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High-Throughput SNP Genotyping by SBE/SBH
Ion I. Măndoiu and Claudia Prăjescu

Abstract— Despite much progress over the past decade, current
Single Nucleotide Polymorphism (SNP) genotyping technologies
still offer an insufficient degree of multiplexing when required to
handle user selected sets of SNPs. In this paper we propose a new
genotyping assay architecture combining multiplexed solution-
phase single-base extension (SBE) reactions with sequencing by
hybridization (SBH) using universal DNA arrays such as all
k-mer arrays. Simulation results on datasets both randomly
generated and extracted from the NCBI dbSNP database suggest
that the SBE/SBH architecture provides a flexible and cost-
effective alternative to genotyping assays currently used in the
industry, enabling genotyping of up to hundreds of thousands of
SNPs per assay.

Index Terms— Single nucleotide polymorphisms, genotyping
assay, universal DNA arrays, multiplexing algorithms.

I. INTRODUCTION

AFTER the completion of the Human Genome Project
has provided a blueprint of the DNA present in each

human cell [2], genomics research is now focusing on the
study of DNA variations that occur between individuals,
seeking to understand how these variations confer suscepti-
bility to common diseases such as diabetes or cancer. The
most common form of genomic variation are the so called
single nucleotide polymorphisms (SNPs), i.e., the presence of
different DNA nucleotides, or alleles, at certain chromosomal
locations. Determining the identity of alleles present in a DNA
sample at a given set of SNP loci is called SNP genotyping.

The continuous progress in high-throughput genomic tech-
nologies has resulted in numerous SNP genotyping plat-
forms combining a variety of allele discrimination techniques
(sequencing, direct hybridization, primer extension, allele-
specific PCR/ligation/cleavage, etc.), detection mechanisms
(fluorescence, mass spectrometry, etc.) and reaction formats
(solution phase, solid support, bead arrays), see, e.g., [3],
[4] for comprehensive reviews. However, current technologies
still offer an insufficient degree of multiplexing for fully-
powered genome wide disease association studies that require
genotyping of large sets of user selected SNPs [5]. The
highest throughput is achieved by high-density mapping arrays
produced by Affymetrix, which currently can simultaneously
genotype about 250 thousands of manufacturer selected SNPs
per array. Genotyping a comparable number of user selected
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SNPs would require an expensive and time-consuming re-
design of array probes as well as a difficult re-engineering
of the DNA amplification protocol.

Among technologies that allow genotyping of custom sets
of SNPs one of the most successful ones is the use of DNA tag
arrays [6], [7], [8], [9]. DNA tag arrays consist of a set of DNA
strings called tags, designed such that each tag hybridizes
strongly to its own antitag (Watson-Crick complement), but
to no other antitag. The flexibility of tag arrays comes from
combining solid-phase hybridization with the high sensitivity
of single-base extension reactions, which has also been used
for SNP genotyping in combination with MALDI-TOF mass
spectrometry [10]. Commercially available tag arrays have
between 2,000 and 10,000 tags [11], [12]. However, the
number of SNPs that can be genotyped per array is typically
smaller than the number of tags since some of the tags must
remain unassigned due to cross-hybridization with the primers
[13], [14]. Another factor limiting the wider use of tag arrays
is the relatively high cost of synthesizing the reporter probes,
which have a typical length of 40 nucleotides.

In the k-mer array format [15], all 4k DNA probes of length
k are spotted or synthesized on the solid array substrate. This
format was originally proposed for performing sequencing by
hybridization (SBH), which seeks to reconstruct an unknown
DNA sequence based on its k-mer spectrum [16]. However,
the sequence length for which unambiguous reconstruction is
possible with high probability is surprisingly small [17], and,
despite several suggestions for improvement, such as the use
of gapped probes [18] and pooling of target sequences [19],
sequencing by hybridization has not become practical so far.

