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Abstract. In this paper we propose new solution methods for design-
ing tag sets for use in universal DNA arrays. First, we give integer linear
programming formulations for two previous formalizations of the tag set
design problem, and show that these formulations can be solved to op-
timality for instance sizes of practical interest by using general purpose
optimization packages. Second, we note the benefits of periodic tags, and
establish an interesting connection between the tag design problem and
the problem of packing the maximum number of vertex-disjoint directed
cycles in a given graph. We show that combining a simple greedy cy-
cle packing algorithm with a previously proposed alphabetic tree search
strategy yields an increase of over 40% in the number of tags compared
to previous methods.

1 Introduction

Recently developed universal DNA tag arrays [5, 11, 14] offer a flexible and
cost-effective alternative to custom-designed DNA arrays for performing
a wide range of genomic analyses. A universal tag array consists of a set of
DNA strings called tags, designed such that each tag hybridizes strongly
to its own antitag (Watson-Crick complement), but to no other antitag.
A typical assay based on universal tag arrays performs Single Nucleotide
Polymorphism (SNP) genotyping using the following steps [3,7]: (1) A
set of reporter oligonucleotide probes is synthesized by ligating antitags to
the 5" end of primers complementing the genomic sequence immediately
preceding the SNP. (2) Reporter probes are hybridized in solution with
the genomic DNA under study. (3) Hybridization of the primer part (3’
end) of a reporter probe is detected by a single-base extension reaction
using the polymerase enzyme and dideoxynucleotides fluorescently labeled
with 4 different dyes. (4) Reporter probes are separated from the template
DNA and hybridized to the universal array. (5) Finally, fluorescence levels
are used to determine which primers have been extended and learn the
identity of the extending dideoxynucleotides.
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Tag set design involves balancing two conflicting requirements: on
one hand we would like a large number of tags to allow assaying a large
number of biochemical reactions, on the other hand we would like the tags
to work well for a wide range of assay types and experimental conditions.

Ben Dor et al. [2] have previously formalized the problem by imposing
constraints on antitag-to-tag hybridization specificity under a hybridiza-
tion model based on the classical 2-4 rule, and have proposed near-optimal
heuristics. In Section 3 we give an integer linear programming (ILP) for-
mulation for this problem and its variant in which tags are required to
have equal length [12]. Empirical results in Section 5 show that these ILP
formulations have extremely small integrality gap, and can be solved to
optimality for instance sizes of practical interest by using general purpose
optimization packages.

Previous works on tag set design [2,12] require for substrings that
may form a nucleation complex and initiate cross hybridization not to be
repeated within any selected tag. This constraint simplifies analysis, but
is not required for ensuring correct tag functionality — what is required
is for such substrings not to appear simultaneously in two different tags.
To our knowledge, no previous work has assessed the impact that adding
this constraint has on tag set size. In this paper we propose two algo-
rithms for designing tag sets while relaxing this constraint. The first one
is a modification of the alphabetic tree search strategy in [11,12], The
second algorithm stems from the observation that periodic tags, particu-
larly those with a short period, use the least amount of “resources” and
lead to larger tag sets, where the limited resources are in this case min-
imal substrings that can form nucleation complexes (for formal models
see Section 2). In Section 4 we establish an interesting connection be-
tween the tag design problem and the problem of packing the maximum
number of vertex-disjoint directed cycles in a given graph, and propose a
simple greedy algorithm for the latter one. Results in Section 5 show that
combining the greedy cycle packing algorithm with alphabetic tree search
strategy yields an increase of over 40% in the number of tags compared
to previous methods.

2 Problem Formulations and Previous Work

A main objective of universal array designers is to maximize the num-
ber of tags, which directly determines the number of reactions that can
multiplexed using a single array. At the same time, tag sets must satisfy
a number of stability and non-interaction constraints [4]. The set of con-
straints depends on factors such as the array manufacturing technology
and the intended application. In this section we formalize the most im-



portant stability and non-interaction constraints using the hybridization
model in [2].

