J., Yakhini, Z., Ben-Dor, A.: Multiplexing schemes for generic
SNP genotyping assays. Journal of Computational Biology 12(5) (2005) 514–533

2. Tonisson, N., Kurg, A., Lohmussaar, E., Metspalu, A.: Arrayed primer extension
on the DNA chip - method and application. In Schena, M., ed.: Microarray Biochip
Technology, Eaton Publishing (2000) 247–263

3. Hubbell, E.: Multiplex sequencing by hybridization. Journal of Computational
Biology 8(2) (2001) 141–149

4. Naef, F., Magnasco, M.: Solving the riddle of the bright mismatches: Labeling and
effective binding in oligonucleotide arrays. In: Physical Review E. Volume 68. (2003)
11906–11910
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