In this paper we propose a new genotyping assay ar-
chitecture combining multiplexed solution-phase single-base
extension (SBE) reactions with sequencing by hybridization
(SBH) using universal DNA arrays such as all k-mer arrays.
SNP genotyping using SBE/SBH assays requires the following
steps (see Figure 1): (1) Synthesizing primers complementing
the genomic sequence immediately preceding SNPs of interest;
(2) Hybridizing primers with the genomic DNA; (3) Extending
each primer by a single base using polymerase enzyme and
dideoxynucleotides labeled with 4 different fluorescent dyes;
and finally (4) Hybridizing extended primers to a universal
DNA array and determining the identity of the bases that
extend each primer by hybridization pattern analysis.

To the best of our knowledge the combination of the two
technologies in the context of SNP genotyping has not been
explored thus far. The most closely related genotyping assay
is the generic Polymerase Extension Assay (PEA) recently
proposed in [20]. In PEA, short amplicons containing the SNPs
of interest are hybridized to an all k-mers array of primers that
are subsequently extended via single-base extension reactions.
Hence, in PEA the SBE reactions take place on solid support,
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similar to arrayed primer extension (APEX) assays which use
SNP specific primers spotted on the array [21].

As the SBH multiplexing technique of [19], the SBE/SBH
assays lead to high array probe utilization since we hybridize
to the array a large number of short extended primers. How-
ever, the main power of the method lies in the fact that the
sequences of the labeled oligonucleotides hybridized to the
array are known a priori (up to the identity of extending
nucleotides). While genotyping with SBE/SBH assays uses
similar general principles as the PEA assays proposed in [20],
there are also significant differences. A major advantage of
SBE/SBH is the much shorter length of extended primers
compared to that of PCR amplicons used in PEA. A second
advantage is that all probes hybridizing to an extended primer
are informative in SBE/SBH assays, regardless of array probe
length (in contrast, only probes hybridizing with a substring
containing the SNP site are informative in PEA assays).
As shown by the experimental results in Section IV these
advantages translate into an increase by orders of magnitude in
multiplexing rate compared to the results reported in [20]. We
further note that PEA’s effectiveness crucially depends on the
ability to amplify very short (preferably 40bp or less) genomic
fragments spanning the SNP loci of interest. This limits
the achievable degree of multiplexing in PCR amplification
[22], making PCR amplification the main bottleneck for PEA
assays. Full flexibility in picking PCR primers is preserved in
SBE/SBH assays.

Under the assumption of perfect hybridization, unambigu-
ous SBE/SBH genotyping of a set of SNPs requires selecting
primers upstream of the SNPs such that each primer hybridizes
to at least one array probe that hybridizes to no other primer
that can be extended by a common base. Our contributions
in this paper include a study of multiplexing algorithms for
SBE/SBH genotyping assays and preliminary experimental
results showing the achievable tradeoffs between the number
of array probes and primer length on one hand and the number
of SNPs that can be simultaneously genotyped on the other.
We prove that the problem of selecting a maximum size subset
of SNPs that can be unambiguously genotyped in a single
SBE/SBH assay is NP-hard, and propose efficient heuristics
with good practical performance. Our heuristics take into
account the freedom of selecting primers from both strands
of the genomic DNA as well as the presence of disjoint allele
sets among genotyped SNPs. Furthermore, our heuristics can
enforce redundancy constraints facilitating reliable genotyping
in the presence of hybridization errors. Preliminary simulation
results presented in Section IV suggest that the SBE/SBH
architecture provides a flexible and cost-effective alternative
to genotyping assays currently used in the industry, enabling
genotyping of up to hundreds of thousands of user selected
SNPs per assay.

The rest of the paper is organized as follows. In Section
II we formalize two optimization problems that arise in
genotyping large sets of SNPs using SBE/SBH assays: the
problem of partitioning a set of SNPs into the minimum
number of decodable subsets of SNPs, and that of finding
a maximum size decodable subset of a given set of SNPs. We
also establish hardness results for the latter problem. In Section

III we propose several efficient heuristics. Finally, we present
experimental results on both randomly generated datasets and
instances extracted from the NCBI dbSNP database in Section
IV and conclude in Section V.