Hybridization model. Hybridization affinity between two oligonucleotides
is commonly characterized using the melting temperature, defined as the
temperature at which half of the duplexes are in hybridized state and
the other half are in melted state. However, accurate melting tempera-
ture estimation is computationally expensive, e.g., estimating the melting
temperature between two non-complementary oligonucleotides using the
near-neighbor model of SantaLucia [16] is an NP-hard problem [8]. Ben-
Dor et al. [2, 3] formalized a conservative hybridization model based on the
observation that stable hybridization requires the formation of an initial
nucleation complex between two perfectly complementary substrings of
the two oligonucleotides. For nucleation complexes, hybridization affinity
is modeled using the classical 2-4 rule [17], which estimates the melting
temperature of the duplex formed by an oligonucleotide with its comple-
ment as the sum between the number of weak bases (i.e., A and T) and
twice the number of strong bases (i.e., G and C).

The weight w(z) of a DNA string = ajas. .. a is defined as w(z) =
Sk L w(a;), where w(A) = w(T) = 1 and w(C) = w(G) = 2. Through-
out this paper we assume the following c-token hybridization model [2]:
hybridization between two oligonucleotides takes place only if one oligo
contains as substring the complement of a substring of weight ¢ or more
of the other, where c is a given constant. The complement of a string z =
ajas . ..ay over the DNA alphabet {A,C, T,G} is defined as & = bybs .. . b,
where b; is the Watson-Crick complement of az_;11.

Hybridization stability. Current industry designs require a predeter-
mined tag length [, e.g., GenFlex tag arrays manufactured by Affymetrix
use | = 20 [1]. The model proposed in [2] allows tags of unequal length
and instead require a minimum tag weight of h, for a given constant h.
In this paper we consider both types of stability constraints, and use the
parameter o € {l,h} to denote the specific model used for hybridization
stability.

Pairwise non-interaction constraints. A basic constraint in this cat-
egory is for every antitag not to hybridize to non-complementary tags [2].
For a DNA string = and a set of tags 7, let N (z) denote the number
of tags in 7 that contain z as a substring. Using the c-token hybridiza-
tion model, the antitag-to-tag hybridization constraint is formalized as
follows:

(C) For every feasible tag set 7, Ny (x) < 1 for every DNA string = of
weight ¢ or more.



In many assays based on universal tag arrays it is also required to prevent
antitag-to-antitag hybridization, since the formation of such antitag-to-
antitag duplexes or antitag hair-pin structures prevents reporter probes
from performing their function in the solution-based hybridization steps
[4,12]. The combined constraints on antitag hybridization are formalized
as follows

(C) For every feasible tag set 7, No(z) + N (z) < 1 for every DNA

string x of weight ¢ or more.

In the following we use the parameter 8 € {C,C} to specify the type of
pairwise hybridization constraints.

Substring occurrences within a tag. Previous works on DNA tag set
design [2, 12] have imposed the following c-token uniqueness constraint in
addition to constraints (C') and (C): a DNA string of weight ¢ or more
can appear as a substring of a feasible tag at most once. This uniqueness
constraint has been added purely for ease of analysis (e.g., it is the key
property enabling the DeBruijn sequence based heuristics in [2]), and is
not required for ensuring correct assay functionality. To our knowledge, no
previous work has assessed the impact that adding this constraint has on
tag set size. In the following we will use the parameter v € {1, multiple}
to specify whether or not the c-token uniqueness constraint is enforced.
For every o € {I,h}, 3 € {C,C}, and v € {1, multiple}, the maximum
tag set design problem with constraints «, (3,7, denoted MTSDP(«|3|7),
is the following: given constants ¢ and [/h, find a tag set of maximum
cardinality satisfying the constraints.