II. PROBLEM FORMULATIONS AND COMPLEXITY

A set of SNP loci can be unambiguously genotyped by
SBE/SBH if every combination of SNP genotypes yields
a different hybridization pattern (defined as the vector of
dye colors observed at each array probe). To formalize the
requirements of unambiguous genotyping, we first consider a
simplified SBE/SBH assay consisting of four parallel single-
color SBE/SBH reactions, one for each possible SNP allele.
Under this scenario, only one type of dideoxynucleotide is
added to each SBE reaction, corresponding to the complement
of the tested SNP allele. Therefore, a primer is extended in
such a reaction if the tested allele is present at the SNP locus
probed by the primer, and is left un-extended otherwise.

Let P be the set of primers used in a single-color SBE/SBH
reaction involving dideoxynucleotide e ∈ {A,C,G,T}. From
the resulting hybridization pattern we must be able to infer
for every p ∈ P whether or not p was extended by e. The
extension of p by e will result in a fluorescent signal at all array
probes that hybridize with pe. However, some of these probes
can give a fluorescent signal even when p is not extended by
e, due to hybridization to other extended primers. Since in the
worst case all other primers are extended, it must be the case
that at least one of the probes that hybridize to pe does not
hybridize to any other extended primer.

Formally, let X ⊂ {A, C, G, T}∗ be the set of array probes.
For every string y ∈ {A, C, G, T}∗, let the spectrum of y in
X , denoted SpecX(y), be the set of probes of X that hy-
bridize with y. Under the assumption of perfect hybridization,
SpecX(y) consists of those probes of X that are Watson-Crick
complements of substrings of y. Then, a set of primers P is
said to be decodable with respect to extension e if and only
if, for every p ∈ P,

SpecX(pe) \
⋃

p′∈P\{p}

SpecX(p′e) 6= ∅ (1)

Decoding constraints (1) can be directly extended to 4-
color SBE/SBH experiments, in which each type of extending
base is labeled by a different fluorescent dye. As before, let
P be the set of primers, and, for each primer p ∈ P , let
Ep ⊆ {A, C, G, T} be the set of possible extensions of p, i.e.,
Watson-Crick complements of corresponding SNP alleles. If
we assume that any combination of dyes can be detected at
an array probe location, unambiguous decoding is guaranteed
if, for every p ∈ P and every extending nucleotide e ∈ Ep,

SpecX(pe) \
⋃

p′∈P\{p},e′∈Ep′

SpecX(p′e′) 6= ∅ (2)

In the following, we refine (2) to improve practical reliabil-
ity of SBE/SBH assays. More precisely, we impose additional
constraints on the set of probes considered to be informative
for each SNP allele. First, to enable reliable genotyping of
genomic samples that contain SNP alleles at very different
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Fig. 1. SBE/SBH assay: (a) Primers complementing genomic sequence upstream of each SNP locus are mixed in solution with the genomic DNA sample. (b)
Temperature is lowered allowing primers to hybridize to the genomic DNA. (c) Polymerase enzyme and dideoxynucleotides labeled with 4 different fluorescent
dyes are added to the solution, causing each primer to be extended by a nucleotide complementing the SNP allele. (d) Extended primers are hybridized to a
universal DNA array and genotypes are determined by analyzing the resulting hybridization pattern.

concentrations (as a result of uneven efficiency in the PCR
amplification step or of pooling DNA samples from different
individuals), we require that a probe that is informative for a
certain SNP locus must not hybridize to primers corresponding
to other SNP loci. Second, since recent studies by Naef et al.
[23] suggest that fluorescent dyes can significantly interfere
with oligonucleotide hybridization on solid support, possibly
destabilizing hybridization to a complementary probe on the
array, in this paper we use a conservative approach and require
that each probe that is informative for a certain SNP allele
must hybridize to a substring of the corresponding un-extended
primer. On the other hand, informative probes are required
not to hybridize with any other extended primer, even if
such hybridizations involve the fluorescently labeled extension
nucleotides. Finally, we introduce a decoding redundancy
parameter r ≥ 1, and require that each SNP have at least r
informative probes. Such a redundancy constraint facilitates
reliable genotype calling in the presence of hybridization
errors. Clearly, the larger the value of r, the more hybridization
errors that can be tolerated. If a simple majority voting scheme
is used for making allele calls, the assay can tolerate up to
br/2c hybridization errors involving the r informative probes
of each SNP. Furthermore, since the informative probes of a
SNP are required to hybridize exclusively with the primer cor-
responding to the SNP, the redundancy requirement provides
a powerful mechanism for gauging the extent of hybridization
errors. Indeed, each unintended hybridization at an informative
probe for a bi-allelic SNP has a dye complementary to
one of the SNP alleles with probability of only 1/2, and
the probability that k such errors pass undetected decreases
exponentially in k.

The refined set of constraints is captured by the following
definition, where, for every primer p ∈ {A, C, G, T}∗ and set
of extensions E ⊆ {A, C, G, T}, we let

SpecX(p, E) =
⋃

e∈E

SpecX(pe)

Definition 1: A set of primers P is said to be strongly r-
decodable with respect to extension sets Ep, p ∈ P , if and
only if, for every p ∈ P ,
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SpecX(p) \
⋃

p′∈P\{p}

SpecX(p′, Ep′)

∣

∣

∣

∣

∣

∣

≥ r (3)

Note that testing whether or not a given set of primers is
strongly r-decodable can be easily accomplished in time linear

in the total length of the primers.
Genotyping a large set of SNPs will, in general, require

more than one SBE/SBH assay. This rises the problem of
partitioning a given set of SNPs into the smallest number of
strongly r-decodable subsets. For each SNP locus there are
typically two different primers that can be used for genotyping.
As shown in [14] for the case of SNP genotyping using
tag arrays, exploiting this degree of freedom significantly
increases achievable multiplexing rates. Therefore, we next
extend Definition 1 to capture this degree of freedom. Let
Pi be the pool of primers that can be used to genotype the
SNP at locus i. Similarly to Definition 1, we have:

Definition 2: A set of primer pools P = {P1, . . . , Pn}
is said to be strongly r-decodable if and only if there is a
primer pi in each pool Pi such that {p1, . . . , pn} is strongly
r-decodable with respect to the respective extension sets Epi

,
i = 1, . . . , n.
Primers p1, p2, . . . , pn above are called the representative
primers of pools P1, P2, . . . , Pn, respectively. The SNP parti-
tioning problem can then be formulated as follows:

Minimum Pool Partitioning Problem (MPPP): Given
primer pools P = {P1, . . . , Pn}, extension sets Ep, p ∈
∪n

i=1Pi, probe set X , and redundancy parameter r, find a
partitioning of P into the minimum number of strongly r-
decodable subsets.

A natural strategy for solving MPPP, is to find a maximum
size strongly r-decodable subset of pools, remove it from P,
and then repeat the procedure until no more pools are left in
P. This greedy strategy for solving MPPP has been shown
to empirically outperform other algorithms for solving the
similar partitioning problem for PEA assays [20]. In the case
of SBE/SBH, the optimization involved in the main step of
the greedy strategy is formalized as follows:

Maximum r-Decodable Pool Subset Problem (MDPSP):
Given primer pools P = {P1, . . . , Pn}, extension sets Ep,
p ∈ ∪n

i=1Pi, probe set X , and redundancy parameter r, find
a strongly r-decodable subset P ′ ⊆ P of maximum size. In
addition, for each pool Pi ∈ P ′, find its representative primer.

Unfortunately, as shown in next theorem, MDPSP is NP-
hard even for the case when the redundancy parameter is 1
and each pool has exactly one primer.
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Input: Pools P = {P1, . . . , Pn}, extension sets Ep, probe set X,
and redundancy parameter r

Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R

of representative primers for the pools in P’

P ′ ← ∅, R← ∅
For each P ∈ P do

For each p ∈ P do
If R ∪ {p} satisfies (3)
Then
P ′ ← P ′ ∪ P

R← R ∪ {p}
Exit inner For

Fig. 2. The Sequential Greedy algorithm.