Previous work on tag set design. Ben-Dor et al. [2] formalized the c-
token model for oligonucleotide hybridization and studied the MTSDP(h|C|1)
problem. They established a constructive upperbound on the optimal
number of tags for this formulation, and gave a nearly optimal tag se-
lection algorithm based on DeBruijn sequences. Similar upper bounds
are established for the MTSDP(I|C|1) and MTSDP(*|C|1) problems in
[12], which also extends a simple alphabetic tree search strategy originally
proposed in [11] to handle all considered problem variants.

For a comprehensive survey of hybridization models, results on the
associated formulations for the tag set design problem, and further moti-
vating applications in the area of DNA computing, we direct the reader
to [4].

3 Integer Linear Programming Formulations for

MTSDP (+|C|1)

Before stating our integer linear program formulation, we introduce some
additional notations.



Following [2], a DNA string = of weight ¢ or more is called a c-token
if all its proper suffixes have weight strictly less than c. Clearly, it suffices
to enforce constraint (C) for all c-tokens x. Let N denote the number of
c-tokens, and C = {¢q,...,cn} denote the set of all c-tokens. The results
in [2] imply that N = O((1 + v/3)¢). Note that the weight of a c-token
can be either ¢ or ¢+ 1, the latter case being possible only if the c-token
starts with a strong base (G or C). We let Cy C C denote the set of ¢
tokens of weight ¢ 4+ 1 that end with a weak base, i.e., c-tokens of the
form S<c — 2>W, where W (S) denote a weak (strong) base, and <c — 2>
denotes an arbitrary string of weight ¢ — 2. We also let C5 C C denote the
set of c-tokens of weight ¢ that end with a strong base, i.e., c-tokens of
the form <c — 2>8.

Clearly, there is at most one c-token ending at every letter of a tag. It
is easy to see that each c-token x € Cy contains a proper prefix which is
itself a c-token, and therefore x cannot be the first c-token of a tag, i.e.,
cannot be the c-token with the leftmost ending. All other c-tokens can
appear as first c-tokens. When a c-token in C'\ (Cp U Cz) is the first in a
tag, then it must be a prefix of the tag. On the other hand, tokens in Co
can be the first both in tags that they prefix and in tags in which they
are preceded by a weak base not covered by any c-token.

The ILP formulation for MTSDP(I|C|1) uses an auxiliary directed
graph G = (V, E) with V = {s,t} UU;<;<y Vi, where Vi = {of | |ei| <
k <1}. G has a directed arc from vf to vf“ for every triple 4, j, k such
that |¢;)] < k < 1—1 and ¢; is obtained from ¢; by appending a single
nucleotide and removing the maximal prefix that still leaves a valid c-
token. Finally, G has an arc from s to every v € Vy;.g, where Vi =

{vlc"l | c; € C\Co} U {Ulcwrl | ¢; € C2}, and an arc from v! to ¢ for every
1<i<N.

We claim that, for ¢ < [, MTSDP(I|C|1) can be reformulated as the
problem of finding the maximum number of s-t paths in G that collec-
tively visit at most one vertex Uf for every i. Indeed, let P be an s-t
path and v¥ be the vertex following s in P. If k = |c;|, we associate to P
the tag obtained by concatenating c; with the last letters of the c-tokens
corresponding to the subsequently visited vertices, until reaching ¢. Oth-
erwise, if k = |¢;| + 1 (which implies that ¢; € C2) we associate to P the
two tags obtained by concatenating either A or T with ¢; and the last
letters of subsequently visited c-tokens. The claim follows by observing
that at most one of the tags associated with each path can be used in a
feasible solution.