Theorem 1: MDPSP is NP-hard, even when restricted to
instances with r = 1 and |P | = 1 for every P ∈ P.

Proof: We will use a reduction from the maximum
induced matching problem in bipartite graphs, which is defined
as follows:

Maximum Induced Matching (MIM) Problem in Bipartite
Graphs: Given a bipartite graph G = (U ∪ V, E), find
maximum size subsets U ′ ⊆ U , V ′ ⊆ V , with |U ′| = |V ′| such
that the subgraph of G induced by U ′ ∪ V ′ is a matching.

The MIM problem in bipartite graphs is known to be
NP-hard even for graphs with maximum degree 3 [24]. Let
G = (U ∪ V, E) be such a bipartite graph with maximum
degree 3. Without loss of generality we may assume that every
vertex in G has degree at least 1. We will denote by N(u)
the neighborhood of vertex u ∈ U ∪V , i.e., the set of vertices
adjacent with u in G.

We construct an instance of MDPSP as follows: Let r = 1
and l = dlog2 |V |e. For every v ∈ V we add to X a
distinct probe xv ∈ {A,T}l; note that this can be done since
|{A,T}l| = 2l > |V | by our choice of l. For every u ∈ U ,
with neighborhood N(u) = {v1, v2, v3}, we construct a primer
pu = xv1

Cxv2
Cxv3

and a pool Pu = {pu}. We use a similar
construction for vertices u ∈ U with only 1 or 2 neighbors.
Note that in each case the pool Pu consists of a single primer
pu of length at most 3l + 2. For each constructed primer p,
the set of possible extensions is defined as Ep = {G,C}. Since
the probes of X contain only A’s and T’s, for every primer
pu, u ∈ U , SpecX(pu, Epu

) = SpecX(pu) = {xv ∈ X | v ∈
N(u)}.

Let U ′ ⊆ U , V ′ ⊆ V , |U ′| = |V ′|, be subsets of
vertices such that U ′ ∪ V ′ induces a matching in G. Let
P ′ = {Pu| u ∈ U ′}. For every u ∈ U ′, exactly one of
u’s neighbors, denoted vu, appears in V ′, because U ′ ∪ V ′

induces a matching. Furthermore, for each u′ ∈ U ′ \ {u},
(u′, vu) /∈ E, and therefore xvu

/∈ SpecX(pu′ , Epu′
). Thus,

for every u ∈ U ′,

xvu
∈ SpecX(pu) \

⋃

{pu′}∈P ′

\{pu}

SpecX(pu′ , Epu′
)

which means that P ′ is a strongly 1-decodable subset of pools
of the same size as the induced matching of G.

Input: Pools P = {P1, . . . , Pn}, extension sets Ep, probe set X,
and redundancy parameter r

Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R

of representative primers for the pools in P’

Construct hybridization graph G; P ′ ← ∅; R← ∅
While G is not empty do

Find a minimum degree primer p, and let P be
its pool

P ′ ← P′ ∪ {P}
R← R ∪ {p}
For each (p′) ∈ P \ {p} do remove-primer(p′)
Let |N+(p)| = k and let {x1, . . . , xk} be the probes

in N+(p), indexed in increasing degree order
For each x ∈ {x1, . . . , xr} do

For each (p′) ∈ N+(x) ∪N−(x) do
remove-primer(p′)

Delete vertex x from G

For each x ∈ {xr+1, . . . , xk} ∪N−(p) do
remove-probe(x)

Fig. 3. MinPrimerGreedy greedy algorithm.

Conversely, let P ′ be a strongly 1-decodable subset of P,
and let U ′ = {u ∈ U | {pu} ∈ P ′}. Since P ′ is 1-decodable,
for every primer pu with {pu} ∈ P ′, there must exist a probe
x ∈ X such that x ∈ SpecX(pu) and x /∈ SpecX(pu′ , Epu′

)
for every {pu′} ∈ P ′ \ {pu}. Because SpecX(pu) = {xv ∈
X | v ∈ N(u)}, it follows that every vertex u ∈ U ′ has a
neighbor v ∈ V that is not a neighbor of any other u′ ∈
U ′ \ {u}. Let vu be such a neighbor (pick vu arbitrarily if
more than one vertex in V satisfies above property), and let
V ′ = {vu| u ∈ U ′}. It is clear that U ′∪V ′ induce a matching
of size |P ′| in G.

Thus, for every integer k, there is a one-to-one correspon-
dence between induced matchings of size k in G and strongly
1-decodable subsets of k pools in the constructed instance of
MDPSP, and NP-hardness of MDPSP follows.

The reduction in the proof of Theorem 1 preserves the
size of the optimal solution, and therefore any hardness of
approximation result for the MIM in bipartite graphs will also
hold for MDPSP, even when restricted to instances with r = 1
and |P | = 1 for every P ∈ P . Since Duckworth et al. [25]
proved that it is NP-hard to approximate MIM in bipartite
graphs with maximum degree 3 within a factor of 6600/6659,
we get:

Theorem 2: It is NP-hard to approximate MDPSP within a
factor of 6600/6659, even when restricted to instances with
r = 1 and |P | = 1 for every P ∈ P .

III. ALGORITHMS

In this section we describe three heuristic approaches to
MDPSP. The first one is a naive greedy algorithm that sequen-
tially evaluates the primers in the given pools in an arbitrary
order. The algorithm picks a primer p to be the representative
of pool P ∈ P if p together with the representatives already
picked satisfy condition (3). The pseudocode of this algorithm,
which we refer to as Sequential Greedy, is given in Figure 2.

The next two algorithms are inspired by the Min-Greedy
algorithm in [25], which approximates MIM in d-regular
graphs within a factor of d−1. For the MIM problem, the Min-
Greedy algorithm picks at each step a vertex u of minimum
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Input: Pools P = {P1, . . . , Pn}, extension sets Ep, probe set X,
and redundancy parameter r

Output: Strongly r-decodable subset of pools P ′ ⊆ P and set R

of representative primers for the pools in P’

Construct hybridization graph G; P ′ ← ∅; R← ∅
While G is not empty do

Find a minimum degree probe x

Find a minimum degree primer p, and let P be
its pool

P ′ ← P ′ ∪ {P}
R← R ∪ {p}
For each p′ ∈ P \ {p} do remove-primer(p′)
Let |N+(p)| = k and let {x1, . . . , xk} be the probes

in N+(p), indexed in increasing degree order
For each x ∈ {x1, . . . , xr} do

For each p′ ∈ N+(x) ∪N−(x) do
remove-primer(p′)

Delete vertex x from G

For each x ∈ {xr+1, . . . , xk} ∪N−(p) do
remove-probe(x)

Fig. 4. MinProbeGreedy greedy algorithm.

degree and a vertex v, which is a minimum degree neighbor
of u. All the neighbors of u and v are deleted and the edge
(u, v) is added to the induced matching. The algorithm stops
when the graph becomes empty.

Each instance of MDPSP can be represented as a bipartite
hybridization graph G = ((

⋃n

i=1
Pi) ∪ X, E), with the left

side containing all primers in the given pools and the right
side containing the array probes. There is an edge between
primer p and probe x ∈ X if and only if x ∈ SpecX(p, Ep).
As discussed in Section II, we need to distinguish between the
hybridizations that involve fluorescently labeled nucleotides
and those that do not. Thus, for every primer p, we let
N+(p) = SpecX(p) and N−(p) = SpecX(p, Ep)\SpecX(p).
Similarly, for each probe x ∈ X , we let N+(x) = {p| x ∈
N+(p)} and N−(x) = {p| x ∈ N−(p)}.