Our ILP formulation can be viewed as a generalized version of the
integer maximum flow problem in which unit capacity constraints are
imposed on sets of vertices of G instead of individual vertices. The for-



mulation uses 0/1 variables z,, and y, for every every vertex v € V'\ {s, ¢},
respectively arc e € E. These variables are set to 1 if the corresponding
vertex or arc is visited by an s-t path corresponding to a selected tag.
Let in(v) and out(v) denote the set of arcs entering, respectively leaving
vertex v. The integer program can then be written as follows:

maximize Z Ty (1)
vevfir'st

subject to
Ty = Ye = Z Ye, vEV \ {S7t} (2)

e€in(v) ecout(v)

>, <1, 1<i<N (3)
veV;
v, ye € {0, 1}, veVi\{sthecE (4

Constraints (2) ensure that variables y. set to 1 correspond to a set of
s-t paths, and that a variable x, is set to 1 if and only if one of these
paths passes through v.! Antitag-to-tag hybridization constraints (C) and
c-token uniqueness are enforced by (3). Finally, the objective (1) corre-
sponds to maximizing the number of selected tags, since the shortest
prefix of a tag that is a c-token must belong to C \ Cp.

For a token ¢; = ¢; X € Cy, where X € {A, T}, let ¢; = ¢ja. Since both
¢; and ¢; contain c; as a prefix, and ¢; can appear at most once in a feasible
tag set 7, it follows that at most one of them can appear in 7. Therefore,
the following valid inequality can be added to the the ILP formulation
(1)—(4) to improve its integrality gap (i.e., the gap between the value of the
optimum integer solution and that of the optimal fractional relaxation):

Z :EvSl, CiGCO, Cj:a,yl<] (5)
veV;UVj

The formulation of MTSDP(1|C|1) has exactly the same objective and
constraints for a slightly different graph G. Let us define the tail weight
of a c-token C, denoted tail(C), as the weight of C’s last letter. Also,
let h; = h if ¢; has a tail weight of 1 and h; = h 4+ 1 if ¢; has a tail
weight of 2. We will require that every tag ending with token c¢; has total
weight of at most h;; it is easy to see that this constraint is not affecting
the size of the optimum tag set. We now define the graph G = (V. E)
with V = {s,t} U Uj<jen Vi, where V; = {vF | w(¢;) < k < h}. G

! Variables x, can be eliminated by replacing them with the corresponding sums
of x.’s; we use them here merely for improving readability. ILP sizes reported in
Section 5 refer to the equivalent reduced formulations obtained by eliminating these
variables.



contains a directed arc from fuf to vf“ail(i) for every triple i, j, k such

that |¢;| < k < hy — tail(c;) and ¢; is obtained from ¢; by appending a
single nucleotide and removing the maximal prefix that still leaves a valid
c-token. Finally, G' contains arcs from s to every v € Vs, where Vo
is now equal to {U;U(ci) | ci e C\Co}U {vzu(ci)Jrl | ¢; € Ca}, plus arcs from
every Uf to t for every 1 <i < N and h; — tail(c;) < k < h;.

4 Algorithms for MTSDP (x| * |multiple)

In the following we describe two algorithms for MTSDP(I|C|multiple);
both algorithms can be easily adjusted to handle the other MTSDP (x|
|multiple) variants. The first algorithm (see [13] for a detailed pseu-
docode) is similar to the alphabetic tree search algorithms proposed for
MTSDP(I|C|1) in [12]. The algorithm performs an alphabetical traversal
of a 4-ary tree representing all 4! possible tags, skipping over subtrees
rooted at internal vertices that correspond to tag prefixes including un-
available c-tokens. The difference from the MTSDP(I|C|1) algorithm in
[12] lies in the strategy used to mark c-tokens as unavailable. While the
algorithm in [12] marks a c-token C' as unavailable as soon as it incorpo-
rates it in the current tag prefix (changing C’s status back to “available”
when forced to backtrack past C’s tail), our algorithm marks a c-token
as unavailable only when a complete tag is found.