We considered two versions of the Min-Greedy algorithm
when run on the bipartite hybridization graph, depending on
the side from which the minimum degree vertex is picked.
In the first version, referred to as MinPrimerGreedy, we pick
first a minimum degree node from the primers side, while
in the second version, referred to as MinProbeGreedy, we
pick first a minimum degree node from the probes side.
Thus, MinPrimerGreedy greedy picks at each step a minimum
degree primer p and pairs it with a minimum degree probe
x ∈ N+(p). MinProbeGreedy greedy, selects at each step a
minimum degree probe x and pairs it with a minimum degree
primer p in N+(x). In both algorithms, all neighbors of p
and x and their incident edges are removed from G. Also,
at each step, the algorithms remove all vertices u, for which
N+(u) = ∅. These deletions ensure that the primers p selected
at each step satisfy condition (3). Both algorithms stop when
the graph becomes empty.

As described so far, the MinPrimerGreedy and MinProbe-
Greedy algorithms work when each pool contains only one
primer and when the redundancy is 1. We extended the two
variants to handle pools of size greater than 1 by simply
removing from the graph all primers p′ ∈ P \ {p} when
picking primer p from pool P . If the redundancy r is greater

remove-primer (p)

For all x ∈ N+(p) do
N+(x)← N+(x) \ {p}
If |N+(x)| = 0 then remove-probe (x)

For all x ∈ N−(p) do N−(x)← N−(x) \ {p}
Delete p from G

Fig. 5. The remove-primer subroutine.

remove-probe (x)

For all p ∈ N+(x) do
N+(p)← N+(p) \ {x}
If |N+(p)| < r then remove-primer (p)

For all p ∈ N−(x) do N−(p)← N−(p) \ {x}
Delete x from G

Fig. 6. The remove-probe subroutine.

than 1, then whenever we pick a primer p, we also pick
it’s r probe neighbors from N+(p) with the smallest degrees
(breaking ties arbitrarily). The primer neighbors of all these
r probes will then be deleted from the graph. Moreover,
the algorithm maintains the invariant that |N+(p)| ≥ r for
every primer p and |N+(x)| ≥ 1 for every probe x by
removing primers/probes for which the degree decreases below
these bounds. Figures 3 and 4 give the pseudocode for the
MinPrimerGreedy, respectively the MinProbeGreedy greedy
algorithms. For the sake of clarity, they use two subroutines for
removing a primer vertex, respectively a probe vertex, which
are separately described in Figures 5 and 6.

Algorithms MinPrimerGreedy and MinProbeGreedy can be
implemented efficiently using a Fibonacci heap for maintain-
ing the degrees of primers, respectively of probes. Let N be
the total number of primers in the n pools, m be the number of
probes in X , and k be the size of the r-decodable set returned
by the algorithm. Since each primer has bounded degree, the
sorting of probe degrees requires O(k) total time. The total
number of edges in the hybridization graph is O(N + m).
By using a Fibonacci heap, finding a minimum degree primer
(probe) can be done in O(log N) (respectively O(log m))
and each primer degree update can be done in amortized
O(1) time. Thus, the total runtime for MinPrimerGreedy
algorithm is O(k log N + N + m), and the total runtime for
MinProbeGreedy algorithm is O(k log m + N + m).

IV. EXPERIMENTAL RESULTS

We considered two types of data sets: randomly generated
datasets containing between 1,000 to 200,000 pools of 1 or
2 primers, and 2-primer pools representing over 9 million
reference SNPs extracted from the NCBI dbSNP database
build 125. We simulated two different types of array probe
sets. First, we simulated all 10-mer arrays, which are well
studied in the context of sequencing by hybridization. Since a
major drawback of all k-mer arrays is the wide range of probe
melting temperatures, we also simulated probe sets consisting
of all c-tokens for c = 13. Following [26], a DNA string is
called a c-token if it has a weight of c or more and all its proper
suffixes have weight strictly less than c, where the weight of
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a DNA string is the number of A and T bases plus twice
the number of C and G bases. Since the weight of c-tokens
is either c or c + 1, it follows that their melting temperature
computed according to the 2-4 rule of Wallace [27] varies in
a range of only 2◦C. There are approximately 1 million 10-
mers and 645 thousand 13-tokens. Probe sets of this size can
be synthesized using existing photolithographic technologies
such as those employed by Affymetrix.

A. Results on Synthetic Datasets

In a first set of experiments we compared the three MDPSP
algorithms on randomly generated datasets. In these exper-
iments we used a primer length of 20, which is a typical
length used in genotyping using tag arrays. For each of the two
considered probe sets, we ran simulations with pools of size 1
or 2, to see how much can be gained by allowing primers to
be selected from either strand of the genomic DNA. We also
considered both primer extension sets of size 4 – modeling
the testing of all four nucleotides at every SNP locus, as
commonly done in current Affymetrix genotyping assays –
or 2 – modeling the testing of possible alleles only.

The results in Table I show that using the flexibility of pick-
ing primers from either strand of the genomic sequence yields
an increase in the size of the strongly r-decodable pool subset
when the number of pools is large. All algorithms benefit
from this degree of freedom, with maximum increases of 25%,
22%, and 28% for SequentialGreedy, MinPrimerGreedy, and
MinProbeGreedy respectively. Taking into account the reduced
number of possible extensions further increases the size of
computed decodable pool subsets, by up to an additional 9-
11%.

The MinProbeGreedy algorithm produces consistently bet-
ter results compared to the MinPrimerGreedy variant. On the
other hand, neither Sequential Greedy nor MinProbeGreedy
dominates the other for all range of instance parameters –
Sequential Greedy generally gives better results for 10-mer
experiments with high redundancy values, while MinProbe-
Greedy generally gives better results for 10-mer experiments
with low redundancy requirements and for 13-token experi-
ments. Since the algorithms are very fast, a feasible practical
meta-heuristic is to run all three algorithms and take the best
solution.

In a second set of experiments we explored the degree
of freedom given by the primer length. Figure 7 gives the
tradeoff between primer length and the size of the strongly
r-decodable pool subsets computed by the MDPSP meta-
heuristic suggested above for pools with 2 primers, 2 possible
extensions per primer and arrays with all 10-mers, respectively
all 13-tokens. We notice that, for both probe sets, the optimal
primer length increases with the redundancy parameter. For
any fixed array probe set and redundancy requirement, we
need a minimum primer length to be able to satisfy constraints
(3). Increasing the primer length beyond this minimum primer
length is at first beneficial, since it increases the number
of array probes that hybridize with the primer. However, if
primer length increases too much, a large number of these
probes become non-specific, and the multiplexing rate starts

to decline, especially for low redundancy requirements. We
further notice that, for both probe sets, the optimal primer
length increases with the redundancy parameter.

B. Results on dbSNP Data

To stress-test our methods, we extracted a total of over
9 million primer pools corresponding to reference SNPs in
human chromosomes 1-22, X, and Y in the NCBI dbSNP
database build 125. We constructed a dataset for each of
the 24 chromosomes by creating a 2-primer pool for each
reference SNP for which dbSNP contains at least 20 non-
degenerate base pairs of flanking sequence on both sides. Since
these large sets of pools must be partitioned between multiple
SBE/SBH experiments, we used a simple MPPP algorithm
which iteratively finds maximum r-decodable pool subsets
using the sequential greedy algorithm.

Table II gives the number of arrays required to cover 10−
50% of the extracted reference SNPs for each chromosome
when using primers of length 20. In practical association
studies even lower SNP coverage (and hence fewer arrays)
may suffice due to the high degree of linkage disequilibrium
between SNPs [28].

V. CONCLUSIONS

Simulation results presented in this paper suggest that
SBE/SBH offers a promising alternative to current SNP geno-
typing assays. SBE/SBH can also be used in other applications
that require detecting the presence or absence of a large
number of substrings in a sample of genomic DNA, such as
large-scale species identification [29]. For such applications,
assay specificity and sensitivity can be further enhanced by
combining primer extension with ligation to a second locus-
specific probe and PCR amplification of the ligation product
prior to hybridization to the universal array, similar to the steps
of the GoldenGate genotyping protocol used by Illumina [30].
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