Note that the alphabetic tree search algorithm produces a mazimal
feasible set of tags 7, i.e., there is no tag t such that 7 U {t} remains
feasible for MTSDP(I|C|multiple). Hence, every tag of an optimal solu-
tion must share at least one c-token with tags in 7. Since every tag of
7 has at most [ — ¢/2 + 1 c-tokens, it follows that the alphabetic tree
algorithm (and indeed, every algorithm that produces a maximal feasible
set of tags) has an approximation factor of [ — ¢/2 + 1.

We call a tag t periodic if t is the length [ prefix of an infinite string
x>, where x is a DNA string with |z| < |¢t|. (Note that a periodic tag ¢
is not necessarily the concatenation of an integer number of copies of its
period z as in the standard definition of string periodicity [10].)

The following lemma shows that tag set design algorithms can restrict
the search to two simple classes of tags.

Lemma 1. For every ¢ and l, there exists an optimal tag set T in which
every tag has the uniqueness property or is periodic.>

Proof. Let T be an optimal tag set. Assume that 7 contains a tag t
that does not have the uniqueness property, and let c;,,...,c; be the

2 Note that the two classes of tags are not disjoint, since there exist periodic tags that
have the uniqueness property.



sequence of c-tokens occurring in ¢, in left to right order. Since ¢ does not
have the uniqueness property, there exist indices 1 < j < j' < 4, such
that ¢;; = Ci- Let t' be the tag formed by taking the first [ letters of
the infinite string with c-token sequence (c¢; v Ciyr ,)°°; note that t'is
a periodic tag. Since c-tokens ¢;, ... 1 Ciy do not appear in the tags of
T\{t}, it follows that (7 \{t})U{t'} is also optimal. Repeated application
of this operation yields the lemma. O

Note that a periodic tag whose shortest period has length p contains
as substrings exactly p c-tokens, while tags with the uniqueness property
contain between | —c+ 1 and [ — ¢/2 4+ 1 c-tokens. Therefore, of the two
classes of tags in Lemma 1, periodic tags (particularly those with short
periods) make better use of the limited number of available c-tokens.

Each periodic tag corresponds to a directed cycle in the graph H.
which has C as its vertex set, and in which a token c¢; is connected by an
arc to token c; iff ¢; and ¢; can appear consecutively in a tag, i.e., iff ¢; is
obtained from ¢; by appending a single nucleotide and removing the max-
imal prefix that still leaves a valid c-token. Clearly, a vertex-disjoint pack-
ing of n cycles in H, yields a feasible solution for MTSDP (I|C|multiple)
consisting of n tags, since we can extract at least one tag of length [ from
each cycle, and tags extracted from different cycles do not have common
c-tokens. This motivates the following:

MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACKING Problem: Given
a directed graph G, find a maximum number of vertex-disjoint directed
cycles in G.

The next theorem shows that MAXIMUM VERTEX-DISJOINT DIRECTED
CYCLE PACKING in arbitrary graphs is unlikely to admit a polynomial
approximation scheme.

Theorem 1. MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE PACK-
ING is APX-hard even for reqular directed graphs with in-degree and out-
degree of 2.

The proof of Theorem 1, which uses a reduction from the MAX-
2-SAT-3 problem similar to the one in [6], can be found in [13]. A
stronger inapproximability results was recently established for arbitrary
graphs by Salavatipour and Verstraete [15], who proved that there is no
O(log'™¢ n)-approximation for MAXIMUM VERTEX-DISJOINT DIRECTED
CYCLE PACKING unless NP C DTIM E(2P°Wl°9m). On the positive side,
Salavatipour and Verstraete showed that MAXIMUM VERTEX-DISJOINT
DIRECTED CYCLE PACKING can be approximated within a factor of
O(y/n) via linear programming techniques, matching the best approxi-
mation factor known for the edge-disjoint version of the problem [9].



Table 1. ILP results for MTSDP(I|C|1), i.e., tag set design with specified tag length
[, antitag-to-tag hybridization constraints, and a unique copy of each c-token allowed
in a tag.

l|c|| #tags |Upper Bounds LP/ILP statistics

[12] ILP LP [12] || #constr  #vars #non-zero LP time ILP time
10 |4 7 8| 8.57 9 406 1878 6004 0.13 0.71
10(5| 23 28| 28.00 29 1008 4600 14596 2.27 5.85
10|61 67 85| 85.60 96 2434 10940 34470 11.40 98.25
1071 196 259 ]259.67 328 5808 25422 79274 86.70 586.67
10 (8| 655 —1853.33 1194 13554 57138 175492 552.74 -
20|4 3 3] 3.53 3 926 4638 15244 1.05 58.46
205 9 10| 10.50 11 2448 12240 40076 13.72 381.33
20(|6| 26 29| 29.87 32 6354 31860 104270 182.96 12448.61
20| 7| 75 —| 88.00 93 16528 82662 270194  2675.68 -
20| 8| 213 —257.23 275 42834 213578 697292 134525.81 -

Table 2. ILP results for MTSDP(h|C|1), i.e., tag set design with specified minimum
tag weight h, antitag-to-tag hybridization constraints, and a unique copy of each c-
token allowed in a tag.

h|c|| #tags |Upper Bounds LP/ILP statistics

[12] ILP LP [2] || #constr  #vars #non-zero LP time ILP time
154 6 7 7.00 7 610 2966 9612 0.45 9.04
15(5( 18 21| 21.09 21 1550 7456 23998 5.66 117.62
156 47 63| 63.20 63 3830 18322 58752 54.43  2665.39
15| 7| 149 192|192.00 192 9406 44416 141638  544.95 3644.85
15|8([460  —|588.00 590 22766 105746 334904 7153.87 -
284 3 3| 3.30 3 1286 6554 21624 1.88  132.78
2815 8 9 9.67 9 3422 17388 57122 34.66 1137.21
28|16 22 27| 2748 27 8926 45518 149492  392.42 18987.09
28| 7| 64 —| 78.55 78 23342 118828 389834 T711.41 -
288|175 — - 224] 60830 309118 1013244 - -

We use a simple greedy algorithm to solve MAXIMUM VERTEX-DISJOINT
DIRECTED CYCLE PACKING for the graph H.: we enumerate possible tag
periods in pseudo-lexicographic order, and check for each period if all
c-tokens are available for the resulting tag. We refer to this algorithm as
the greedy cycle packing algorithm, since it is equivalent to packing cycles
greedily in order of length.

5 Experimental results

Tables 1 and 2 give ILP statistics (number of constraints, number of vari-
ables, and number of non-zero coefficients), LP and ILP runtime, and
LP and ILP solution values for MTSDP(I|C|1) and MTSDP(h|C|1). We



Table 3. Results for MTSDP (x|C|multiple), i.e., tag set design with antitag-to-tag
hybridization constraints and multiple copies of a c-token allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [12] Tree search Cycle packing + Tree search
tags c-tokens | tags c-tokens | tags c-tokens % cyclic
4 3 51 14 59 17 40 100.0
5 9 146 31 165 40 140 100.0
6 26 404 53 433 72 293 98.6
=20 7 75 1100 124 1179 178 928 99.4
8 213 2976 281 3095 383 2411 97.1
9 600 7931 711 8230 961 7102 96.9
10 || 1667 20771 | 1835 21400 | 2344 19691 95.1
4 3 58 14 61 17 40 100.0
5 8 150 32 174 40 140 100.0
6 22 398 44 432 72 300 98.6
h > 28 7 64 1119 118 1200 178 934 99.4
8 175 2918 239 3037 379 2405 96.6
9 531 8431 632 8622 943 6969 96.5
10 || 1428 21707 | 1570 22145 | 2260 19270 94.1

also include the upper bounds established in [12] and [2] for these prob-
lems, and the number of tags found by using the alphabetic tree search
algorithm in [12]. We solved all integer programs and their fractional re-
laxations using the CPLEX 9.0 commercial solver with default parameters
run using a single CPU on a dual 2.8 GHz Dell PowerEdge 2600 Linux
server. Missing entries did not complete in 10 hours.

The ILP solutions can be found in practical time for small values
of ¢, which are appropriate for universal tag array applications, such as
the emerging microfluidics-based labs-on-a-chip, where moderate multi-
plexing rates are sufficient and ensuring high hybridization stringency is
costly. For all cases where the optimum could be computed, the difference
between the optimal fractional and integer solution values was smaller
than 1, indicating why CPLEX can solve to optimality these ILPs despite
their size. Furthermore, ILP results confirm the extremely high quality
of the upperbound established for MTSDP(h|C|1) in [2]; the upperbound
established in [12] for MTSDP(I|C|1) appears to be somehow weaker.

Tables 3 and 4 give the results obtained for MTSDP (x| * |multiple) by
the alphabetic tree search algorithm described in Section 4, respectively
by the greedy cycle packing algorithm (in our implementation, we impose
an upper bound of 15 on the length of the cycles that we try to pack)
followed by running the alphabetic tree search algorithm with the c-tokens
occurring in the selected cycles already marked as unavailable. Performing
cycle packing significantly improves the results compared to running the




Table 4. Results for MTSDP (x|C|multiple), i.e., tag set design with both antitag-to-
tag and antitag-to-antitag hybridization constraints and multiple copies of a c-token
allowed in a tag.

One c-token copy Multiple c-token copies
l/h c Algorithm in [12] Tree search Cycle packing + Tree search
tags c-tokens | tags c-tokens | tags c-tokens % cyclic
4 1 17 10 35 10 25 100.0
5 4 65 17 83 23 85 100.0
6 13 200 30 241 41 171 97.6
=20 7 37 537 68 585 97 512 99.0
8 107 1480 | 147 1619 202 1268 98.0
9 300 3939 | 362 4124 512 3799 96.3
10 844 10411 | 934 10869 | 1204 10089 95.8
4 1 22 10 36 10 25 100.0
5 4 74 17 84 23 85 100.0
6 12 213 29 238 41 178 97.6
h > 28 7 32 559 64 586 97 518 99.0
8 90 1489 | 135 1632 199 1238 98.0
9 263 4158 | 329 4314 504 3760 95.8
10 714 10837 | 809 11250 | 1163 9937 93.6

alphabetic tree search algorithm alone; as shown in the tables, most of
the resulting tags are found in the cycle packing phase of the combined
algorithm.

Across all instances, the combined algorithm increases the number of
tags by at least 40% compared to the MTSDP (x|  |1) algorithm in [12];
the improvement is much higher for smaller values of c. Quite notably,
although the number of tags is increased, the tag sets found by the com-
bined algorithm use a smaller total number of c-tokens. Thus, these tag
sets are less likely to cross-hybridize to the primers used in the reporter
probes, enabling higher tag utilization rates during tag assignment [3, 12].

6 Conclusions

In this paper we proposed new solution methods for designing tag sets
for universal DNA arrays. We have shown that optimal solutions can be
found in practical time for moderate problem sizes by using integer linear
programming, and that the use of periodic tags leads to increases of over
40% in the number of tags, with simultaneous increases in effective tag
utilization rates during tag assignment. Our algorithms use simple greedy
strategies, and can be easily modified to incorporate additional practical
design constraints, such as preventing the formation of hairpin secondary
structures, or disallowing specific nucleotide sequences such as runs of 4
identical nucleotides [11].



An interesting open problem is to find tight upper bounds and exact

methods for the MTSDP (x|« |multiple) formulations. Settling the approx-
imation complexity of MAXIMUM VERTEX-DISJOINT DIRECTED CYCLE
PACKING is another interesting problem.
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